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Software has played vital roles in many services 
and mission-critical systems and even replaced 
humans in some functions to improve effi-
ciency, reliability, and safety. However, severe 

consequences, including property loss and life-threat-
ening accidents, can be caused by compromised sys-
tems and defective software.1 In the industry, testing 
remains the most commonly used technique to help 
engineers ensure the quality of software and prevent 
accidents. A project can invest significant resources 
in testing, but the software produced may still suffer 
from low quality. The key factor is not how much has 
been spent on testing but how the testing was conducted 
and who conducted it. Today, unit testing can be used 

to effectively test an individ-
ual software module.2, 3 

To introduce unit testing to 
more college students and practi-
tioners in the software industry 
and improve their unit-testing 
skills, we organized two soft-
ware-testing contests [(STCs);  
STC 2016 and STC 2017], spon-
sored by the IEEE Reliability 
Society4 and Mooctest LLC,5 as 

part of the National Student Contest of Software Testing 
in China.6 In addition to the educational objective, we 
collected the testing data, such as manually generated 
test cases, for research purposes. The data (after removal 
of private information) were saved in a repository that is 
open access. We conducted two empirical studies using 
data from this repository. Our findings are presented in 
the following sections.

TESTING CONTESTS
Both STC 2016 and STC 2017 had preliminary and final 
stages. STC 2017 also had an additional semifinal stage. 
STC 2016 included 521 undergraduates from 131 affilia-
tions in the preliminary stage; the top 30 ranked con-
testants participated in the final stage. For STC 2017, 
the number of participants nearly doubled. Hence, we 
added a semifinal stage to select 45 contestants from 
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21 affiliations to attend the final. The 
top-ranked contestants in the final 
stages each year received cash prizes. 
Both STC 2016 and STC 2017 used 
Mooctest,5 an online software-testing 
platform that can automatically deploy 
the testing environment and provide 
s e ve r a l  s of t w a re -te s t i n g-re l ate d 
measurements to help practitioners 
improve their testing efficiency and 
effectiveness. Mooctest is straightfor-
ward to use; each contestant needs only 
to download and install the Mooct-
est plug-in for the Eclipse integrated 
development environment (IDE). To 
help contestants become familiar with 
the Mooctest platform and the contest 
environment, we provided a tutorial 
covering the contest, Mooctest plat-
form, JUnit, and ranking criteria, as 
well as many hands-on exercises, on the 
Mooctest website several weeks before 
each contest.

Each contestant used an Eclipse IDE 
with a Mooctest plug-in installed to 
connect to the Mooctest server. When 
the contest started, the Mooctest server 
deployed several subject programs to 
each contestant’s Eclipse IDE. Once the 
deployment was completed, the con-
testant started to test, and an activated 
timer was shown on the screen. During 
the test, the contestants needed to 
read and understand the source code 
of the subject programs. Then, they 
wrote JUnit test cases and submit-
ted them to the Mooctest server. The 
server compiled the submitted test 
cases, executed them against the sub-
ject programs, measured the branch 
coverage, and computed the mutation 
score. The achieved branch coverage 
of each submission was sent back to 
the contestants to help them gen-
erate additional test cases, although 

the achieved mutation score was hid-
den from them. To ensure a fair con-
test environment for all, no other tools 
or coverage plug-ins were allowed. In 
both contests, multiple submissions 
were allowed, and the final score of 
each contestant was determined by 
his or her last submission. When the 
timer ran out, the contest ended, and 
the Mooctest server would no longer 
accept new submissions.

For the contest organizer, Mooctest 
offered a web interface to manage and 
monitor the contest that showed all 
of the contestants’ real-time scores and  
their statistics, such as average, median, 
and standard deviation.

SUBJECT PROGRAMS
Before generating test cases for a sub-
ject program, a contestant must under-
stand its specifications and the source 
code. However, this can be difficult for 
those under a time constraint. Ideally, 
the subject programs should be reason-
ably small (but not trivial) so that the 
contestants will face some challenges 
but should be able to achieve reason-
able scores. Because of this, we did 
not select subject programs from the 
well-maintained, open online bench-
marks SF1007 and Defects4J,8 since 
the programs on these benchmarks, 
in general, are too large and depend 
on many third-party libraries, which 
make them harder to understand.

To select appropriate subject pro-
grams, we measured the sof tware 
complexity of the programs used in the 
examinations for the software-test-
ing classes at Nanjing University 
using four complexity metrics: lines 
of code (LOC), number of branches, 
average method complexity (AMC), 
and average block depth (ABD).9,10 

We then selected open source subject 
programs for the STC from GitHub 
and SourceForge. The complexities 
of these programs in terms of LOC, 
number of branches, AMC, and ABD 
are similar to those of the programs 
used in our software-testing classes at 
Nanjing University. Our experiences 
suggest that students (at least those in 
our classes) could generate test cases 
achieving reasonable branch cov-
erage and mutation scores. Stated dif-
ferently, programs with such complex-
ities are neither too difficult nor too 
easy and are good candidates for test-
ing contests, as they can help us rank 
contestants. Table 1 shows the values 
of four complexity metrics of the sub-
ject programs used in STC 2016 and 
STC 2017. For comparison purposes, 
complexities of programs used in our 
classes are also included. For each 
subject program, we used PITest,11 a 
state-of-the-art mutation testing tool, 
to generate mutants using its default 
mutation operators.12

ASSESSMENT CRITERIA
In STC 2016 and STC 2017, we used 
branch coverage commonly mandated 
in the industry to evaluate the quality 
of the generated test cases.13 We also 
used mutation score, which has been 
widely used in academia,14 to evalu-
ate and rank contestants. In mutation 
testing, a mutant is a faulty program 
derived from the original program. It 
is killed when the original program 
and the mutant are executed by the 
same test case but behave differently. 
For example, given a C program with a 
statement “return x/6,” a mutant can 
be generated by changing the state-
ment to “return x/5.” This mutant will 
be killed by a test case {x = 5} as the 
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original program returns 0, while the 
mutant returns 1. However, another 
test case {x = 2} cannot kill the mutant, 
as both the original program and the 
mutant return the same value (that is, 
zero). Once the test execution against 
the original program and mutants is 
completed, the mutation score is com-
puted as the total number of mutants 
killed divided by the number of all 
generated mutants.

Inspired by a previous unit-testing 
competition,10 we combined branch cov-
erage and mutation score together to 
develop the following ranking equation:

P

P

Score [ coverage ( )

score ( )] / num ,
P

P

branch

mutation

∑ α

β

= ⋅

+ ⋅

where P represents a subject program, 
coveragebranch and scoremutation refer 
to the archived branch coverage and 
mutant score, respectively, and nump 
refers to the total number of subject 
programs in each contest, where α and 
β are the weights.

Except for the preliminary stage of 
STC 2016, where mutation score was 
not included in the ranking equation, 
both branch coverage and mutant 
score were applied in our ranking sys-
tem with α and β of 0.5. We weighted 
both factors equally because, to the 
best of our knowledge, there are no 
discussions or studies on which ratio 
of branch coverage to mutation score 
should be used to measure testing 
effectiveness. To ensure that contes-
tants were familiar with mutation 
testing, we gave lectures on mutation 
testing at several universities. A muta-
tion testing tutorial was available on 
the STC website.

EMPIRICAL STUDIES 
USING DATA COLLECTED 
FROM CONTESTS
As the demands for reliable and trust-
worthy software increase dramati-
cally, improving the software-testing 
skills of undergraduates, graduate stu-
dents, and practitioners is important. 

Software-testing contests can provide 
significant contributions to our com-
munity, as we can make software test-
ing and its techniques more visible. 
Our contests are more valuable because 
we have created a data repository, the 
Software Testing Contest Data Repos-
itory (STCDR) at http://www.iselab 

TABLE 1. Software complexity of the subject 
programs used in STCs 2016 and 2017.

Contest Subject program LOC
Number of  
branches AMC ABD

2016 preliminary Calculator 352 62 3.23 2.46 

Command 691 142 2.22 1.79 

2016 final Elevator 434 77 2.25 2.20

MoreTriangle 131 11 1.80 1.77

NBC 174 27 1.97 1.78 

2017 preliminary Datalog 288 56 2.00 1.95 

QuadTree 298 45 2.10 2.10 

JMerkle 367 85 3.44 2.57 

2017 semifinal CMD 227 31 1.52 2.84 

ITClocks 496 83 1.52 2.84 

2017 final BPlusTree 384 69 2.37 2.20 

JCLO 194 57 4.56 2.36 

SuffixArray 157 46 4.26 2.21 

For comparison purposes, complexities of programs used in our classes at Nanjing University are 
listed below.

Testing classes at 
Nanjing University

NodeFlatIndex 405 91 2.64 2.23

GeneticAlgorithm 229 40 2.44 2.1

FPTree 260 49 2.87 2.54

AbstractMatrix 282 55 2.05 1.8
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FIGURE 1. A set of scatterplots of mutation scores (vertical axis) against branch coverage 
(horizontal axis) for nine subject programs. (a) MoreTriangle, (b) Datalog, (c) QuadTree, (d) 
JMerkle, (e) CMD, (f) ITClocks, (g) BPlusTree, (h) JCLO, and (i) SuffixArray.
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.cn/contest/data/. It includes data col-
lected from STC 2016 and STC 2017 that 
can be accessed by the public. Statis-
tics are also included, such as coverage 
achievement and mutation scores of 
test cases generated by each contestant 
and the average over all the contestants. 

Using the data from STCDR, we con-
ducted empirical studies to answer 
two research questions.

›› Does branch coverage have a 
strong correlation with muta-
tion score in unit testing?

›› Does test order at class level have 
an impact on the effectiveness of 
unit testing?

Does branch coverage have 
a strong correlation with 
mutation score in unit testing?
Studies15–17 analyzed the correlation 
between branch coverage and muta-
tion score. However, the test cases in 
those studies were all randomly gen-
erated. This can be a threat to validity, 
as not all test cases used in the indus-
try are randomly created. Since our 
test cases were manually created, this 
provides an opportunity to analyze the 
correlation in a more realistic setting. 
In our experiments, some test suites 
generated by the contestants cannot 
be used in our analysis due to the lim-
itations of the mutation testing tool—
PITest. First, a test suite is incomplete 
if it contains no assertion, which is 
required by PITest to kill mutants. 
Those for the preliminary stage of STC 
2016 are in this category. Second, if 
the correct program does not pass all 
of the assertions of a test suite, PITest 
stops the mutation testing without 
measuring its mutation score. In addi-
tion, two programs, Elevator and NBC, 
were not included because they did not 
have at least 25 test suites to satisfy 
a suggested threshold for conducting 
the Pearson’s correlation (PC) analy
sis.18 As a result, we conducted the 
analysis using 846 test suites of nine 
subject programs.

Figure 1 shows the scatterplots of mu
tation scores and branch coverage for 
each subject program, with a straight line 
representing the trend. We observed a 
positive correlation between branch cov-
erage and mutation score in all subject 
programs. We computed the PC coefficient 
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using SPSS software to measure the lin-
ear correlation of branch coverage and 
mutation score for each subject program. 
The details are shown in Table 2.

The first two columns present the 
subject programs and their corre-
sponding PC. In seven subject pro-
grams, we observed moderate or strong 
positive correlation (PC > 0.40).19 In 
two subject programs (CMD and Suf-
fixArray), the correlations are positive 
but weak, different from those of the 
other subject programs. We manually 
inspected these two subject programs 
along with the test suites generated by 
contestants and compared them with 
other subject programs. We found 
that all branches of CMD are in seven 
out of 52 methods. In other words, the 
remaining 45 methods of CMD do not 
have any branches. As a result, the cor-
relation between mutation score and 
branch coverage is weakened, since 
either of them can be achieved inde-
pendently. This matches our results as 
shown in Figure 1(e). Regarding Suffix-
Array, we found that some mutations 
were rarely killed by the contestants, 
which also weakened the correlation. 
Since we used the same mutation 
operators for all subject programs, 
this suggests that SuffixArray was 
more difficult for the contestants. To 
determine whether the observed cor-
relation is statistically significant or 
not, we applied the paired Wilcoxon 
test and carried out the two-tailed 
alternative hypothesis. The third col-
umn presents the significant values. 
The p values of all tests range from 0.141 
to 0.001. Therefore, we can accept the 
alternative hypothesis that branch cov-
erage has a significant positive correla-
tion with mutation score, with a confi-
dence level of at least 0.859.

Does test order at class 
level have an impact on the 
effectiveness of unit testing?
A good test order at class level can 
reduce the number of test stubs and 
increase testing efficiency.20 This raises 
an interesting question of whether test 
order has an impact on testing effective-
ness. One challenge of using data from 
open source repositories such as GitHub 
is that the time spent on test generation 
can have an impact on testing effective-
ness. For example, given two test suites 
generated by two testers who have sim-
ilar testing skills and domain knowl-
edge, a reasonable assumption is that 
the test suite that took more time to 
generate may achieve better effective-
ness. Since we do not know how much 
time was spent on the test generation, 
the evaluation can be biased. Using the 
data from our contests can diminish 
this threat because the time spent on 
test generation by each contestant is 
almost the same.

In both contests, we observed that 
contestants tested their subject pro-
grams differently. We first identified 
eight test orders based on feedback 
from practitioners in the industry, re
searchers in academia, and some con-
testants. The first two test orders are in 
alphabetically ascending and descend-
ing orders (ALPHA ASC/DESC) based 
on the names of the Java classes. In the 
contest, the Eclipse IDE used by each 
contestant listed the classes of subject 
programs in alphabetical order. This 
could have led the contestants to test the 
classes in an alphabetically ascending or 
descending order. The third and fourth 
test orders are ascending and descend-
ing orders based on the size of the sub-
ject program (LOC ASC/DESC), which is 
measured by LOC. These two test orders 
are from the examination strategies—
working on the easiest or hardest first. 
The other four test orders are based on 
the forward and backward directions 
(the direction or reverse direction of 

TABLE 2. Correlations between branch coverage and mutation score.

Subject program PC p Value Description

MoreTriangle 0.538 0.005 Positive, moderate, with a significance level of 0.01

Datalog 0.861 <0.001 Positive, very strong, with a significance level of 0.01

QuadTree 0.781 <0.001 Positive, strong, with a significance level of 0.01

JMerkle 0.831 <0.001 Positive, very strong, with a significance level 0.01

CMD 0.397 <0.001 Positive, weak, with a significance level of 0.01

ITClocks 0.650 <0.001 Positive, strong, with a significance level of 0.01

BPlusTree 0.533 <0.001 Positive, moderate, with a significance level of 0.01

JCLO 0.778 <0.001 Positive, strong, with a significance level of 0.01

SuffixArray 0.234 0.141 Positive, weak
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a directed relationship) of the depen-
dency (DEPEND) and association (ASSN) 
relationship of Unified Modeling Lan-
guage (UML) class diagrams.

We determine the test order favored 
by a contestant in four steps. First, for 
a subject program, we identify a set of 
pilot test sequences (PTSs) with respect 
to each test order. Second, for each con-
testant, we identify his or her TS on each 
subject program, based on the sequence 
of classes invoked by his or her meth-
ods where each is a parameter of an 
assertion. Third, we compare the iden-
tified TS with each of the eight PTSs. 
Regarding ALPHA (ASC/DESC) and 
LOC (ASC/DESC), if the TS is the lon-
gest common subsequence between the 
TS and the only element of the PTS, we 
determine that the corresponding test 
order of the PTS is used once. Regarding 
DEPEND (FWD/BWD) and ASSN (FWD/
BWD), we obtain the reverse PTS (RPTS), 
which contains the reverse sequence of 
each element in the PTS. If any subse-
quence of length two of the TS is not in 
the RPTS and there is at least one in the 
PTS, we determine that the correspond-
ing test order is used once. Fourth, if 
multiple test orders are equally used by 

a contestant, we randomly select one as 
his or her  preferred test order.

Take a program with four classes, 
named A, B, C, and D, and the test suite 
as shown in Figure 2 as an example. In 
this case, PTSALPHA(ASC) is {(A, B, C, D)}, 
while the TS of the test suite is (A, B, C). 
Note that B is not considered to be tested 
at line 5 because it is not a parameter of an 
assertion. As a result, we determine that 
alphabetically ascending order is used 
once, as the TS is the longest common 
subsequence between the TS and the only 
element of PTSALPHA(ASC). Regarding for-
ward dependency test order, assume A 
and B depend on C, while D has no depen-
dencies. In this case, 

›› PTSDEPEND(FWD) is [(A, C), (B, C)]. 
›› RPTSDEPEND(FWD) is [(C, A), (C, B)]. 
›› TS is (A, B, C). All subsequences 
of length two of the TS are [(A, B), 
(A, C), (B, C)]. 

As a result, forward dependency 
test order is determined to be used 
once because (A , C) and (B, C) are 
in PTSDEPEND(FWD), and no subse-
quences of length two of the TS are in 
RPTS DEPEND(FWD).

To measure the test order accu-
rately, we used the data from the con-
testants from the preliminary stage 
of STC 2017 who wrote only one JUnit 
class with one test function for each 
subject program. We ran the analysis 

10 times to obtain the results on aver-
age to reduce bias introduced by 
randomization. The results are shown 
in Table 3.

The results show that, although 
the alphabetical order by class names 
(given by Eclipse IDE) is the first order 
presented to contestants, it is not the 
favorite test order. Nearly 30% of the 
contestants chose the famous “answer-
ing the easiest or hardest question first” 
examination strategy in the contest. 
Approximately 25% of the contestants 
tested the subject programs based on 
their dependency relationships, with 
the forward dependency test order 
being more popular. This indicates 
that, if  contestants discovered a ref-
erenced class (e.g., class B) when they 
tested a class (e.g., class A), it was likely 
that they would test class B after class 
A. In addition, there was a small por-
tion of the contestants who favored the 
association-based order.

The average score of the contes-
tants who used ALPHA (ASC) is only 
slightly lower than that of the con-
testants who used ALPHA (DESC) by 
2.25. This met our expectation, as we 
believed that testing using ascending 
versus descending alphabetical order 
by class name should not cause a signif-
icant impact. The average score of LOC 
(ASC) is higher than that of LOC (DESC) 
by 7.92. This suggests that the strategy 
of answering the easiest question first 

TABLE 3. Test orders favored by contestants and their average scores in the preliminary stage of STC 2017.

ALPHA 
(ASC)

ALPHA 
(DESC)

LOC  
(ASC)

LOC  
(DESC) 

DEPEND 
(FWD)

DEPEND 
(BWD)

ASSN 
(FWD)

ASSN 
(BWD) OTHER

Percentage 13.72% 6.35% 21.01% 7.91% 20.47% 4.32% 11.15% 2.43% 12.64%

Average score 17.91 20.16 26.95 19.03 27.20 20.07 27.14 9.14 37.94

FIGURE 2. A sample test suite.
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is more effective than the strategy of 
answering the hardest question first. 
Regarding the test orders based on 
UML relationships, both forward test 
orders—DEPEND (FWD) and ASSN 
(FWD)—have almost the same average 
score. The average scores of these for-
ward test orders are higher than those 
of the backward test orders—DEPEND 
(BWD) and ASSN (BWD)—by 7.13 and 
18.0, respectively. This suggests that 
both test orders based on the UML rela-
tionship—dependency and associa-
tion—can be equally effective, and the 
forward test order is more effective than 
the backward test order. Contestants 
who used other test orders achieved the 
highest average score of 37.94. 

OBSERVATIONS AND 
LESSONS LEARNED
By hosting software-testing contests, 
we can improve students’ software-test-
ing skills and also collect real testing 
data for research on software testing 
and engineering.

Mutation testing has been proposed 
to measure the fault detection strength 
of test cases based on the mutation 
score. However, mutation testing might 
not be feasible due to its high execution 
cost. Our analysis using 846 manually 
created test suites shows that there is 
a significant and moderate to strongly 
positive correlation between branch 
coverage and mutation score. This sug-
gests that branch coverage can still be 
used as an alternative when mutation 
testing is not feasible.

In addition to the correlation analy-
sis between branch coverage and muta-
tion score, we also analyzed the testing 
effectiveness of different test orders 
and their popularity. Three interest-
ing observations were drawn from the 

analysis results. First, the answering 
the easiest question first strategy per-
formed better than the answering the 
most difficult question first strategy. 
Second, forward UML-based test orders 
performed better than backward UML-
based test orders. Third, the test order 
“Other” achieved the highest aver-
age score of 37.94, and it is noticeably 
higher than the second highest average 
score of 27.20. This observation raises 
the question of whether there were 
specific test orders we did not identify. 
In our experimental design, we ana-
lyzed eight test orders based on feed-
back from practitioners in the indus-
try, researchers in academia, and some 
contestants. We are confident that we 
did not miss any specific test order in 
our analysis. If this is true, this could 
suggest that flexible test order could 
achieve good effectiveness. Neverthe-
less, we will conduct more experiments 
to further investigate this observation.

THREATS TO VALIDITY
A potential threat to the first exper-
iment is that the difficulty, in gen-
eral, of killing mutants can impact 
the analysis results. We mitigated 
this threat by applying PITest11 with 
its default mutation operators.12 This 
experiment setting has also been 
applied in other empirical studies and 
tool contests.2,14 In addition, our first 
empirical study used nine subject 
programs with similar values of four 
software complexity metrics. If the 
complexity can cause a significant 
impact, our empirical analysis results 
may not be generalized to all pro-
grams. For the second experiment, we 
used randomization as a tie breaker to 
determine the favorite test order for 
each contestant. We reduced the bias 

introduced by the randomization by 
conducting the analysis 10 times.

A lt houg h we a sked contestants 
to use the concept of unit testing and 
the JUnit library to perform unit testing, 
integration testing might be performed 
on some classes of the subject programs. 
This is caused by class dependencies, as 
some classes depend on other classes 
during execution. In practice, it is rec-
ommended to exclude these dependen-
cies from the testing environment as 
much as possible to prevent unexpected 
failures caused by other modules instead 
of the module being tested. In STC 2016 
and STC 2017, the contestants were not 
asked to deal with the dependency issue 
during the testing. As a result, our ob
servations and findings might not con-
form to the strict unit-testing settings. In 
the future, we will alleviate this by ask-
ing contestants to deal with dependen-
cies in unit testing.

We are expanding the contest 
worldwide to reach more 
students and affiliations. 

We are carefully designing a controlled 
experiment to quantitatively analyze 
the impact of the contest. We will also 
further revise our contest ranking 
equation by including more factors. In 
addition to the regular sections, a new 
section, Testathon, will be added to our 
contest. In this section, contestants 
will be given two days to test a much 
larger software system. The data from 
Testathon will be used for cross com-
parison with the data from the regular 
sections. More state-of-the-art auto-
mated testing tools (e.g., EvoSuite3) 
will be integrated into the Mooct-
est platform to conduct human versus 
machine analysis. 
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