
COMPUTING PRACTICES

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E 	 P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y O C T O B E R 2 0 1 9 � 61

Software-Testing
Contests:
Observations and
Lessons Learned
Xingya Wang and Weisong Sun, Nanjing University

Linghuan Hu, University of Texas at Dallas

Yuan Zhao, Nanjing University

W. Eric Wong, University of Texas at Dallas

Zhenyu Chen, Nanjing University

Software has played vital roles in many services
and mission-critical systems and even replaced
humans in some functions to improve effi-
ciency, reliability, and safety. However, severe

consequences, including property loss and life-threat-
ening accidents, can be caused by compromised sys-
tems and defective software.1 In the industry, testing
remains the most commonly used technique to help
engineers ensure the quality of software and prevent
accidents. A project can invest significant resources
in testing, but the software produced may still suffer
from low quality. The key factor is not how much has
been spent on testing but how the testing was conducted
and who conducted it. Today, unit testing can be used

to effectively test an individ-
ual software module.2, 3

To introduce unit testing to
more college students and practi-
tioners in the software industry
and improve their unit-testing
skills, we organized two soft-
ware-testing contests [(STCs);
STC 2016 and STC 2017], spon-
sored by the IEEE Reliability
Society4 and Mooctest LLC,5 as

part of the National Student Contest of Software Testing
in China.6 In addition to the educational objective, we
collected the testing data, such as manually generated
test cases, for research purposes. The data (after removal
of private information) were saved in a repository that is
open access. We conducted two empirical studies using
data from this repository. Our findings are presented in
the following sections.

TESTING CONTESTS
Both STC 2016 and STC 2017 had preliminary and final
stages. STC 2017 also had an additional semifinal stage.
STC 2016 included 521 undergraduates from 131 affilia-
tions in the preliminary stage; the top 30 ranked con-
testants participated in the final stage. For STC 2017,
the number of participants nearly doubled. Hence, we
added a semifinal stage to select 45 contestants from

While a significant amount of resources can be

spent on software testing, the software produced

may still suffer from low quality. The authors

describe their experience of hosting industry-

sponsored software-testing contests to help

undergraduate and graduate students, as well

as practitioners, improve their testing skills.

Digital Object Identifier 10.1109/MC.2019.2905533
Date of publication: 24 September 2019

Authorized licensed use limited to: Nanjing University. Downloaded on May 23,2023 at 16:29:57 UTC from IEEE Xplore. Restrictions apply.

COMPUTING PRACTICES

62	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

21 affiliations to attend the final. The
top-ranked contestants in the final
stages each year received cash prizes.
Both STC 2016 and STC 2017 used
Mooctest,5 an online software-testing
platform that can automatically deploy
the testing environment and provide
s e ve r a l s of t w a re -te s t i n g-re l ate d
measurements to help practitioners
improve their testing efficiency and
effectiveness. Mooctest is straightfor-
ward to use; each contestant needs only
to download and install the Mooct-
est plug-in for the Eclipse integrated
development environment (IDE). To
help contestants become familiar with
the Mooctest platform and the contest
environment, we provided a tutorial
covering the contest, Mooctest plat-
form, JUnit, and ranking criteria, as
well as many hands-on exercises, on the
Mooctest website several weeks before
each contest.

Each contestant used an Eclipse IDE
with a Mooctest plug-in installed to
connect to the Mooctest server. When
the contest started, the Mooctest server
deployed several subject programs to
each contestant’s Eclipse IDE. Once the
deployment was completed, the con-
testant started to test, and an activated
timer was shown on the screen. During
the test, the contestants needed to
read and understand the source code
of the subject programs. Then, they
wrote JUnit test cases and submit-
ted them to the Mooctest server. The
server compiled the submitted test
cases, executed them against the sub-
ject programs, measured the branch
coverage, and computed the mutation
score. The achieved branch coverage
of each submission was sent back to
the contestants to help them gen-
erate additional test cases, although

the achieved mutation score was hid-
den from them. To ensure a fair con-
test environment for all, no other tools
or coverage plug-ins were allowed. In
both contests, multiple submissions
were allowed, and the final score of
each contestant was determined by
his or her last submission. When the
timer ran out, the contest ended, and
the Mooctest server would no longer
accept new submissions.

For the contest organizer, Mooctest
offered a web interface to manage and
monitor the contest that showed all
of the contestants’ real-time scores and
their statistics, such as average, median,
and standard deviation.

SUBJECT PROGRAMS
Before generating test cases for a sub-
ject program, a contestant must under-
stand its specifications and the source
code. However, this can be difficult for
those under a time constraint. Ideally,
the subject programs should be reason-
ably small (but not trivial) so that the
contestants will face some challenges
but should be able to achieve reason-
able scores. Because of this, we did
not select subject programs from the
well-maintained, open online bench-
marks SF1007 and Defects4J,8 since
the programs on these benchmarks,
in general, are too large and depend
on many third-party libraries, which
make them harder to understand.

To select appropriate subject pro-
grams, we measured the sof tware
complexity of the programs used in the
examinations for the software-test-
ing classes at Nanjing University
using four complexity metrics: lines
of code (LOC), number of branches,
average method complexity (AMC),
and average block depth (ABD).9,10

We then selected open source subject
programs for the STC from GitHub
and SourceForge. The complexities
of these programs in terms of LOC,
number of branches, AMC, and ABD
are similar to those of the programs
used in our software-testing classes at
Nanjing University. Our experiences
suggest that students (at least those in
our classes) could generate test cases
achieving reasonable branch cov-
erage and mutation scores. Stated dif-
ferently, programs with such complex-
ities are neither too difficult nor too
easy and are good candidates for test-
ing contests, as they can help us rank
contestants. Table 1 shows the values
of four complexity metrics of the sub-
ject programs used in STC 2016 and
STC 2017. For comparison purposes,
complexities of programs used in our
classes are also included. For each
subject program, we used PITest,11 a
state-of-the-art mutation testing tool,
to generate mutants using its default
mutation operators.12

ASSESSMENT CRITERIA
In STC 2016 and STC 2017, we used
branch coverage commonly mandated
in the industry to evaluate the quality
of the generated test cases.13 We also
used mutation score, which has been
widely used in academia,14 to evalu-
ate and rank contestants. In mutation
testing, a mutant is a faulty program
derived from the original program. It
is killed when the original program
and the mutant are executed by the
same test case but behave differently.
For example, given a C program with a
statement “return x/6,” a mutant can
be generated by changing the state-
ment to “return x/5.” This mutant will
be killed by a test case {x = 5} as the

Authorized licensed use limited to: Nanjing University. Downloaded on May 23,2023 at 16:29:57 UTC from IEEE Xplore. Restrictions apply.

	 O C T O B E R 2 0 1 9 � 63

original program returns 0, while the
mutant returns 1. However, another
test case {x = 2} cannot kill the mutant,
as both the original program and the
mutant return the same value (that is,
zero). Once the test execution against
the original program and mutants is
completed, the mutation score is com-
puted as the total number of mutants
killed divided by the number of all
generated mutants.

Inspired by a previous unit-testing
competition,10 we combined branch cov-
erage and mutation score together to
develop the following ranking equation:

P

P

Score [coverage ()

score ()] / num ,
P

P

branch

mutation

∑ α

β

= ⋅

+ ⋅

where P represents a subject program,
coveragebranch and scoremutation refer
to the archived branch coverage and
mutant score, respectively, and nump
refers to the total number of subject
programs in each contest, where α and
β are the weights.

Except for the preliminary stage of
STC 2016, where mutation score was
not included in the ranking equation,
both branch coverage and mutant
score were applied in our ranking sys-
tem with α and β of 0.5. We weighted
both factors equally because, to the
best of our knowledge, there are no
discussions or studies on which ratio
of branch coverage to mutation score
should be used to measure testing
effectiveness. To ensure that contes-
tants were familiar with mutation
testing, we gave lectures on mutation
testing at several universities. A muta-
tion testing tutorial was available on
the STC website.

EMPIRICAL STUDIES
USING DATA COLLECTED
FROM CONTESTS
As the demands for reliable and trust-
worthy software increase dramati-
cally, improving the software-testing
skills of undergraduates, graduate stu-
dents, and practitioners is important.

Software-testing contests can provide
significant contributions to our com-
munity, as we can make software test-
ing and its techniques more visible.
Our contests are more valuable because
we have created a data repository, the
Software Testing Contest Data Repos-
itory (STCDR) at http://www.iselab

TABLE 1. Software complexity of the subject
programs used in STCs 2016 and 2017.

Contest Subject program LOC
Number of
branches AMC ABD

2016 preliminary Calculator 352 62 3.23 2.46

Command 691 142 2.22 1.79

2016 final Elevator 434 77 2.25 2.20

MoreTriangle 131 11 1.80 1.77

NBC 174 27 1.97 1.78

2017 preliminary Datalog 288 56 2.00 1.95

QuadTree 298 45 2.10 2.10

JMerkle 367 85 3.44 2.57

2017 semifinal CMD 227 31 1.52 2.84

ITClocks 496 83 1.52 2.84

2017 final BPlusTree 384 69 2.37 2.20

JCLO 194 57 4.56 2.36

SuffixArray 157 46 4.26 2.21

For comparison purposes, complexities of programs used in our classes at Nanjing University are
listed below.

Testing classes at
Nanjing University

NodeFlatIndex 405 91 2.64 2.23

GeneticAlgorithm 229 40 2.44 2.1

FPTree 260 49 2.87 2.54

AbstractMatrix 282 55 2.05 1.8

Authorized licensed use limited to: Nanjing University. Downloaded on May 23,2023 at 16:29:57 UTC from IEEE Xplore. Restrictions apply.

COMPUTING PRACTICES

64	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

FIGURE 1. A set of scatterplots of mutation scores (vertical axis) against branch coverage
(horizontal axis) for nine subject programs. (a) MoreTriangle, (b) Datalog, (c) QuadTree, (d)
JMerkle, (e) CMD, (f) ITClocks, (g) BPlusTree, (h) JCLO, and (i) SuffixArray.

1

0.5

0
0 0.5 1

Branch Coverage

(a)

M
ut

at
io

n
S

co
re

1

0.5

0
0 0.5 1

Branch Coverage

(b)

M
ut

at
io

n
S

co
re

1

0.5

0
0 0.5 1

Branch Coverage

(c)

M
ut

at
io

n
S

co
re

1

0.5

0
0 0.5 1

Branch Coverage

(d)

M
ut

at
io

n
S

co
re

1

0.5

0
0 0.5 1

Branch Coverage

(e)

M
ut

at
io

n
S

co
re

1

0.5

0
0 0.5 1

Branch Coverage

(f)

M
ut

at
io

n
S

co
re

1

0.5

0
0 0.5 1

Branch Coverage

(g)

M
ut

at
io

n
S

co
re

1

0.5

0
0 0.5 1

Branch Coverage

(h)

M
ut

at
io

n
S

co
re

1

0.5

0
0 0.5 1

Branch Coverage

(i)

M
ut

at
io

n
S

co
re

.cn/contest/data/. It includes data col-
lected from STC 2016 and STC 2017 that
can be accessed by the public. Statis-
tics are also included, such as coverage
achievement and mutation scores of
test cases generated by each contestant
and the average over all the contestants.

Using the data from STCDR, we con-
ducted empirical studies to answer
two research questions.

›› Does branch coverage have a
strong correlation with muta-
tion score in unit testing?

›› Does test order at class level have
an impact on the effectiveness of
unit testing?

Does branch coverage have
a strong correlation with
mutation score in unit testing?
Studies15–17 analyzed the correlation
between branch coverage and muta-
tion score. However, the test cases in
those studies were all randomly gen-
erated. This can be a threat to validity,
as not all test cases used in the indus-
try are randomly created. Since our
test cases were manually created, this
provides an opportunity to analyze the
correlation in a more realistic setting.
In our experiments, some test suites
generated by the contestants cannot
be used in our analysis due to the lim-
itations of the mutation testing tool—
PITest. First, a test suite is incomplete
if it contains no assertion, which is
required by PITest to kill mutants.
Those for the preliminary stage of STC
2016 are in this category. Second, if
the correct program does not pass all
of the assertions of a test suite, PITest
stops the mutation testing without
measuring its mutation score. In addi-
tion, two programs, Elevator and NBC,
were not included because they did not
have at least 25 test suites to satisfy
a suggested threshold for conducting
the Pearson’s correlation (PC) analy
sis.18 As a result, we conducted the
analysis using 846 test suites of nine
subject programs.

Figure 1 shows the scatterplots of mu
tation scores and branch coverage for
each subject program, with a straight line
representing the trend. We observed a
positive correlation between branch cov-
erage and mutation score in all subject
programs. We computed the PC coefficient

Authorized licensed use limited to: Nanjing University. Downloaded on May 23,2023 at 16:29:57 UTC from IEEE Xplore. Restrictions apply.

	 O C T O B E R 2 0 1 9 � 65

using SPSS software to measure the lin-
ear correlation of branch coverage and
mutation score for each subject program.
The details are shown in Table 2.

The first two columns present the
subject programs and their corre-
sponding PC. In seven subject pro-
grams, we observed moderate or strong
positive correlation (PC > 0.40).19 In
two subject programs (CMD and Suf-
fixArray), the correlations are positive
but weak, different from those of the
other subject programs. We manually
inspected these two subject programs
along with the test suites generated by
contestants and compared them with
other subject programs. We found
that all branches of CMD are in seven
out of 52 methods. In other words, the
remaining 45 methods of CMD do not
have any branches. As a result, the cor-
relation between mutation score and
branch coverage is weakened, since
either of them can be achieved inde-
pendently. This matches our results as
shown in Figure 1(e). Regarding Suffix-
Array, we found that some mutations
were rarely killed by the contestants,
which also weakened the correlation.
Since we used the same mutation
operators for all subject programs,
this suggests that SuffixArray was
more difficult for the contestants. To
determine whether the observed cor-
relation is statistically significant or
not, we applied the paired Wilcoxon
test and carried out the two-tailed
alternative hypothesis. The third col-
umn presents the significant values.
The p values of all tests range from 0.141
to 0.001. Therefore, we can accept the
alternative hypothesis that branch cov-
erage has a significant positive correla-
tion with mutation score, with a confi-
dence level of at least 0.859.

Does test order at class
level have an impact on the
effectiveness of unit testing?
A good test order at class level can
reduce the number of test stubs and
increase testing efficiency.20 This raises
an interesting question of whether test
order has an impact on testing effective-
ness. One challenge of using data from
open source repositories such as GitHub
is that the time spent on test generation
can have an impact on testing effective-
ness. For example, given two test suites
generated by two testers who have sim-
ilar testing skills and domain knowl-
edge, a reasonable assumption is that
the test suite that took more time to
generate may achieve better effective-
ness. Since we do not know how much
time was spent on the test generation,
the evaluation can be biased. Using the
data from our contests can diminish
this threat because the time spent on
test generation by each contestant is
almost the same.

In both contests, we observed that
contestants tested their subject pro-
grams differently. We first identified
eight test orders based on feedback
from practitioners in the industry, re
searchers in academia, and some con-
testants. The first two test orders are in
alphabetically ascending and descend-
ing orders (ALPHA ASC/DESC) based
on the names of the Java classes. In the
contest, the Eclipse IDE used by each
contestant listed the classes of subject
programs in alphabetical order. This
could have led the contestants to test the
classes in an alphabetically ascending or
descending order. The third and fourth
test orders are ascending and descend-
ing orders based on the size of the sub-
ject program (LOC ASC/DESC), which is
measured by LOC. These two test orders
are from the examination strategies—
working on the easiest or hardest first.
The other four test orders are based on
the forward and backward directions
(the direction or reverse direction of

TABLE 2. Correlations between branch coverage and mutation score.

Subject program PC p Value Description

MoreTriangle 0.538 0.005 Positive, moderate, with a significance level of 0.01

Datalog 0.861 <0.001 Positive, very strong, with a significance level of 0.01

QuadTree 0.781 <0.001 Positive, strong, with a significance level of 0.01

JMerkle 0.831 <0.001 Positive, very strong, with a significance level 0.01

CMD 0.397 <0.001 Positive, weak, with a significance level of 0.01

ITClocks 0.650 <0.001 Positive, strong, with a significance level of 0.01

BPlusTree 0.533 <0.001 Positive, moderate, with a significance level of 0.01

JCLO 0.778 <0.001 Positive, strong, with a significance level of 0.01

SuffixArray 0.234 0.141 Positive, weak

Authorized licensed use limited to: Nanjing University. Downloaded on May 23,2023 at 16:29:57 UTC from IEEE Xplore. Restrictions apply.

COMPUTING PRACTICES

66	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

a directed relationship) of the depen-
dency (DEPEND) and association (ASSN)
relationship of Unified Modeling Lan-
guage (UML) class diagrams.

We determine the test order favored
by a contestant in four steps. First, for
a subject program, we identify a set of
pilot test sequences (PTSs) with respect
to each test order. Second, for each con-
testant, we identify his or her TS on each
subject program, based on the sequence
of classes invoked by his or her meth-
ods where each is a parameter of an
assertion. Third, we compare the iden-
tified TS with each of the eight PTSs.
Regarding ALPHA (ASC/DESC) and
LOC (ASC/DESC), if the TS is the lon-
gest common subsequence between the
TS and the only element of the PTS, we
determine that the corresponding test
order of the PTS is used once. Regarding
DEPEND (FWD/BWD) and ASSN (FWD/
BWD), we obtain the reverse PTS (RPTS),
which contains the reverse sequence of
each element in the PTS. If any subse-
quence of length two of the TS is not in
the RPTS and there is at least one in the
PTS, we determine that the correspond-
ing test order is used once. Fourth, if
multiple test orders are equally used by

a contestant, we randomly select one as
his or her preferred test order.

Take a program with four classes,
named A, B, C, and D, and the test suite
as shown in Figure 2 as an example. In
this case, PTSALPHA(ASC) is {(A, B, C, D)},
while the TS of the test suite is (A, B, C).
Note that B is not considered to be tested
at line 5 because it is not a parameter of an
assertion. As a result, we determine that
alphabetically ascending order is used
once, as the TS is the longest common
subsequence between the TS and the only
element of PTSALPHA(ASC). Regarding for-
ward dependency test order, assume A
and B depend on C, while D has no depen-
dencies. In this case,

›› PTSDEPEND(FWD) is [(A, C), (B, C)].
›› RPTSDEPEND(FWD) is [(C, A), (C, B)].
›› TS is (A, B, C). All subsequences
of length two of the TS are [(A, B),
(A, C), (B, C)].

As a result, forward dependency
test order is determined to be used
once because (A , C) and (B, C) are
in PTSDEPEND(FWD), and no subse-
quences of length two of the TS are in
RPTS DEPEND(FWD).

To measure the test order accu-
rately, we used the data from the con-
testants from the preliminary stage
of STC 2017 who wrote only one JUnit
class with one test function for each
subject program. We ran the analysis

10 times to obtain the results on aver-
age to reduce bias introduced by
randomization. The results are shown
in Table 3.

The results show that, although
the alphabetical order by class names
(given by Eclipse IDE) is the first order
presented to contestants, it is not the
favorite test order. Nearly 30% of the
contestants chose the famous “answer-
ing the easiest or hardest question first”
examination strategy in the contest.
Approximately 25% of the contestants
tested the subject programs based on
their dependency relationships, with
the forward dependency test order
being more popular. This indicates
that, if contestants discovered a ref-
erenced class (e.g., class B) when they
tested a class (e.g., class A), it was likely
that they would test class B after class
A. In addition, there was a small por-
tion of the contestants who favored the
association-based order.

The average score of the contes-
tants who used ALPHA (ASC) is only
slightly lower than that of the con-
testants who used ALPHA (DESC) by
2.25. This met our expectation, as we
believed that testing using ascending
versus descending alphabetical order
by class name should not cause a signif-
icant impact. The average score of LOC
(ASC) is higher than that of LOC (DESC)
by 7.92. This suggests that the strategy
of answering the easiest question first

TABLE 3. Test orders favored by contestants and their average scores in the preliminary stage of STC 2017.

ALPHA
(ASC)

ALPHA
(DESC)

LOC
(ASC)

LOC
(DESC)

DEPEND
(FWD)

DEPEND
(BWD)

ASSN
(FWD)

ASSN
(BWD) OTHER

Percentage 13.72% 6.35% 21.01% 7.91% 20.47% 4.32% 11.15% 2.43% 12.64%

Average score 17.91 20.16 26.95 19.03 27.20 20.07 27.14 9.14 37.94

FIGURE 2. A sample test suite.

Authorized licensed use limited to: Nanjing University. Downloaded on May 23,2023 at 16:29:57 UTC from IEEE Xplore. Restrictions apply.

	 O C T O B E R 2 0 1 9 � 67

is more effective than the strategy of
answering the hardest question first.
Regarding the test orders based on
UML relationships, both forward test
orders—DEPEND (FWD) and ASSN
(FWD)—have almost the same average
score. The average scores of these for-
ward test orders are higher than those
of the backward test orders—DEPEND
(BWD) and ASSN (BWD)—by 7.13 and
18.0, respectively. This suggests that
both test orders based on the UML rela-
tionship—dependency and associa-
tion—can be equally effective, and the
forward test order is more effective than
the backward test order. Contestants
who used other test orders achieved the
highest average score of 37.94.

OBSERVATIONS AND
LESSONS LEARNED
By hosting software-testing contests,
we can improve students’ software-test-
ing skills and also collect real testing
data for research on software testing
and engineering.

Mutation testing has been proposed
to measure the fault detection strength
of test cases based on the mutation
score. However, mutation testing might
not be feasible due to its high execution
cost. Our analysis using 846 manually
created test suites shows that there is
a significant and moderate to strongly
positive correlation between branch
coverage and mutation score. This sug-
gests that branch coverage can still be
used as an alternative when mutation
testing is not feasible.

In addition to the correlation analy-
sis between branch coverage and muta-
tion score, we also analyzed the testing
effectiveness of different test orders
and their popularity. Three interest-
ing observations were drawn from the

analysis results. First, the answering
the easiest question first strategy per-
formed better than the answering the
most difficult question first strategy.
Second, forward UML-based test orders
performed better than backward UML-
based test orders. Third, the test order
“Other” achieved the highest aver-
age score of 37.94, and it is noticeably
higher than the second highest average
score of 27.20. This observation raises
the question of whether there were
specific test orders we did not identify.
In our experimental design, we ana-
lyzed eight test orders based on feed-
back from practitioners in the indus-
try, researchers in academia, and some
contestants. We are confident that we
did not miss any specific test order in
our analysis. If this is true, this could
suggest that flexible test order could
achieve good effectiveness. Neverthe-
less, we will conduct more experiments
to further investigate this observation.

THREATS TO VALIDITY
A potential threat to the first exper-
iment is that the difficulty, in gen-
eral, of killing mutants can impact
the analysis results. We mitigated
this threat by applying PITest11 with
its default mutation operators.12 This
experiment setting has also been
applied in other empirical studies and
tool contests.2,14 In addition, our first
empirical study used nine subject
programs with similar values of four
software complexity metrics. If the
complexity can cause a significant
impact, our empirical analysis results
may not be generalized to all pro-
grams. For the second experiment, we
used randomization as a tie breaker to
determine the favorite test order for
each contestant. We reduced the bias

introduced by the randomization by
conducting the analysis 10 times.

A lt houg h we a sked contestants
to use the concept of unit testing and
the JUnit library to perform unit testing,
integration testing might be performed
on some classes of the subject programs.
This is caused by class dependencies, as
some classes depend on other classes
during execution. In practice, it is rec-
ommended to exclude these dependen-
cies from the testing environment as
much as possible to prevent unexpected
failures caused by other modules instead
of the module being tested. In STC 2016
and STC 2017, the contestants were not
asked to deal with the dependency issue
during the testing. As a result, our ob
servations and findings might not con-
form to the strict unit-testing settings. In
the future, we will alleviate this by ask-
ing contestants to deal with dependen-
cies in unit testing.

We are expanding the contest
worldwide to reach more
students and affiliations.

We are carefully designing a controlled
experiment to quantitatively analyze
the impact of the contest. We will also
further revise our contest ranking
equation by including more factors. In
addition to the regular sections, a new
section, Testathon, will be added to our
contest. In this section, contestants
will be given two days to test a much
larger software system. The data from
Testathon will be used for cross com-
parison with the data from the regular
sections. More state-of-the-art auto-
mated testing tools (e.g., EvoSuite3)
will be integrated into the Mooct-
est platform to conduct human versus
machine analysis.

Authorized licensed use limited to: Nanjing University. Downloaded on May 23,2023 at 16:29:57 UTC from IEEE Xplore. Restrictions apply.

COMPUTING PRACTICES

68	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

REFERENCES
1.	 W. Eric Wong, X. Li, and P. A.

Laplante, “Be more familiar with our
enemies and pave the way forward:
A review of the roles bugs played in
software failures,” J. Syst. Softw., vol.
133, pp. 68–94, Nov. 2017.

2.	 A. Panichella and U. R. Molina, “Java
unit testing tool competition: Fifth
round,” in Proc. IEEE/ACM 10th Int.
Workshop on Search-Based Software
Testing, 2017, pp. 32–38.

3.	 G. Fraser and A. Arcuri, “EvoSuite:
Automatic test suite generation for
object-oriented software,” in Proc.
SIGSOFT/FSE’11 ACM SIGSOFT Symp.
Foundations of Software Engineering,
2011, pp. 416–419.

4.	 “IEEE Reliability Society.” Accessed
on: 2018. [Online]. Available: http://
rs.ieee.org/

5.	 MoocTest. Accessed on: 2018.
[Online]. Available: http://www
.mooctest.net/login2

6.	 “National student contest of soft-
ware testing,” 2018. [Online].
Available: https://swtesting
.techconf.org/

7.	 G. Fraser and A. Arcuri, “Sound
empirical evidence in software
testing,” in Proc. Int. Conf. Software
Engineering, 2012, pp. 178–188.

8.	 D. Jalali and M. D. Ernst, “Defects4J:
A database of existing faults to
enable controlled testing studies for
Java programs,” in Proc. Int. Symp.
Software Testing and Analysis, 2014,
pp. 437–440.

9.	 T. J. Mccabe, “A complexity mea-
sure,” IEEE Trans. Softw. Eng., vol.
SE-2, no. 4, pp. 308–320, 1976.

10.	 S. Bauersfeld, T. E. Vos, K. Lakhotia,
S. Poulding, and N. Condori, “Unit
testing tool competition,” in Proc.
IEEE 6th Int. Conf. Software Testing,

Verification and Validation Workshop,
2013, pp. 414–420.

11.	 H. Coles, T. Laurent, C. Henard, M.
Papadakis, and A. Ventresque, “PIT: A
practical mutation testing tool for Java

(demo),” in Proc. Int. Symp. Software
Testing and Analysis, 2016, pp. 449–452.

12.	 H. Coles, “Mutation operators of PIT-
est,” 2018. [Online]. Available: http://
pitest.org/quickstart/mutators/

ABOUT THE AUTHORS
XINGYA WANG is with the State Key Laboratory for Novel Software Technology,
Nanjing University, China. His research interests include software testing and
blockchain-based systems. Wang received a Ph.D. in computer science from
China University of Mining and Technology. Contact him at xingyawang@smail
.nju.edu.cn.

WEISONG SUN is a graduate student in the Software Institute at Nanjing
University, China. His research interests include software testing and block-
chain-based systems. Sun received a B.E. in software engineering from Yang-
zhou University, China. Contact him at weisongsun@smail.nju.edu.cn.

LINGHUAN HU is a Ph.D. student in software engineering at the University of
Texas at Dallas. His research interests include combinatorial testing and test
generation. Hu received a M.S. in software engineering from the University of
Texas at Dallas. Contact him at linghuan.hu@utdallas.edu.

YUAN ZHAO is a software engineer at Mooctest. His research interests include
test generation and program synthesis. Zhao received an M.S. from the Soft-
ware Institute at Nanjing University, China. Contact him at allenzcrazy@gmail
.com.

W. ERIC WONG is a professor and the director of the Advanced Research Cen-
ter for Software Testing and Quality Assurance in Computer Science at the Uni-
versity of Texas at Dallas. His research focuses on helping practitioners improve
the quality of software while reducing the cost of production. Wong received a
Ph.D. in computer science from Purdue University, West Lafayette, Indiana. He
is a corresponding author for this article. Contact him at ewong@utdallas.edu.

ZHENYU CHEN is the founder of Mooctest and a professor at the Software
Institute, Nanjing University, China. His research interests focus on software
analysis and testing. Chen received a Ph.D. in mathematics from Nanjing Uni-
versity, China. He is a corresponding author for this article. Contact him at
zychen@nju.edu.cn.

Authorized licensed use limited to: Nanjing University. Downloaded on May 23,2023 at 16:29:57 UTC from IEEE Xplore. Restrictions apply.

	 O C T O B E R 2 0 1 9 � 69

13.	 T. T. Chekam, M. Papadakis, Y. L.
Traon, and M. Harman, “An empir-
ical study on mutation, statement
and branch coverage fault revela-
tion that avoids the unreliable clean
program assumption,” in Proc. Int.
Conf. Software Engineering, 2017, pp.
597–608.

14.	 D. Jalali, L. Inozemtseva, M. D.
Ernst, R. Holmes, and G. Fraser, “Are
mutants a valid substitute for real
faults in software testing?” in Proc.
ACM SIGSOFT Int. Symp. Foundations
of Software Engineering, 2014,
pp. 654–665.

15.	 J. H. Andrews, L. C. Briand, Y.
Labiche, and A. S. Namin, “Using
mutation analysis for assessing and
comparing testing coverage criteria,”
IEEE Trans. Softw. Eng., vol. 32, no. 8,
pp. 608–624, 2006.

16.	 P. G. Frankl and O. Iakounenko,
“Further empirical studies of test
effectiveness,” ACM SIGSOFT Softw.
Eng. Notes, vol. 23, no. 6, pp. 153–162,
1998.

17.	 L. Inozemtseva and R. Holmes.
“Coverage is not strongly correlated
with test suite effectiveness,”
in Proc. 36th Int. Conf. Software

Engineering, ACM, 2014,
pp. 435–445.

18.	 F. N. David, Tables of the Ordinates and
Probability Integral of the Distribution
of the Correlation Coefficient in Small
Samples, Cambridge, UK: Cambridge
University Press, 1954.

19.	 J. D. Evans, Straightforward Statistics
for the Behavioral Sciences. Pacific
Grove, CA: Brooks/Cole, 1996.

20.	 L. C. Briand, Y. Labiche, and Y. Wang,
“An investigation of graph-based
class integration test order strate-
gies,” IEEE Trans. Softw. Eng., vol.
29, no. 7, pp. 594–607, 2003.

Rejuvenating Binary Executables ■ Visual Privacy Protection ■ Communications Jamming

January/February 2016
Vol. 14, No. 1

Policing Privacy ■ Dynamic Cloud Certification ■ Security for High-Risk Users

March/April 2016
Vol. 14, No. 2

IEEE Symposium on
Security and Privacy

Smart TVs ■ Code Obfuscation ■ The Future of Trust

May/June 2016
Vol. 14, No. 3

IEEE Symposium onIEEE Symposium onIEEE Symposium onIEEE Symposium onIEEE Symposium on
Security and PrivacySecurity and PrivacySecurity and PrivacySecurity and PrivacySecurity and PrivacySecurity and Privacy

IEEE Security & Privacy magazine provides articles
with both a practical and research bent by the top
thinkers in the fi eld.
• stay current on the latest security tools and theories and gain invaluable practical and
 research knowledge,
• learn more about the latest techniques and cutting-edge technology, and
• discover case studies, tutorials, columns, and in-depth interviews and podcasts for the
 information security industry.

computer.org/security

Digital Object Identifier 10.1109/MC.2019.2937702

Authorized licensed use limited to: Nanjing University. Downloaded on May 23,2023 at 16:29:57 UTC from IEEE Xplore. Restrictions apply.

