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Abstract—Software engineering education becomes popular
due to the rapid development of the software industry. In order
to reduce learning costs and improve learning efficiency, some
online practice platforms have emerged. This paper proposes a
novel test code plagiarism detection technology, namely MAF, by
introducing bidirectional static slicing to anchor methods under
test and extract fragments of test codes. Combined with similarity
measures, MAF can achieve effective plagiarism detection by
avoiding massive unrelated noisy test codes. The experiment is
conducted on the dataset of Mooctest, which so far has supported
hundreds of test activities around the world in the past 3 years.
The experimental results show that MAF can effectively improve
the performance (precision, recall and F1-measure) of similarity
measures for test code plagiarism detection. We believe that MAF
can further expand and promote software testing education, and
it can also be extended to use in test recommendation, test reuse
and other engineering applications.

Keywords-Similarity measure; Plagiarism detection; Unit test-
ing; Online training

I. INTRODUCTION

With the advance of information technology, software engi-

neering has become one of the hottest education directions

[1], [2]. To improve learning efficiency and reduce learning

costs, some software engineering practice platforms, such as

LeetCode, Pex4Fun [3], Mooctest, have emerged. Mooctest

is one of the most popular testing practice platforms, which

supports CST 2016-2018, ISTC 2017-2018, testing contests

at ICST 2019 and ISSTA 2019 1, and hundreds of testing

activities around the world [4].

The online programming platforms allow large-scale stu-

dents, but it needs to maintain the quality of education [5].

For example, there were more than 7000 students attending

CST 2017 in China. Plagiarism detection is essential for online

programming in examinations and contests, but unfortunately,

it lacks in software testing so far. It is an impossible task by

manually inspecting for plagiarism detection of a large number

of students. Therefore, it needs an automated tool to detect

plagiarism of test codes in practice efficiently.

Some similarity measure technologies have been proposed

[6] [7] to detect plagiarism of program codes. These technolo-

gies measure the similarity of program codes by analyzing

the syntax, semantics, or structure of the program. However,

there are some differences between program source codes

and test codes. The structure of test codes is simpler than

source codes, especially for those written by junior testers in

1mooctest.org, swtesting.techconf.org, icst2019.xjtu.edu.cn, conf.researchr.
org/home/issta-2019

examinations and contests. Aside from the inherent structures

(such as class and method structures, etc.), test codes are

like text in natural language. Besides, test cases in test codes

are relatively independent, but most of the methods in source

codes are not independent, i.e., methods calling other ones.
Based on these observations, we propose a Method-

Anchored test Fragmentation (MAF) technology, combined

with similarity measures, to achieve plagiarism detection of

test codes effectively. MAF introduces bidirectional static

slicing [8], [9] to extract valid test fragments, each of which is

a minimum granularity unit test used to test a specific method

under test. The critical point is minimizing test granularity,

which can capture features of test codes more effectively,

so that similarity measures are more accurate. Furthermore,

we implemented a tool based on MAF consisting of three

modules: test fragment extraction, similarity measure, and

combination analysis for plagiarism. It first extracts valid test

fragments from test codes and filters out some unrelated test

codes. Then, two types of similarity measures, i.e., code-

oriented and text-oriented methods [7], are introduced to

calculate the similarities of test fragments of two test codes.

Then, MAF combines with threshold analysis to solve a

specific application scenario, i.e., plagiarism detection here.
In this paper, we utilize the test codes produced in software

testing contest to evaluate MAF. The evaluation results show

that MAF can effectively improve the accuracy of the test code

similarity measure, thereby making the plagiarism judgment

more accurate. So, MAF is complementary to existing simi-

larity measures, which helps to measure test code similarity

more accurately. In addition, after analyzing the experimental

results, one surprising finding is that text-oriented similarity

measures are more suitable for test code similarity analysis.
MAF can extract minimum granularity test fragments from

non-standard test codes, which have many valuable application

scenarios. For instance, it can be used in test recommendation

[10] and test reuse [11]. Test recommendation and reuse

require an outstanding corpus of test codes. MAF extracts

meaningful and minimum granularity test fragments, which

can be used to construct excellent tests, and build an out-

standing corpus further. MAF can also be used to guide test

exercises. Test fragments extracted by MAF from test codes

are always well-defined to be a good example for beginners.

Hints with test fragments will be studied in the future.
In summary, we make the following contributions.

• To the best of our knowledge, it is the first attempt at

plagiarism detection for large-scale test codes. A novel
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Fig. 1: Example of Test Fragmentation

technology, method-anchored test fragmentation (MAF),

is introduced to improve similarity measures.

• An experiment based on the dataset of Mooctest is

studied to validate the effectiveness of MAF. It can further

promote software testing education and training around

the world.

The rest of the paper is organized as follows. Section II

describes preliminary. Section III presents an overview of

MAF technology. We introduce the experiment in detail in

Section IV. Threats to validity and related work are given in

Section V and Section VI respectively. The conclusion is in

Section VII.

II. PRELIMINARY

Unit testing is a popular technique and always performed by

the software developer [12], [13]. In this paper, we focus on

unit testing under the JUnit2 framework [14]. JUnit provides

a standard way to encode the four fundamental parts of a test:

setting initial state, invoking functionality under test, checking

results of testing, and performing any necessary cleanup. In

order to formalize our technique, referring to [15], we give

the following definition of a test code set.

A test code TC, seen as a statement set, is a union of

five subsets: TCI , TCE , TCA, TCC and TCU , i.e., TC =
TCI ∪ TCE ∪ TCA ∪ TCC ∪ TCU , where

• TCI is the set of all initialization statements.

• TCE is the set of all execution statements.

2junit.org

• TCA is the set of all assertion statements.

• TCC is the set of all cleanup statements.

• TCU is the set of all unrelated statements.

In order to explain our motivation and technology, we give

an example shown in Fig.1. This example contains two test

codes, denoted by TC1 and TC2, in which three methods, get-

Head (M1), findAllSubstitutions (M2) and deriveOnce (M3),

are tested. As stated, for each test code, statements that

invoke any of these methods are categorized as TCE , i.e.,

TCE
1 = {s13, s21}, TCE

2 = {s41, s45}. Spontaneously,

statements for initializing TCE are categorized as TCI ,

i.e., TCI
1 = {s2 → s5, s8 → s12, s18 → s20}, TCI

2 =
{s25 → s31, s34 → s40, s43, s44}, and statements for test

verification are categorized as TCA, i.e., TCA
1 = {s14, s22},

TCA
2 = {s42, s46}. Note that both TC1 and TC2 have no

cleanup statements. Thus, the other statements, which have no

relation to initialization, execution, assertion and cleanup, are

categorized as TCU , i.e., TCU
1 = {s1, s6, s7, s15 → s17, s23},

TCU
2 = {s24, s32, s33, s47}.

Given a software under test SUT , a test code TC of unit

testing is designed to test all methods of SUT , denoted by

SUT = {M1,M2, · · · ,Mn}, in which Mj is a method under

test in SUT . A method-anchored test fragment of the test is

defined as follows.

DEFINTTION 1 (Test Fragment): Given a software under

test SUT = {M1,M2, · · · ,Mn} and test code TCi, a test

fragment anchors method Mj , denoted by TFi,j ⊆ TC, is a

subset of all statements to test the method Mj .

Given a test code TCi, it is clear that ∪jTFi,j = TC\TCU .
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For each test fragment TFi,j , we have TFi,j = TF I
i,j∪TFE

i,j∪
TFA

i,j ∪TFC
i,j , where TF I

i,j = TFi,j ∩TCI , TFE
i,j = TFi,j ∩

TCE , TFA
i = TFi,j ∩ TCA, and TFC

i,j = TFi,j ∩ TCC . In

this paper, we assume that TFE
i,j �= ∅ for a valid test fragment.

We give four examples of test fragments, namely TF1,1,

TF1,2, TF2,1 and TF2,3, shown on the center side of Fig.1.

TF1,1 and TF1,2 are extracted from TC1 and used to test M1

and M2 respectively. TF2,1 and TF2,3 are extracted from TC2

and used to test M1 and M3 respectively. Note that TF1,1 is

exactly the same as TF2,1. Therefore, we can conclude that

TC1 and TC2 are most likely to be plagiaristic. Each example

TFi,j is composed of TF I
i,j , TFE

i,j and TFA
i,j , and they all

exclude TFU
i .

Directly measuring the similarity as well as detecting the

plagiarism between TC1 and TC2 is difficult because their

test targets are different and they follow different programming

style rules (e.g., naming conventions and unit test granularity).

Moreover, a plagiarist may add a series of unrelated statements

to confuse the detector. Fragmentation, which removes the

set of unrelated statements and avoids the interferences of

the codes that used for testing different targets, rearranges

TC1 and TC2 to a set of method-anchored test fragments

respectively. Then, the set of the finer granularity similarities,

which computed by measuring the pair-wise fragments (i.e.,

〈TF1,1, TF2,1〉, 〈TF1,2, ∅〉, 〈∅, TF2,3〉), becomes a great in-

dicator for test code similarity measure and the subsequently

plagiarism detection.

III. TECHNOLOGY

This section provides the framework of MAF and explains

test fragment extraction, similarity measure, combination anal-

ysis for plagiarism detection in detail.

A. Framework

Fig. 2: Framework of MAF

Fig.2 presents the framework of MAF. As mentioned above,

MAF highlights the most similar method-anchored test frag-

ments between two submissions. MAF introduces a static

slicer to extract the test fragments, and then measures the

similarity/distance of each pair of test fragments, finally com-

bines threshold analysis to detect plagiarism pairs. Specifically,

MAF works with three parts. (1) Test fragment extraction: test

codes are refracted and extracted into a set of test fragments,

in which each test fragment corresponds to one unique method

under test. (2) Similarity measure: each pair of test fragments

that corresponds to the identical method under test will be

evaluated by similarity measures. (3) Combination analysis for

plagiarism detection: the similarities of test codes obtained by

similarity measure are combined with thresholds to conduct

plagiarism detection. Finally, some pairs of most suspicious

test codes are selected as plagiarism candidates.

Algorithm 1 Framework of MAF

Input: SUT , TC, t and funSim(TFi,k, TFj,k);
Output: PP .

1: // Stage I: Test Fragment Extraction

2: recognize all methods under test M1,M2, ...,Mn from

SUT , and add them into a list of Method Under Test

MUT ;

3: initialize an empty set TF , which is utilized to record the

Test Fragments of all students;

4: for all TCi in TC do
5: initialize an empty set TFi, which is utilized to record

the Test Fragments of ith student;

6: for all Mj in MUT do
7: analyze TCi to extract the test fragment TFi,j that

corresponds to Mj , and add TFi,j into the ith stu-

dent’s test fragment list TFi;

8: end for
9: end for

10: // Stage II: Similarity measure

11: initialize a Three-Dimensional Similarity Array TDSA,

where each element is set to 0;

12: for i = 1 to numstudent-1 do
13: for j = i+ 1 to numstudent do
14: for all Mk in MUT do
15: get the test fragments, TFi,k and TFj,k, that

correspond to Mk from TFi and TFj respectively;

16: if both TFi,k and TFj,k are not NULL then
17: TDSA [i] [j] [k] = funSim(TFi,k, TFj,k);
18: end if
19: end for
20: end for
21: end for
22: // Stage III: Plagiarism Pair Detection

23: initialize an empty set of Plagiarism Pair PP ;

24: for i = 1 to numstudent-1 do
25: for j = i+ 1 to numstudent do
26: if funMax(TDSA [i] [j] []) ≥ t then
27: add the pair 〈i, j〉 into PP ;

28: end if
29: end for
30: end for
31: output PP ;

Algorithm 1 outlines the details of MAF. It treats Soft-

ware Under Test (SUT ), Test Codes (TC) of each stu-

dent, a threshold of similarity t, and a similarity function
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funSim(TFi,k, TFj,k), as the inputs and finally outputs the

candidate Plagiarism Pairs (PP ).

Stage 1: lines 1-9. MAF recognizes the methods under test

{M1, M2, ..., Mn} from SUT and stores them in a list of

methods MUT . For each test code TCi, MAF refracts it into

a set of test fragments TFi. In each iteration (lines 4-9), we

expect to find all the relevant test statements for every Mj

from TCi. These extracted test statements with respect to Mj

constitute the so-called test fragment TFi,j .

Stage 2: lines 10-21. MAF resorts to a Three-Dimensional

Similarity Array TDSA to record the test fragment similarity

values of the pair-wise students on each Mk. Due to the

limited time and test skills, a student may only test some

parts of MUT . That is, some test fragments may be NULL.

Given two non-null test fragments TFi,k and TFj,k, MAF

calculates the similarity based on funSim(TFi,k, TFj,k), and

puts the value into TDSA [i] [j] [k]. Otherwise, MAF assigns

the default similarity value, 0, to TFi,k and TFj,k.

Stage 3: lines 22-31. MAF employs the threshold analysis

to detect the plagiarism pairs. Intuitively, the higher the

similarity is, the more likely the pair is considered as a

plagiarism pair. The identification of plagiarism has no cause-

and-effect relationship with the size of plagiarism contents as

well as the number of the plagiarism positions in general.

Thus, the pair with the maximum similarity value can be

utilized for plagiarism judgment. TDSA [i] [j] [] records the

similarity values between i and j. If the maximum similarity,

i.e. the return value of funMax(TDSA [i] [j] []) between i
and j is greater than t, then the pair 〈i, j〉 is supposed to be

plagiarism. The plagiarism detection process is finished after

all of the pairs of test codes are analyzed.

B. Test Fragment Extraction

The submitted test codes in Mooctest are required to follow

a series of programming style rules, such as naming conven-

tions, unit test granularity, and so on. For xUnit, e.g. JUnit

[16] framework, a well-designed xUnit test should satisfy but

not limit to the two rules: (1) Naming convention: for a class

‘C’, the name of its corresponding test class should be either

“CTest” or “TestC” in UpperCamelCase, and for a method

‘m’, the name of its corresponding test method should be

either “testM” or “mTest” in lowerCamelCase [17]. (2) Unit

test granularity: each test case should only test one method

under test and should not combine multiple unrelated tests

into a single test case [18]. Moreover, a unit test consists of

four fundamental parts, i.e., TCI , TCE , TCA, and TCC [15].

It is not difficult to extract test statements anchoring meth-

ods under test in well-designed test codes. However, test codes

written by junior testers (such as students) are always far

from well-designed, especially in a high-stress examination

or contest. Moreover, many test codes may be incomplete.

Some methods in MUT are not tested intentionally or un-

intentionally; some tests miss assertions, and so on. It also

remains some challenges of test fragment extraction for failed

or crashed tests.

Static slicing, firstly proposed by Weiser [8], is used to

select all the statements that can affect the value of a variable

in a statement directly or indirectly, so-called backward static

slicing. “Static” means that the slicing result does not rely on

the program execution as well as the input [19]. Subsequently,

Horwitz et al. proposed the forward static slicing to recognize

the statements that are directly or indirectly affected by the

value of a variable in a statement [20]. Both BSS and FSS

rely on program dependence (control dependence and data

dependence) analysis to extract some code statements from

the original program [19].

Algorithm 2 Test Fragment Extraction Based on Bidirectional

Static Slicing

Input: TCi, Mj ;

Output: TFi,j .

1: initialize the test fragment TFi,j as an empty set;

2: for each execution statement esk in TCi do
3: if the callee method in esk is not Mj then
4: continue;

5: end if
6: initialize TFE

i,j as {esk} and TF I
i,j , TF

A
i,j , TF

C
i,j as

empty sets;

7: get the used variables USE and the defined variables

DEF in esk;

8: slice TCi with backward static slicing criteria

〈esk, USE〉 and forward static slicing criteria

〈esk, DEF 〉, where BSSR and FSSR are respectively

referred as the slicing results.

9: for each statement s in BSSR do
10: if s is an initialization statement then
11: TF I

i,j = TF I
i,j ∪ {s};

12: end if
13: end for
14: for each statement s in FSSR do
15: if s is an assertion statement then
16: TFA

i,j = TFA
j ∪ {s};

17: else if s is a cleanup statement then
18: TFC

i,j = TFC
j ∪ {s};

19: end if
20: end for
21: TFi,j = TFi,j ∪ TF I

i,j ∪ TFE
i,j ∪ TFA

i,j ∪ TFC
i,j ;

22: end for
23: output TFi,j ;

Inspired by the success stories of slicing, we introduce

Bidirectional (backward and forward) Static Slicing for Test

Fragment Extraction, namely BSS-TFE in brief. Algorithm 2

outlines the details of BSS-TFE. It treats a test code TCi and

the method under test Mj as the inputs and finally outputs the

test fragment TFi,j in TCi, which was coded for testing Mj .

In BSS-TFE, each execution statement esk that invokes Mj

will be selected as the key point for slicing. In a test, before

the Mj is invoked, it needs to set the initial state (e.g., Object

Instantiated) and prepare the essential arguments. Thus, TFi,j
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Fig. 3: Example of Bidirectional Static Slicing

should contain statements that are utilized for the initial state

setting and arguments preparation. A backward static slicing

with the criteria 〈esk, USE〉 can satisfy the demands (line 8).

Moreover, after the Mj is invoked, a test needs to check

the results of the test and perform any necessary cleanup.

Thus, TFi,j should contain statements that are utilized for

result checking and resource cleanup. A forward static slicing

with the criteria 〈esk, DEF 〉 can satisfy the demands (line 9).

Thus, the result (i.e., BSSR and FSSR) of bidirectional static

slicing on esk contains the statements that are used for testing

Mj . Once all execution statements have been analyzed, BSS-

TFE outputs TFi,j and the algorithm finishes.

Furthermore, we resort to Fig.3 to illustrate the process of

bidirectional static slicing, in which we want to extract the

fragment w.r.t. M1 from TC1 in Fig.1. Static slicing works

on Program Dependence Graph (PDG = 〈N,E〉). Generally,

the nodes N correspond to the executable statements and the

edges E correspond to the dependencies (i.e., data dependence

and control dependence) among the nodes. An edge si → sj
implies that sj is dependent on si. Fig.3 (a) presents the PDG
of TC1. It contains 16 nodes and 22 edges. Obviously, only

node s13 invokes M1 in TC1. Thus, as Fig.3 (b) shows, s13
(the grey node) is selected as the key point. Then, its used

variables USE = {r1} and defined variables DEF = {d3}
are provided to the subsequently backward static slicing (BSS)

and forward static slicing (FSS) respectively. BSS extracts

the statements that s13 is directly or indirectly depend on,

and FSS extracts the statements that are directly or indirectly

depend on s13. Once either BSS or FSS finishes, Bidirectional

static slicing stops and outputs BSS Result BSSR = {s2 →
s5, s8 → s12} (i.e., the red nodes in Fig.3 (c)) and FSS Result

FSSR = {s14} (i.e., the blue node in Fig.3 (d)).

C. Similarity Measure

We evaluate MAF in association with three typic similarity

measure tools (also seen as plagiarism detectors): Difflib [21],

FuzzyWuzzy [22] and Plaggie [23]).

simD(file1, file2) = 1− min(|file2|line, |D(file1, file2)|line)

|file2|line
(1)

sim(file1, file2) = max{simD(file1, file2), simD(file2, file1)} (2)

Difflib is a text-oriented similarity measure tool. It relies

on the class “difflib.Differ” to compare sequences of lines of

text and produce human-readable differences or deltas [21].

Difflib has been used in code plagiarism detection [7]. In

that paper, given two files file1 and file2, their similarity is

calculated by equation (1), where |file1|line and |file2|line
correspond to the number of lines in file1 and file2 re-

spectively. D(file1, file2) represents the output of Difflib.

Note that simD(file1, file2) is sensitive to parameter order,

and thus we have simD(file1, file2) �= simD(file2, file1) in

most cases. As equation (2) shows, in this paper we use the

maximum value as the similarity of two files.

sim(file1, file2) = 1− 2.0 ∗Matchchar

|file1|char + |file2|char (3)

FuzzyWuzzy is also a text-oriented similarity measure tool.

It can seem as a wrapper for Difflib since it relies on

Difflib for edit similarity calculation. Differently, it adopts

fuzzy string matching to evaluate the similarity between two

strings. Document [24] presents a detailed comparison be-

tween Difflib and FuzzyWuzzy. In FuzzyWuzzy, the similarity

between files file1 and file2 is calculated by equation (3),

where |file1|char and |file2|char correspond to the number

of characters in file1 and file2 respectively, and Matchchar

corresponds to the size of all character matches.

sim(file1, file2) = 1− 2.0 ∗Matchtoken

|file1|token + |file2|token (4)

Different from the two tools mentioned above, Plaggie is

a code-oriented tool, which aims to detect plagiarism in Java

programming exercises. It is similar to another code-oriented

tool JPlag [25] in functionally, where both of them tokenize the

code and use greedy string tiling [23] to measure the similarity

between two strings. Differently, JPlag does not support local

service, which reduces its scalability. In Plaggie, the similarity

between files file1 and file2 is calculated by equation (4),

where |file1|token and |file2|token correspond to the number

of tokens in file1 and file2 respectively, and Matchtoken

corresponds to the size of all token matches. Plaggie also

supports configuring the minimum length of matched token

sequences for improving adaptability. For test codes, we use
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the default value (i.e., 11) that is recommended in [23].

Compared to the test code, the test fragment is quite small;

thus using the default value may not appropriate.

D. Combination Analysis

MAF extracts meaningful test fragments from non-standard

test codes; then uses similarity measures to measure the

similarity of test fragments instead of test codes own’s. Based

on the similarity got above, we use threshold analysis to

detect plagiarism pairs. Intuitively, the higher the similarity

is, the more likely the pair is considered a plagiarism pair.

The identification of plagiarism has no cause-and-effect re-

lationship with the size of plagiarism contents as well as

the number of the plagiarism positions in general. Thus, the

pair with the maximum similarity value can be utilized for

plagiarism judgment. All pairs with maximum similarity above

the threshold will be considered as plagiarism pairs.

IV. EXPERIMENT

To evaluate the effectiveness of MAF, we implemented the

tool and applied it to a dataset from Mooctest. We investigate

the following two research questions.

• RQ1: Is MAF effective for test code plagiarism detection?

• RQ2: Which similarity measure works better in MAF?

A. Experiment Subjects

In this experiment, we utilize the test code dataset produced

in the National Student Contest of Software Testing 2017

(CST 2017) in China [26] from Mooctest. Specifically, the

software under test Datalog and its corresponding test codes

are used. The characteristics of Datalog are: lines of codes

288, number of branches 56, Average Method Complexity [27]

2.00, and Average Block Depth [27] 1.92. In CST 2017, 635

students submitted their test codes against the Datalog, and

619 students’ test codes adopted by us since a manual review

found that 16 of them submitted useless test codes.

To build a dataset for validation, we need to inspect test

codes and label plagiarism manually. For reducing the numbers

of both false positives and false negatives, we employed

postgraduates to conduct a two-phase checking. Firstly, TC
was averagely divided into two sets TC1 and TC2. Each set

was independently checked by two postgraduates. After TC1

and TC2 had been checked, pairs that had been labelled with

different results were provided to the other two postgraduates

for final determination. Finally, we found 4312 plagiarism

pairs and 186959 non-plagiarism pairs in TC, where each pair

had been checked at least twice.

B. Variables and Metrics

The primary goal of this study is to evaluate the effective-

ness of MAF we proposed. To accomplish this, we utilize

two independent and three dependent variables. The first

independent variable is using MAF or not, and the second

is which similarity measure would be chosen to use. The

dependent variables are three measure metrics of performance:

precision (P ), recall (R), and F1-measure (F1).

P =
numtp

numtp + numfp
(5)

R =
numtp

numtp + numfn
(6)

F1 =
2 ∗ P ∗R
P +R

(7)

We use precision and recall to evaluate the effectiveness of

MAF for test plagiarism detection. Precision corresponds to

the plagiarism pairs among the pairs detected by the threshold,

which indicates how useful the detected results are. Recall

corresponds to the plagiarism pairs among all plagiarism pairs

labeled manually, which indicates how complete the detected

results are. Equations 5 and 6 present the approaches to

calculate precision and recall respectively, in which numtp

and numfp correspond to the number of plagiarism pairs

and non-plagiarism pairs among the detected results respec-

tively, numtn and numfn correspond to the number of non-

plagiarism pairs and plagiarism pairs among the rest results

respectively. Since both precision and recall are important in

test plagiarism detection, we use the F1-measure to evaluate

MAF in plagiarism detection. Equation 7 presents the way for

F1-measure calculation.

C. Experiment Setup

To answer our two research questions, we use the experi-

ment to examine the effectiveness of the fragmentation module

of MAF and make a comparison between the text-oriented and

the code-oriented similarity measure tools.

The central part of MAF includes extracting the test frag-

ments, computing the similarity for pairs of test codes, and

detecting the plagiarism pairs based on a given threshold. In

practice, we first establish the TPDS (Test Code DataSet)

with 619 students’ test codes as described in IV-A. Secondly,

for each student’s test codes in TPDS, MAF extracts the

test fragments that anchor some methods under test. Thirdly,

we measure the similarity of test codes in the granularity of

both test file (simfile) and test fragment (simfrag), which we

called non-fragmentation and fragmentation respectively. MAF

provides the framework for measuring simfrag . Since the test

code of one student may contain multiple files, for simfile

of two students, we use the maximum similarity among the

pairs of files to represent. The files in a pair come from these

two students respectively. Finally, we compose all simfile and

simfrag and generate a test plagiarism detection report based

on the threshold analysis. For each of the detected results, we

compute the precision, recall and F1-measure based on the de-

termined results in TPDS. Then, we compare fragmentation

with non-fragmentation, as well as the outperforming among

a set of similarity measure tools. The designed experiments

are described as follows:

The first experiment is to evaluate the fragmentation by

comparing our approach with non-fragmentation under the

same similarity measure tool. In this comparison, we use three
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Fig. 4: Results of SimTFile and SimTFrag

typic tools (i.e., Difflib FuzzyWuzzy and Plaggie) to compute

the similarities of both test file and test fragment respectively.

The second experiment is to evaluate between code-oriented

similarity measure tool (i.e., Plaggie) and the text-oriented

similarity measure tools (i.e., Difflib and FuzzyWuzzy) in test

code plagiarism detection.

1) Similarity between Test Files, SimTFile: Most of the

tools presented in this paper are based on comparisons between

source files and do not support comparing submissions as a

whole. Besides, the number of test files submitted by each

student may be more than one, and the name of the test

files may also be non-standard. Therefore, we compare the

performance of plagiarism detection tools on all file pairs

written by two students. We compare two students’ test codes

similarity with Difflib, FuzzyWuzzy, and Plaggie on source

test files. To be exact, we compare all the test files in the

submission directory of the two students. For example, if

student A writes m test files and student B writes n test

files, we will get n ∗m similarity comparison results. Difflib

and Plaggie can receive the file address as input and generate

a test report. However, FuzzyWuzzy receives two sequences

as input, and the output is the similarity value of the two

sequences. Therefore, we extract the contents of the test files

into string sequences as FuzzyWuzzy’s inputs.

2) Similarity between Test Fragments, SimTFrag: We ex-

tract test fragments for each student. In order to enable Plaggie

to compare the similarity of test fragments, we have specially

processed the test fragment (e.g., wrapping the test fragment
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Fig. 5: Example of Token and Test Codes

with “class{{ tf }}”, ‘tf’ is a test fragment.). This is because

Plaggie has a requirement for the format of the file content

(in accordance with the basic specification of Java code). The

difference between SimTFrag and SimTFile is that SimTFrag

compares two test fragments that test the same method, while

SimTFile compares all test files in the two students’ directory.

D. Result Analysis

We conduct the first experiment described in Section IV-C

and present the results in Fig.4. In this experiment, we verify

the effectiveness of fragmentation by using three similarity

measure tools (i.e., Difflib, FuzzyWuzzy and Plaggie) and

compare them under precision, recall and F1-measure. As

shown in Fig.4, the sub-figures (a)-(c) respectively illustrate

the precision, recall and F1-measure of conducting non-

fragmentation (File) and fragmentation (Fragment) when Dif-

flib is used. Similar to Difflib, the latter six subfigures, (d)-(i),

represent the precision, recall and F1-measure of conducting

non-fragmentation (File) and fragmentation (Fragment) when

FuzzyWuzzy and Plaggie are used respectively. In each of

the sub-figure, the horizontal axis represents the threshold

we configured (i.e., 0.05, 0.10, ..., 1.00). Along the vertical

axis, we present the value of precision (or recall, F1-measure).

We resort to the blue curve with triangle points to represent

the results of non-fragmentation and resort to the red curve

with circular points to represent the results of fragmentation.

Detailed results are given as follows.

1) Effectiveness of Fragmentation: For ease of understand-

ing, we use the test code example in Fig.5 to explain the

experimental results. Now, assume that file1, file2, and file3
in Fig.5 are the test files written by students A, B, and C
respectively, where B and C is a plagiarism pair.

In precision, as shown in Fig.4-(a), (d) and (g), the pre-

cision of Difflib and Plaggie in the SimTFrag scenario is

always higher than that in the SimTFile scenario. For the tool

FuzzyWuzzy, the precision in SimTFile is higher than that

in SimTFrag when the similarity threshold t ∈ (0.4, 0.9), but

after t is greater than 0.95, it is reversed. The reason is that the

similarity value calculated in SimTFrag is higher than that in

SimTFile on the whole. For example, we use FuzzyWuzzy

to calculate the similarity between A and B. In SimTFile

scenario, sim(A,B) = sim(file1, file2) = 56, while the

sim(A,B) = sim(tf1, tf2) = 67 in SimTFrag. Similarly, A
and C, B and C are also the same. So, the number of the

plagiarism pairs chosen by the same threshold is accordingly

larger, especially the false positive pairs. Therefore, we can

conclude that fragmentation can make sense for improving

the performance of all experimental tools in precision.

In recall, as shown in Fig.4-(b), (e) and (h), the recalls of

Difflib and FuzzyWuzzy in the SimTFrag scenario is always

higher than that in the SimTFile scenario. For the tool Plaggie,

the recall in SimTFile is higher than that in SimTFrag when

t ∈ (0, 0.95), but after t is greater than 0.95, The recall of

Plaggie in the SimTFile scenario drops rapidly while declining

smoothly in the SimTFrag scenario. In addition, Fig.4-(e)

shows, in general, when t increases from 0 to 1, the recall

of FuzzyWuzzy changes little, almost always at 0.8 in the

SimTFrag scenario. To our surprise, even if t is small (e.g.

t = 0.05), the recall of Plaggie in the SimTFrag scenario

is still very low (recall = 0.8 while which is close to 1.0

in FuzzyWuzzy and Difflib), the main reason is that , for

Plaggie, it first converts test fragments tf2 and tf3 to tokens

token1 (three tokens) and token2 (four tokens) respectively

before calculating the similarity of tf2 and tf3 . In this case,

if minMatchLength = 4, sim(B,C) = 0. We can find

once minMatchLength > min{|tf1.tokens|, |tf2.tokens|},
where |tf1.tokens| and |tf2.tokens| are the numbers of token

of tf1 and tf2, the similarity is 0. Because the number of

tokens is not fixed, no matter what the t value is, there are

always true plagiarism pairs would be omitted, so the recall

rate will not reach particularly high. In total, we can find

fragmentation can make sense for improving the performance

of all experimental tools in recall.

In F1-measure, as we all know, F1 is used to balance

precision and recall, and it is calculated through them. There-

fore, the changing curve of F1 value is related to the greater

influencing factor. From Fig.4-(c), (f) and (i), we can see

fragmentation can make sense for improving the performance

of all experimental tools in F1-measure.

Based on the above analysis of precision, recall, and F1-

measure, we can conclude that fragmentation is a significant

stage to improve test plagiarism detection.

2) Code or Text-Oriented Similarity measures: Next, we

conduct the second experiment to evaluate the code-oriented
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TABLE I: Results of Threshold Analysis

Threshold Tool P R F1 FN

0.1
TD 0.961 0.972 0.966
TF 0.027 0.997 0.052
TP 0.744 0.825 0.782

0.2
TD 0.973 0.972 0.972
TF 0.027 0.997 0.052
TP 0.744 0.825 0.782

0.3
TD 0.978 0.965 0.971
TF 0.027 0.997 0.052
TP 0.746 0.825 0.784

0.4
TD 0.986 0.964 0.975 156
TF 0.028 0.997 0.054
TP 0.751 0.824 0.786

0.5
TD 0.987 0.962 0.974
TF 0.03 0.995 0.058
TP 0.76 0.824 0.791

0.6
TD 0.994 0.944 0.969
TF 0.036 0.994 0.069
TP 0.775 0.819 0.797

0.7
TD 0.998 0.919 0.957
TF 0.054 0.991 0.102
TP 0.792 0.813 0.803

0.8
TD 0.998 0.915 0.955
TF 0.14 0.971 0.245
TP 0.815 0.81 0.812

0.9
TD 0.998 0.915 0.955
TF 0.511 0.965 0.668
TP 0.855 0.772 0.812

1.0
TD 0.998 0.915 0.955
TF 0.998 0.939 0.968 262
TP 0.967 0.758 0.85 1044

similarity measure (i.e., Plaggie) and the text-oriented simi-

larity measure (i.e., Difflib and FuzzyWuzzy) in the test code

plagiarism detection. We present the results of precision, recall

and F1-measure when threshold value ranging from 0.00 to

1.00 in Table I, when employing Difflib (TD), FuzzyWuzzy

(TF ) and Plaggie (TP ).

Since Plaggie’s performance in different scenarios is af-

fected by the parameter ‘minMatchLength’, we have done

a supplementary experiment for Plaggie to explore a rela-

tively suitable ‘minMatchLength’ value so that Plaggie can

reach a relatively good performance state in the SimT-

Frag scenario. The experimental results show that when

minMatchLength = 17, Plaggie can achieve relatively

optimal performance in the SimTFrag scenario, and the detail

results are shown in Fig.6.

For Difflib, it can achieve relatively the best performance

when t = 0.4, and t = 1.0 for FuzzyWuzzy and Plaggie. In

the best-performing state, according to precision, recall and

F1, we found that Difflib and FuzzyWuzzy are better than

Plaggie, in other words, they are better suited to the new

scenario of test code plagiarism detection than Plaggie. On

the one hand, this is caused by the method of computing

similarity using Difflib. If there are differences between the

two lines in two files, even if the difference is small, Difflib

will still mark them as different. For example, assuming that

the student A wrote a test file named FA, and the student

B wrote a test file named FB . The test codes in file FA

were copied from file FB and made certain modifications to

each statement (such as the modification of the identifier). In

this case, the output |D(FA, FB)| generated by Difflib will

be vast, which also leads to the value of simD(FA, FB) to

be small. However, it is a common practice to make certain

modifications after plagiarism. Thus, the similarity calculated

by Difflib is generally small than FuzzyWuzzy and Plaggie.

On the other hand, we find a large number of students who

plagiarized others’ test code without any modification, so that

the similarity calculated by Difflib is 1.0. All these can explain

why the performance of Difflib can achieve the best easily with

a small threshold, such as t = 0.4. Besides, we can also find

that the number of false positives (FN = 1044) pairs is the

highest when Plaggie achieves relatively the best performance.

Based on the above analysis, we can get an exciting

conclusion that the effectiveness and performance of the text-

oriented plagiarism detection tools are better than those of the

code-oriented tools in test plagiarism detection scenario.

V. THREATS TO VALIDATION

A. Construct validity

Since we are the first to study the test code plagiarism

detection, there is no ready-made test code dataset available for

our experiment. Relying on Mooctest, we got many test codes

submitted by students. We have carefully sorted out these test

codes and produced a good test code dataset. We will make

the test code dataset publicly available so that it can be used

in future studies of tool evaluation and comparison.

B. Internal validity

The test fragments extracted by MAF may be incomplete

(some statements may be lost). Although some test fragments

may be incomplete, they are still sufficient to indicate the

testing process of the students, so it is enough to prove whether

there exist plagiarism among the students. We will further

improve and optimize the extraction of test fragments to make

the extracted test fragments more complete in the future.

We use the threshold analysis to find all pairs that are

plagiarism. There is a certain degree of difference in perfor-

mance with different thresholds. In order to reduce the bias of

threshold t, we used different t (t increased from 0 to 1 by

0.05 each time) for many experiments.

We used three typic detection tools to evaluate the effective-

ness of fragmentation of MAF. The performance of Plaggie

is affected by a parameter of ‘minMatchLength’, which may

affect the evaluation of MAF. For this threat, we did an auxil-

iary experiment to find a suitable ‘minMatchLength‘ value that

could make Plaggie achieve a relatively good performance.

C. External validity

We only used one dataset to conduct the experiment, which

may affect the generalization of MAF. Although we used

only one dataset for evaluation, the dataset contains test codes

submitted by 635 students from all over the country, which

can produce more than 150 thousand comparison pairs, so it

has certain representativeness. In the future, we will do further

experiments on more datasets.
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Fig. 6: Results of Supplementary Experiment for Plaggie

VI. RELATED WORK

Plagiarism Detection is essential for education. A large

number of similarity measures have been proposed, providing

a good infrastructure for software plagiarism detection. Such

as, token-based [23], [25], structure-based [28]–[30], syntax-

based [31] and semantics-based [32], and so on measures.

Meanwhile, many plagiarism detection tools have been de-

veloped. Plague [28] was introduced by G.Whale in 1988,

and it is a structure-based plagiarism detector, which can be

used to detect plagiarism code written in C programming

language. YAP3 [33] uses Running Karp-Rabin Greedy String

Tiling (RKS-GST) as a comparison algorithm that proposed

by Michael Wise [34]. RKS-GST is suitable for plagiarism

detection since it prioritizes longer substrings and it is not

greatly affected by the order of substrings [35]. MOSS [36],

[37] and JPlag [25] provide a web service for detecting plagia-

rism. However, if source codes are confidential information, it

will be not suitable to send codes to MOSS or JPlag. Plaggie

[23] is similar in functionality to JPlag, but its source code

is open so that someone can do secondary development based

on it. However, the similarity measures and tools listed above

are mostly used to detect software or source code plagiarism.

There is no specific test code plagiarism detection tool. MAF

is the first plagiarism detection framework for test code. It

takes the difference between the test code and source code

into account, so it can be combined with existing similarity

measures to detect test code plagiarism well.

Test Similarity is most relevant to test code plagiarism

detection so far and focus on test report or test case similarity

measure. Usually, the test report consists of natural language

text and some screenshots. Existing research on test report

similarity measure is mainly used to solve a lot of redundancy

problem in crowdsourced testing [38], [39]. Such as Feng et

al. [38] measure the similarity of test reports by combining

natural language processing technique and image analysis

technique. TERFUR [40] is a fuzzy clustering framework to

cluster crowdsourced test reports for reducing the costs of

manual inspection. These measures may also be suitable for

test code plagiarism detection, but so far we have not seen

any practice. Besides, all of them do not take test behavior

(e.g., the test case is used to test a specific method under

test) into account. For test case similarity measure, lots of

research focus on test case prioritization [41]–[43]. Fang et

al. [42] employ ordered sequences of program entities to

measure the similarity of test cases. Noor et al. [43] use the

sequence of method calls of test case to measure similarity.

The test cases they focused on mostly are standard and

minimum granularity. However, when used for non-standard

test code, their performance is not satisfactory. By introducing

slicing technology to anchor methods under test and extracting

fragments from non-standard test codes, MAF can effectively

improve the performance of similarity measures for test code

plagiarism detection.

VII. CONCLUSION

In this paper, we propose MAF technology to extract mean-

ingful test fragments, then measuring the similarity between

the test fragments instead of test codes own’s. We evaluated

MAF with three typic tools on a test code dataset from the

Mooctest platform. The evaluation results show that MAF can

extract a large number of meaningful test fragments from the

non-standard test codes submitted by students. And, measuring

test code similarity based on test fragments instead of test

code directly can effectively improve the performance of

similarity measures for test code plagiarism detection. Besides,

to our surprise, we found that, in the test code similarity

measure, the effectiveness and performance of text-oriented

similarity measure tools are better than that are code-oriented.

MAF is a very flexible framework, in which the similarity

measure module can be easily replaced by most of the existing

similarity measures. In the future, we will use more promising

similarity measures to verify the effectiveness and performance

of our MAF on more datasets.
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