
Towards Generating Cost-Effective Test-Suite for
Ethereum Smart Contract
Xingya Wang*, Haoran Wu, Weisong Sun, Yuan Zhao

State Key Laboratory for Novel Software Technology, Nanjing University
Nanjing, China

xingyawang@nju.edu.cn, {haoranwu, weisongsun}@smail.nju.edu.cn, allenzcrazy@gmail.com

Abstract—In Ethereum, many accounts and funds have been
managed by smart contracts, thereby making them easy to be
targeted. Due to the persistence characteristic of blockchain,
revising a deployed smart contract is almost impossible. Both
realities heighten the risks of managing funds and thus increase
the demand for conducting sufficient testing to Ethereum Smart
Contracts (ESC). Different from the conventional software, ESC
is a gas-driven program, where developers must charge gases for
deploying and testing it. Therefore, it is important to provide a
cost-effective yet representative test suite, where its representa-
tiveness can be typically measured by its branch coverage. In
this paper, we deem the problem of ESC test generation as a
Pareto minimization problem, and three objectives, minimizing
(1) uncovered branch coverage, (2) time cost, and (3) gas cost are
considered. Then, we propose a random based and an NSGA-II
based multi-objective approach to seek cost-effective test-suites.
Our empirical study on a set of smart contracts in eight of the
most widely used Ethereum Decentralized Applications (DApps)
verified that the proposed approaches could significantly reduce
the gas cost as well as the time cost while retaining the ability
to cover branches.

Index Terms—Ethereum smart contract, test-suite generation,
Pareto minimization

I. INTRODUCTION

BitCoin raises the awareness that both cryptocurrency and
blockchain have great values such as cost saving and efficiency
improvement [1]. Subsequently, more than 2,000 cryptocurren-
cies were proposed1. Among them, Ethereum is one represen-
tative cryptocurrency [2]. Smart Contract (SC) can be deemed
as an automatable and enforceable agreement. It is firstly
proposed by Nick Szabo, who aimed to make the contract that
can be automatically and correctly executed without relying
on a trusted authority [3]. Blockchain, which possesses the
characteristics of decentralization and anonymity [1], provides
a feasible technique for building a smart contract supporting
platform. Ethereum provides a industry level blockchain within
a built-in fully fledged Turing-complete programming lan-
guage [4], making it easier for practitioner to develop, deploy
and apply a smart contract. Currently, more than 1 million
smart contracts have been deployed in Ethereum, where 54475
of them had been verified2.

*Xingya Wang is the correspondence auther, and the work is supported
by NSFC (61832009, 61772260, 61673384), Jiangsu Planned Projects for
Postdoctoral Research Funds (2018K028C), and Innovation Project for State
Key Laboratory for Novel Software Technology (ZZKT2018B02)

1Data from CoinMarketCap: 2086 cryptocurrencies on Jan. 6th 2019.
2Data from Etherscan: 54475 smart contracts on Jan. 6th 2019.

Though smart contract has attracted an increasing number
of practitioners, developing a high-quality SC is still full of
challenges. On the one hand, SC is often used in safety-critical
areas such as finance and credit, thereby making it an attractive
target for attackers. On the other hand, another characteristic
of blockchain, persistence [1], increases the difficulty of bug
fixing in SC. That is, once an SC has been deployed, there
is little chance to revise it. Thus, a minor bug might result
in a series of devastating losses, and fixing it might be quite
costly. For example, the infamous DAO attack, which causes
a loss of 60 million US dollars [5], is caused by a reentrancy
bug. To deny the hacker, Ethereum has to conduct a hard
fork, making Ethereum no longer be seen as immutable.
Moreover, compared to conventional software, environments
for developing, testing as well as debugging SC are immature,
and SC developers are young and inexperienced, both of
which make it harder to develop a high-quality SC. Since
software quality has become one dominant success criterion
in the software industry [6], and testing remains as the most
commonly used technique to ensure the quality of software [6],
prior to deployment, SC must be given sufficient testing.

Generally, sufficient testing indicates that a high-quality
test-suite must be designed and generated for the SC under
test. Subsequently, to make the testing practicable, one impor-
tant question must be answered, that is, how to measure the
quality of an SC test-suite? For conventional software, branch
coverage is commonly mandated in industrial testing standard-
s [7] in the industry to evaluate the quality of the generated test
cases. The higher the branch coverage, the more the blocks
of the program under test are examined. Thus, minimizing
the uncovered branches becomes one important objective in
test-suite generation. One natural way to decrease uncovered
branches is augmenting the existed test-suite by generating
additional test inputs for the uncovered branches. However,
generating more test inputs indicates that the testers have to
spend more time to execute the program under test. Moreover,
an Ethereum Smart Contract (ESC), when it is called, will run
in each of the nodes in Ethereum. Long-term running ESC
inevitably delays the subsequent transactions and degrades
the Ethereum performance. In this regard, Ethereum employs
a Gas mechanism to limit the executing time and memory
consumption [2]. For a deployed ESC, its execution is driven
by gases, which must be purchased in ethers. Undoubtedly,
conducting sufficient testing for a deployed ESC will cost

978-1-7281-0591-8/19/$31.00 c© 2019 IEEE SANER 2019, Hangzhou, China
Industry Track

549

plenty of gases and ethers. Therefore, the generated test-suite
also should be cost-effective, that is, costing time and gases
as little as possible.

As stated, a high-quality ESC test-suite must satisfy the
following three objectives, that are: (1) minimizing uncovered
branches, (2) minimizing time cost, and (3) minimizing gas
cost. Obviously, objectives (1) and (2) as well as (1) and
(3) conflict, which mean that finding a solution that can
achieve the best result in each of the objectives is unrealistic.
Thus, ESC test generation can be deemed as a multi-objective
optimization problem, which aims to gain a tradeoff among
multiple objectives by generating the Pareto solutions [8]. In
this paper, we propose the first multi-objective test generation
approach for testing Ethereum smart contract. Specifically, we
resort two algorithms, Random Based Multi-objective test gen-
eration algorithm (RBM) and NSGA-II Based Multi-objective
test generation algorithm (NBM), to seek the cost-effective
test-suites. NSGA-II is a representative multi-objective genetic
algorithm (with over 26,000 citations at the time of writ-
ing3) [9]. Representation of the solution as well as the evo-
lution operators (i.e., selection, recombination and mutation)
are redesigned for applying NSGA-II into the ESC test-suite
generation. To verify the effectiveness of both RBM and NBM,
we conducted an empirical study, where two independent
variables, objectives and generation algorithm, are considered
respectively. This paper makes the following contributions.

1) Approach. We introduced the first Pareto minimization
approach to ESC testing, combining one objective (i.e.,
minimizing uncovered branches) used for conventional
software and two cost-effective objectives (i.e., mini-
mizing both time cost and gas cost).

2) Empirical Study. We conducted an empirical study
on a set of smart contracts. Results verified that our
approaches could significantly reduce the gas and time
cost while retaining the ability to cover branches.

The rest of this study is organized as follows. Section II
describes the basics of Ethereum smart contract and multi-
objective optimization. Our test-suite generation approaches
are described in detail in Section III. Experimental design and
results analysis are presented in Section IV. Finally, Section
V concludes the article and outlines directions for future
research.

II. BACKGROUND

A. Ethereum Smart Contract

The development language (e.g. Solidity4) in Ethereum is
Turing completeness. Thus, it has conditional branching and
the ability to change an arbitrary amount of memory, each of
which may block the subsequent transactions, and thus affects
Ethereum performance. To restrict them, Ethereum employs a
Gas mechanism, where two concepts, gaslimit and gasprice,
are defined. Then, you should purchase more ethers if the

3Data from Google Scholar: 26513 citations on Jan. 6th 2019.
4Solidity. https://solidity.readthedocs.io.

smart contract you called executes too long, or consume too
much memory.

Definition II.1 (gaslimit). A scalar value equal to the max-
imum amount of gas that could be used in executing one
transaction. This is paid up-front, before any computation is
done and may not be increased later [4].

Definition II.2 (gasprice). A scalar value equal to the number
of Wei to be paid per unit of gas for all computation costs
incurred as a result of the execution of this transaction [4].

Fig. 1. Workflow of Ethereum Gas Mechanism

Fig. 1 depicted the process of executing an ESC under the
Ethereum Gas mechanism:

1) Given gaslimit and gasprice, Ethereum checks if the
sender account sa has enough ethers. It continues if
sa has (i.e., feesa ≥ feemax = gaslimit × gasprice),
otherwise it stops and throws an out-of-gas exception.

2) Ethereum deducts feemax from sa, and broadcast the
request of executing ESC to all accounts.

3) Once an account receives the request, its EVM starts
to execute ESC and monitor the gases used gasused. It
continues if gasused consistently lower than feemax,
otherwise it stops and throws an out-of-gas exception.

4) Once the transactions have been recorded in the
blockchain, Ethereum gives back the remaining fee (i.e.
feemax − gasused × gasprice) to sa. Note that no fee
will be given back if feemax has been run out.

B. Multi-objective Optimization
Optimization is a common problem in engineering prac-

tice [10]. Problem with only one objective is called Single-
objective Optimization Problem (SOP), otherwise, it is called
Multi-objective Optimization Problem (MOP) [9]. SOP aims
to find a feasible solution that archives the best result (i.e.
minimum or maximum) in the given objective function. MOP
is quite different from SOP. Objectives may conflict, that is,
optimizing one objective needs to sacrifice the other objectives.
Thus, MOP aims to gain a tradeoff among the different
objectives rather than finding a solution that archives best
result in all objective functions. Without loss of generality,
in this paper, we resort minimization as the goal for all the
objectives. Then, a general MOP can be formally defined as
follows:

Definition II.3 (MOP). The set of all the values satisfying
p inequality constraints gi(x) ≥ 0, i ∈ {1, 2, . . . , p} and q
equality constraints hi(x) = 0, i ∈ {1, 2, . . . , q} defines the
feasible region Ω and any point x ∈ Ω is a feasible solution.
MOP aims to find a solution x = (x1, x2, . . . , xn) that mini-
mizes the vector function f(x) = (f1(x), f2(x), . . . , fm(x))T ,
where x1, x2, . . . , xn are decision variables.

550

Definition II.4 (Domination). Taking into account the def-
inition of MOP, a solution x1 = (x11, x

1
2, . . . , x

1
n) is said

to dominate a solution x2 = (x21, x
2
2, . . . , x

2
n) denoted with

x1 ≺ x2, if and only if fi(x1) ≤ fi(x2) for i ∈ {1, 2, . . . ,m},
and there exists at least one j ∈ {1, 2, . . . ,m} such that
fj(x

1) < fj(x
2).

Definition II.5 (Pareto Optimal Set). The solution of a given
MOP is usually a set of solutions satisfying:
• Every pair of two solutions in the set is non-dominated.
• Any other solution is dominated by at least one solution

in the set.

Finding a solution that works best in all but conflicting
objectives is virtually impossible. Thus, MOP requires a set of
solutions known as a Pareto optimal set [9]. Such a set contains
only non-dominating solutions. As stated in Definition II.4,
individual x1 dominates x2 if, and only if, x1 is better than x2

in at least one objective, and no worse in all other objectives.
Conversely, two points are said to be non-dominated whenever
none of them dominates the other.

Test-suite generation aims to automatically generate a high-
quality test-suite for alleviating the burden of practitioners
from the laborious task of test designation. Thus, we require
a precise definition of high-quality to guide the process of
test-suite generation and evaluate the generated results. For
a generated result, branch uncoverage uncovbranch and time
cost costtime are two commonly used measurements [11],
in which uncovbranch measures its adequacy and costtime
measures its efficiency. As stated, Ethereum resorts to a
Gas mechanism to solve the problems (e.g., long-term ex-
ecution and high memory consumption) resulted by Turing
completeness. With this mechanism, testers must purchase
more if the generated result costs too much gases. Thus,
the gas cost costgas should also be deemed as an important
measurement. Therefore, a high-quality ESC test-suite should
satisfy low uncovbranch, low costtime and low costgas. Then,
the problem of ESC test-suite generation can be deemed as a
MOP problem, and the vector function corresponds to f(ts) =
(f1(ts) = uncovbranch(ts), f2(ts) = costtime(ts), f3(ts) =
costgas(ts))

T with ts refers to a generated test-suite.

III. OUR APPROACHES

This section presents our proposed multi-objective test
generation approaches. Specifically, we propose a Random
Based Multi-objective test generation approach (RBM) and
an NSGA-II Based multi-objective test generation approach
(NBM), in which a typical evolutionary multi-objective opti-
mization algorithm, NSGA-II [9], is selected. In our case, a
solution is a test-suite, which is represented as a set T of test
cases. Given |T | = n, we have T = {t1, t2, ...tn}. A test case
t is a list of values w.r.t the arguments of a method in the
smart contract under test.

A. Random Based Multi-objective Test Generation

Given a smart contract sc, RBM requires: (1) its source
code; (2) its Application Binary Interface (ABI) [2]; (3) the

Fig. 2. Workflow of random based multi-objective test generation

Fig. 3. Workflow of NSGA-II based multi-objective test generation

time budget tb for a test-suite creation; and (4) the number of
solutions numsolution.

As Fig. 2 depicted, RBM randomly generates numsolution

solutions, sorts them based on nondomination [8], and selects
the Pareto optimal set as the output [8]. Each solution is given
a time budget tb to be generated. A solution is a set of ran-
domly generated test cases, where each of which corresponds
to one method declaration in ABI. Once all solutions have
been generated, we estimate their branch coverage, time costs
and gas costs, in which all of these are collected by tracing
the test cases on the deployed sc.

B. NSGA-II Based Multi-objective Test Generation

NBM is depicted in Fig. 3: Starting with a random popula-
tion P0 = 〈T 1

0 , T
2
0 , ..., T

m
0 〉, evolution is performed until the

termination condition (i.e., number of iterations) is satisfied.
In each iteration, an offspring population Qt is created by se-
lecting and evolving (i.e., crossover and mutation in order) the
best m individuals in the last generation Pt. Both Pt and Qt
are added to the new generation Rt. Then, solutions in Rt are
ranked based on non-dominated sorting, depending on function
f(T). NBM outputs the Pareto optimal set when the maximum
iteration has been reached. Fig. 3 depicts the high-level NBM
workflow. To adapt it to our test generation problem, we need
to define the crossover and mutation operators.

1) Crossover: As stated, a solution can be deemed as a
list of test cases and thus our crossover works at test-suite
level. The adopted selection operator is the conventional binary
tournament [8]–[10], and each pair of the selected test-suites
has a 1

2 probability to be crossed. We follow the work of whole
test suite generation [12] to design crossover operator. Given
two parent solutions, P1 and P2, we first randomly choose
a value α from [0, 1] and split P1 into two test-suites, Pα1
and P 1−α

1 , in which they contain the first α|P1| and the latter
(1− α)|P1| test cases, respectively. Similarly, P2 is split into
Pα2 and P 1−α

2 . Then, the first offspring O1 is generated by
combining Pα1 and P 1−α

2 , and the second offspring O2 is
generated by combining Pα2 and P 1−α

1 .
2) Mutation: Different with crossover, our mutation op-

erator works at both test-suite and test case levels. In each
iteration, every test-suite has a 1

2 probability to be mutated.

551

Then, the test-suite under mutation will be applied the three
types of operations, remove, change, and insert, in order.
For a test-suite T , these three operations work as follows:
(1) remove corresponds to randomly delete a test case in
T . (2) change corresponds to randomly select a test case
t = 〈arg1, arg2, ..., argl〉 in T and conduct a test case
level based mutation for it. Each argument in t is changed
with probability 1

l and the argument under changed will be
randomly reassigned a new value based on its variable type. (3)
insert corresponds to randomly generate a test case and insert
it at the end of T . Each operation is applied with probability
1
3 . Therefore, on average, only one of them is applied.

IV. EVALUATION

We investigated the following two main research questions:
1) Can RBM and NBM generate cost-effective Ethereum

test suites?
2) Are RBM and NBM retaining the ability of branch

coverage in generating Ethereum test suites?
To answer these research questions, we considered the

Completely Random Based approach (CRB) and two single-
objective based approaches (RBS and NBS) to compare our
proposal with. CRB corresponds to the completely random
based test generation, which does not consider any objectives
during the test generating process. RBS and NBS take low
uncovbranch as the optimization objective, and they corre-
spond to random based and NSGA-II based approach, respec-
tively. We selected these baselines because they can reflect if
we make a delicate tradeoff among the objectives.

A. Experimental Subjects and Measures

TABLE I
SUBJECT PROGRAMS

DAPP Name LOC BOC DAPP Name LOC BOC
NEVERDIE 26 6 0xBitcoin 108 46
Bancor 27 20 FuseaNetwork 120 52
UranBank 60 32 LEE 137 76
OpenSea 88 40 Etherchicks 199 80

We used the smart contracts in eight of the mostly used
Ethereum Decentralized Applications (DApps)5 as experimen-
tal subject programs. Table I summarizes the characteristics of
these smart contracts. For each DAPP, its name, the number
of code lines (excluding comments and blank lines) and the
number of branches are described.

In empirical study, we considered the following quantitative
criteria to assess the results of the proposed approaches to
compare that were obtained by applying three baselines.
uncovbranch(T) = (1− |

⋃
branchcovered(t)|
|branchsubject|)× 100%, t ∈ T

costtime(T) =
∑
costtime(t), t ∈ T

costgas(T) =
∑
costgas(t), t ∈ T

(1)

5Data from State of the DApps: 1842 Ethereum DAPPs on Jan. 6th 2019.

Equation (1) presents the evaluation metrics in quantitative
criteria. Given a test-suite T , uncovbranch(T) represents the
percentage of branches of the sc under test that has not
been exercised by the test cases of T . uncovbranch values
range in between 0 and 100. The lower the uncovbranch
value, the higher the branch coverage is, and the better it is.
costtime(T) and costgas(T) represent the time as well as the
gas required for executing the test cases in T on the deployed
sc, respectively. For each of the latter two measures, the lower
the value, the better it is.

B. Procedure

For each sc under test, we applied the following procedure:

1) Collecting artifacts. We collected the following arti-
facts: source code and its ABI.

2) Compiling and deploying. To run sc, we compiled it
into bytecode, and deployed it on Ethereum testnet.

3) Running RBM, NBM and baseline approaches, and col-
lecting data. We ran the random based approaches with
the following setup: time budget tb=100ms, number of
solutions numsolution=1000, and we ran the NSGA-
II based approaches with the following setup: time
budget tb=100ms, population size sizepop=20, number
of iterations numiteration=50. Since all approaches
have a non-deterministic behavior, we ran them 10
times and collected all the generated solutions. For each
solution, we collected its uncovered branches, time cost
and gas cost.

C. Results and Analysis

We conducted the experiment following the procedure in
Section IV-B and present the results of the baselines (i.e.,
CRB, RBS, and NBS) as well as the proposed approaches
(i.e., RBM, NBM) in Table II. Columns 2-6 illustrate the
branches that had not been covered per subject program when
different approaches are employed. Similarly, the latter two
set of columns, 7-11 and 12-16, represent the time cost as
well as the gas cost when different approaches are employed,
respectively. The last row of table II illustrates the average
results on all subjects of each approach.

From table II, we can observe that, the NSGA-II based
approaches always achieve better branch covered results than
that of the random based approaches, where the completely
random approach CRB always performs worst. The average
scores of both RBM and NBM are slightly higher than that
of the single-objective based approaches, RBS and NBS, by
0.90% and 0.89%, respectively, indicating that our approaches
maintain the ability of covering branches. Besides, we can also
observe that, the executing time, as well as the used gasses
employing our approaches are always lesser than that of the
three baseline approaches. For example, the average gas cost
of NBM is 1.47 million, which is much lesser than the gas
cost when using the test-suites generated by the baselines. It
means that in the empirical study, our approaches can generate
more cost-effective test-suites.

552

TABLE II
EXPERIMENTAL RESULTS OF THE PROPOSED APPROACHES AND THE BASELINES

SC Name Uncovered Branches (%) Time Cost (s) Gas Cost (million)
CRB RBS NBS RBM NBM CRB RBS NBS RBM NBM CRB RBS NBS RBM NBM

NEVERDIE 36.73 16.67 16.67 16.67 16.67 8.29 10.60 11.59 8.92 4.36 2.25 2.55 3.53 1.90 0.67
Bancor 60.41 60.00 60.00 60.00 60.00 11.35 14.09 16.90 11.24 6.83 2.22 2.05 2.88 1.14 0.51
UranBank 37.37 21.87 15.62 21.87 15.62 10.37 12.77 14.15 10.86 7.88 2.67 2.63 4.84 2.52 1.83
OpenSea 57.56 55.00 55.00 55.00 55.00 15.85 20.52 21.66 12.79 9.21 4.74 5.01 5.64 4.17 2.01
0xBitcoin 74.57 73.91 73.91 73.91 73.91 9.85 10.55 10.74 9.33 5.99 1.91 1.82 1.77 1.66 0.99
FuseaNetwork 56.73 51.92 48.08 53.85 50.00 7.55 7.84 10.09 6.77 4.46 1.56 1.77 3.64 1.41 1.12
LEE 68.42 65.78 60.53 66.11 62.04 7.05 9.33 9.83 6.91 3.91 1.90 3.80 4.02 2.08 0.75
Etherchicks 62.75 52.50 33.75 57.50 37.50 35.16 39.43 53.23 34.56 19.38 9.28 10.47 15.29 6.10 3.92
AVG 56.82 49.71 45.45 50.61 46.34 13.18 15.64 18.52 12.67 7.75 3.32 3.76 5.20 2.62 1.47

TABLE III
STATISTICAL ANALYSIS RESULTS

Approaches RBM (p-value) NBM (p-value)
f1 f2 f3 f1 f2 f3

CRB 0.049 0.247 0.108 0.023 0.010 0.013
RBS 0.193 0.008 0.055 0.112 0.005 0.013
NBS 0.112 0.022 0.033 0.111 0.016 0.013
RBM - - - 0.119 0.013 0.003

To further evaluate the performance of RBM and NBM, we
applied the paired Wilcoxon tests to the baselines. In order to
show that RBM and NBM are more cost-effective, we carried
out the two-tailed alternative hypothesis to verify that RBM
(or NBM) costs the least executing time (or gasses) that the
compared baselines, respectively. From table III, we can obtain
the following observations: (1) the p-values of all tests between
RBM and single-objective based approaches range from 0.008
to 0.055, and the p-values of all tests between RBM and
CRB range from 0.108 to 0.247. Therefore, we can accept
the hypothesis with confidence level 0.945 of the test between
RBM and single-objective based approaches, but reject the
hypothesis of the test between RBM and CRB. (2) the p-values
of all tests between NBM and other approaches range from
0.003 to 0.016. Therefore, we can accept the hypothesis of the
test between NBM and all the other approaches. In summary,
both approaches can provide more cost-effective test-suites
even though RBM is not very significant when compared to
the completely random approach.

Moreover, we applied the paired Wilcoxon tests to verified
the effectiveness of covering branch. The p-values of all tests
between our approaches and CRB range from 0.023 to 0.049,
and the p-values of all tests between our approaches and
single-objective based approaches range from 0.111 to 0.193.
Results indicate that both proposed approaches significantly
outperform the completely random approach, and can main-
tain the branch covered ability of taking only minimizing
uncovbranch as the test generation objective.

Based on these above results, for this set of smart contracts,
in our empirical study, we can answer the two proposed
research questions as follows: our multi-objective based ap-
proaches can (1) significant reduce the time cost and gas cost,
and (2) retain the ability of branch covering.

V. CONCLUSION

Due to the fact that ensuring the quality of smart contract
is important, researchers have proposed a set of testing and
verifying techniques [13]–[15]. However, in these studies,
testing cost had not been dedicated discussed. Our work
provides a well complementation to them. In this paper, we
proposed and studied RBM and NBM, two multi-objective test
generation approaches for Ethereum smart contract. Both ap-
proaches aim to generate cost-effective test-suites while do not
sacrifice the ability of branch covering. Our empirical study
on a set of open-source, widely used smart contracts verify
their effectiveness. Conducting more experiments as well as
employing more optimization objectives such as maximizing
mutation killed ability during the test-suite generation are our
next work.

REFERENCES

[1] Z. Zheng et al., “Blockchain challenges and opportunities: a survey,”
IJWGS, vol. 14, no. 4, pp. 352–375, 2018.

[2] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, pp. 1–32, 2014.

[3] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

[4] V. Buterin, “A next-generation smart contract and decentralized appli-
cation platform,” Ethereum White Paper, 2014.

[5] WIRED, “A $50 million hack just showed that the dao was all too
human,” 2016.

[6] A. Orso et al., “Software testing: a research travelogue (2000-2014),” in
Proc. FOSE, pp. 117–132, 2014.

[7] T. T. Chekam et al., “An empirical study on mutation, statement and
branch coverage fault revelation that avoids the unreliable clean program
assumption,” in Proc. ICSE, pp. 597–608, 2017.

[8] N. Srinivas et al., “Multiobjective function optimization using nondomi-
nated sorting genetic algorithms,” IEEE TEC, vol. 2, no. 3, pp. 221–248,
1995.

[9] K. Deb et al., “A fast and elitist multiobjective genetic algorithm: NSGA-
II,” IEEE TEC, vol. 6, no. 2, pp. 182–197, 2002.

[10] R. T. Marler et al., “Survey of multi-objective optimization methods for
engineering,” SMO, vol. 26, no. 6, pp. 369–395, 2004.

[11] J. Ferrer et al., “Evolutionary algorithms for the multi-objective test data
generation problem,” SPE, vol. 42, no. 11, pp. 1331–1362, 2012.

[12] G. Fraser et al., “Whole test suite generation,” IEEE TSE, vol. 39, no. 2,
pp. 276–291, 2013.

[13] K. Bhargavan et al., “Formal verification of smart contracts: Short
paper,” in Proc. PLAS, pp. 91–96, 2016.

[14] B. Jiang et al., “Contractfuzzer: Fuzzing smart contracts for vulnerability
detection,” in Proc. ASE, pp. 259–269, 2018.

[15] R. M. Parizi et al., “Empirical vulnerability analysis of automated smart
contracts security testing on blockchains,” in Proc. CASCON, pp. 103–
113, 2018.

553

