
HomoTR: Online Test Recommendation System Based on
Homologous Code Matching

Chenqian Zhu 1, Weisong Sun 1, Qin Liu 1 ∗, Yangyang Yuan 1, Chunrong Fang 1, Yong Huang 2
1 State Key Laboratory for Novel Software Technology, Nanjing University, China

2 Mooctest Inc., Nanjing, China

*qinliu@nju.edu.cn

ABSTRACT

A growing number of new technologies are used in test develop-

ment. Among them, automatic test generation, a promising tech-

nology to improve the efficiency of unit testing, currently performs

not satisfactory in practice. Test recommendation, like code recom-

mendation, is another feasible technology for supporting efficient

unit testing and gets increasing attention. In this paper, we develop

a novel system, namely HomoTR, which implements online test

recommendations by measuring the homology of two methods.

If the new method under test shares homology with an existing

method that has test cases, HomoTR will recommend the test cases

to the new method. The preliminary experiments show that Ho-

moTR can quickly and effectively recommend test cases to help

the developers improve the testing efficiency. Besides, HomoTR

has been integrated into the MoocTest platform successfully, so

it can also execute the recommended test cases automatically and

visualize the testing results (e.g., Branch Coverage) friendly to help

developers understand the process of testing. The demo video of

HomoTR can be found at https://youtu.be/_227EfcUbus.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Online Programming, Homologous Code Matching, Test Recom-

mendation

ACM Reference Format:

Chenqian Zhu 1, Weisong Sun 1, Qin Liu 1 ∗, Yangyang Yuan 1, Chunrong

Fang 1, Yong Huang 2. 2020. HomoTR: Online Test Recommendation System

Based on Homologous Code Matching. In 35th IEEE/ACM International

Conference on Automated Software Engineering (ASE ’20), September 21–25,

2020, Virtual Event, Australia. ACM, New York, NY, USA, 5 pages. https:

//doi.org/10.1145/3324884.3415296

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3415296

1 INTRODUCTION

Nowadays, software has become an indispensable part of people’s

life. With the variety of application scenarios, software is increas-

ingly complex, which makes it more prone to errors. Fatal errors

may lead to serious economic loss, or even cause the demise of soft-

ware. Therefore, software testing is needed to ensure its correctness

and availability and becomes more important.

Unit testing is one of the most basic and important software

testing methods, it will directly affect the subsequent testing, and

ultimately have a significant impact on the quality of the software.

However, developers tend to focus on production code development,

thus ignoring software testing development and the training of

test case writing [3]. Besides, writing test cases is a boring and

time-consuming task. Therefore, some advanced test technologies

(e.g., automatic test generation), are born to improve the testing

efficiency. Automatic test generation seems promising, but it still

has many limitations in practical large-scale applications [1]. Thus,

other technologies, such as test recommendation, are needed to

help developers improve the testing efficiency.

However, the existing test recommendation technologies[2, 4, 5],

have some shortcomings. For example, only the existing test cases

in the project which developers participate in can be recommended

[4], or recommendation accuracy declines due to the limitation of

metric (e.g., only use method signature as the metric) [2, 5]. If we

can use more test cases from more projects as the corpus or use

more effective metrics, the test recommendation accuracy will be

improved.

In this paper, we develop a novel system, namely HomoTR, which

implements online test recommendations by measuring the homol-

ogy of two methods. Homology means different methods share the

same or similar structure or functionality. HomoTR is now inte-

grated into the MoocTest1 platform, which is a software testing

education platform. When developers want to write test cases, they

can trigger HomoTR. It will recommend test cases automatically.

When developers run the test cases, it will visualize the testing

results (e.g., Branch Coverage) friendly to help developers under-

stand the process of testing. At present, HomoTR has been put into

practical application and obtained more positive feedback.

2 METHODOLOGY

2.1 Overview

As shown in Figure 1, HomoTR contains two parts: test recommen-

dation and testing results visualization. In test recommendation,

HomoTR searches for test cases from corpus by homologousmethod

1http://www.mooctest.net

1302

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3324884.3415296&domain=pdf&date_stamp=2021-01-27

matching. HomoTR then executes the recommended test cases au-

tomatically, and the testing results are visualized friendly, aiming

at helping developers understanding testing processes.

Figure 1: Overview of HomoTR

2.2 Test Recommendation

The corpus has been stored in ElasticSearch on MoocTest. Test rec-

ommendation process can be triggered when the developer wants

to test the codes which are not covered by test cases.

The corpus stores the information of the methods, including class

name, method name, method input/output (I/O) structure, method

code, corresponding test case, and so on. Method input structure

includes the quantity, sequence and types of the parameters. Method

output structure includes the type of the return type of the method

(a java method only has one return value).

This test recommendation process is implemented in the follow-

ing steps:

1) Do program analysis for method under test (MUT) to extract

the name, parameters, implementation, and other information.

2) Use the name and I/O structure of MUT to match methods in

the corpus strictly. If successful, return the matching results (up to

10 methods). Go to step 6.

3) If step 2 fails, based on matching I/O structure, use Leven-

stain distance to do spelling correction for the method name and

do matching. If successful, return the matching result (up to 20

methods). Go to step 6.

4) If step 3 fails, based on matching I/O structure and the help

of word2vec-GoogleNews-vectors, semantic similarity analysis is

carried out between the names of methods in the corpus and MUT.

Then 10 methods with the highest similarity and reaching the

threshold are selected. The threshold is selected manually based on

hundreds of results of semantic similarity analysis experiments.

5) Based on matching I/O structure, add wildcard characters to

the method name to get at most 10 methods. Return these methods

together with the methods selected in step 4. Go to step 6.

6) Use cosine distance to measure the text similarity between the

code ofMUT and each returnedmethod. Rank all the cosine distance.

The method with the highest code similarity will be considered

as homologous with MUT, and the test case of the method will be

recommended to test MUT.

2.3 Testing Results Visualization

The functionality of the testing results visualization is to color the

code lines according to the test coverage of the code. It is aimed at

making the users clearly see whether the codes are covered by test

cases. After users running test cases, OpenClover2 will measure

code coverage. According to the code coverage information, code

coloring will be triggered by WebIDE. If lines are not covered, the

area beside the code line number will be paint in red. If lines are

partially covered, for example, there are two MUTs in one line but

only one of them has been tested, the color will be yellow. If lines

are completely covered, the color will be green.

3 EXPERIMENT

To evaluate the effectiveness of HomoTR, we need to prove that

the performance of HomoTR is better than SENTRE [2].

Experiment subjects. In our experiment, we try to verify the

performance of HomoTR is better than SENTRE. SENTRE is a

test search engine which is not open-source and publicly available.

Thus, we implement the test recommendation strategy based on the

signature matching and relaxation algorithm proposed by SENTRE.

Table 1: List of experimental items.

Project No. Project Name # method # TC Project Usage

1 interviewcoder/leetcode 608 2083 build corpus

2 rekinyz/LeetCode 152 560 build corpus

3 interviewcoder/interviewbit 131 339 build corpus

4 interviewcoder/lintcode 47 30 build corpus

5 interviewcoder/geeksforgeeks 48 50 build corpus

6 gouthampradhan/leetcode 1025 0 project under test

7 nagajyothi/InterviewBit 633 0 project under test

As shown in Table 1, we conduct the experiment on seven open-

source projects from GitHub, including the realization of nearly

a thousand programming problems on the programming website,

such as Leetcode3, Lintcode4, InterviewBit5, and GeeksForGeeks6.

Different platforms and different people lead to different implemen-

tations of similar programming problems. Project No.1 - 5 are used

as raw materials to build corpus with the help of TeSRS [5] and

MAF [6]. Project No.6 - 7 only include realization, which are used

as MUT.

Evaluation metrics. In our experiment, we employ the num-

ber of matching methods and unmatched methods, the number of

successful and failed test cases, the test accuracy, and test coverage

adequacy [7] which includes class coverage (CC), method coverage

(MC), and line coverage (LC) as metrics. The number of matching

or unmatched methods is the number of methods under test (MUTs)

that succeed or fail to match similar methods. The number of failed

and successful test cases is the statistics of execution results ob-

tained by running test cases after simple manual adjustment after

2https://openclover.org
3https://leetcode-cn.com/
4https://www.lincode.com
5https://www.interviewbit.com
6https://www.geeksforgeeks.org

1303

test recommendation. The test accuracy is the percentage of suc-

cessful test cases and the total number of recommended test cases.

CC, MC, and LC are the results of the collection of test coverage of

project source code.

Experiment results. In our experiment, HomoTR and SENTRE

are respectively used to recommend test cases for all the public

methods in Project No.6 - 7. The results are shown in Table 2.

Figure 2: Comparison of the number ofmatching results and

test cases.

As is shown in Figure 2 and Figure 3, for Project No.6 - 7, the

number of matching methods of HomoTR is significantly more than

that of SENTRE, thus more test cases are recommended. Besides,

from the data in Table 2, it can be seen that the test execution results

of HomoTR are obviously superior in CC, MC, and LC.

Figure 3: Comparison of coverage.

The test accuracy column in Table 2 is used to measure whether

the test case can correctly test MUT, that is, the accuracy of test

recommendation. It can be seen that the result of SENTRE is be-

tween 80% - 90%, while HomoTR can maintain 90% - 95% accuracy

on the premise of recommending more test cases.

The defect of SENTRE is that when the class name of matching

method is similar to that of MUT, and if the I/O structure of the

method is same with that of MUT, it may determine that the method

is similar to MUT and recommend wrong test cases even though

their purpose is different. HomoTR can comprehensively consider

the similarity between method signature and method body code to

recommend the test cases of the homologous method.

Figure 4: The adequacy and helpfulness of recommended

test cases.

Besides, we invite 29 students whomajor in software engineering

and have test experience to solve test problems by using HomoTR,

and fill in feedback.

The statistics of feedback results are shown in Figure 4, 86.21%

of them think that, on the basis of meeting the test coverage goals,

the number of test cases recommended by HomoTR is appropriate.

96.55% of them say that HomoTR is very helpful in improving the

efficiency of test writing, which indicates that HomoTR obtains

high user satisfaction.

The experiment also finds that most developers can complete the

problem in 10-30 minutes and reach coverage requirements after

using HomoTR, while it takes 1-2 hours to achieve similar results

without using HomoTR according to the former exam results of

software testing courses. To sum up, HomoTR can recommend test

cases that are easy to understand, which will bring great help to

test writing.

In brief, the experiment shows that, compared with SENTRE,

HomoTR can match more MUTs, recommend more test cases, and

maintain more than 90% of the test accuracy. It also has the expected

performance for CC, MC, and LC of source code.

4 USAGE

In this section, we will show the usage of HomoTR.

Figure 5: Test recommendation.

Test recommendation. Figure 5 shows the functionality of

test recommendation. We can see the area of MUT. When the user

enters the WebIDE and wants HomoTR to recommend test cases,

make the mouse hover over the source code line number for 2

1304

Table 2: Comparative experimental result.

Project No. Algorithm matching methods unmatched methods failed cases successful cases Test accuracy CC MC LC

6
HomoTR 116 909 8 161 95% 27% 19% 19%
SENTRE 88 937 14 124 90% 18% 12% 13%

7
HomoTR 81 525 12 117 91% 32% 17% 20%
SENTRE 47 586 15 76 84% 13% 7% 8%

seconds to trigger test recommendation button “Recommend tests

for method”. Click this button, HomoTR will recommend test cases

for the method in this line. We can see the recommended test cases

in the area of Recommended Tests. Move the mouse away for 2

seconds, and the button will disappear automatically. Run the test

cases, we can see the test results at the bottom.

Testing Results Visualization. Figure 6 shows an example

of testing results visualization. The color of the area beside the

line number represents the current coverage of each line of source

code. Red indicates that they are not covered, yellow means only

some branches are covered, green indicates that they have been

completely covered, and invalid lines, such as empty lines and

comments, are not colored.

Figure 6: Testing results visualization.

5 RELATEDWORK

With the development of software testing, test case recommenda-

tion [2, 4, 5] gets more and more attention. Test Recommender [4]

recommends test cases from the project which developers partici-

pate in. It is useful for inexperienced developers to learn writing

test cases, but the project should have many test cases. So it do not

work for a new project. TeSRS [5] gets test snippets from superior

crowdsourcing test scripts by program slicing, and recommends

test cases by method signature matching to assist test novice in

learning unit testing. Werner et al. [2] built a test case search engine

SENTRE which contains lots of test cases collected from the open

web. Compared with the work [4], their technique can recommend

test cases from different projects. SENTRE uses method signatures

and relaxation algorithm to recommend test cases. However, both

TeSRS and SENTRE will cause a drop in accuracy when facing the

change of the method name.

6 CONCLUSION

The paper proposes an online test recommender HomoTR. HomoTR

recommends the test cases from the method in our corpus to the

new method under test which shares homology with the former.

Besides, HomoTR provides testing results visualization to show the

testing details. The preliminary results show that HomoTR can help

developers to write basic test cases quickly and effectively.

6.1 Future work

The system still needs to be improved. Future work will mainly

focus on the semantic similarity measurement of method names,

similarity measurement of the code, and the automatic program slic-

ing technology. First, we just use word2vec-GoogleNews-vectors as

the word vector model and manually select the threshold of seman-

tic similarity. We may use other artificial intelligence technologies

to improve semantic similarity measurement of methods names,

and dynamically adjust the similarity threshold according to the

change of corpus to achieve a better matching effect. Second, even

though the existing code body similarity measurement by using

cosine distance seems to have good effects, we may compare it with

the code body similarity measurement by using abstract syntax

tree, control flow graph, or program dependency analysis to find

whether there is a better way. Third, the code corpus of HomoTR

is limited by the existing automatic slicing technology. We need

to check the test case slice manually to ensure its correctness. In

the future, we may put program dependencies into use to improve

slicing technology and build a better code corpus.

ACKNOWLEDGEMENTS

This work is supported partially by National Key R&D Program

of China (2018YFB1403400), National Natural Science Foundation

of China(61802171), and Fundamental Research Funds for the Cen-

tral Universities(14380021,14913413). Qin Liu is the corresponding

author.

REFERENCES
[1] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. 2015.

Does Automated Unit Test Generation Really Help Software Testers? A Controlled
Empirical Study. TOSEM 24, 4 (2015), 23:1–23:49.

[2] Werner Janjic and Colin Atkinson. 2013. Utilizing software reuse experience for
automated test recommendation. In Proceedings of the 8th ASTWorkshop. 100–106.

[3] Raphael Pham, Stephan Kiesling, Olga Liskin, Leif Singer, and Kurt Schneider.
2014. Enablers, Inhibitors, and Perceptions of Testing in Novice Software Teams.
In Proceedings of the 22th FSE. 30–40.

[4] Raphael Pham, Yauheni Stoliar, and Kurt Schneider. 2015. Automatically recom-
mending test code examples to inexperienced developers. In Proceedings of the
10th ESEC/FSE. 890–893.

1305

[5] Ruixiang Qian, Yuan Zhao, Duo Men, Yang Feng, Qingkai Shi, Yong Huang, and
Zhenyu Chen. 2020. Test recommendation system based on slicing coverage
filtering. In Proceedings of the 29th ISSTA. 573–576.

[6] Weisong Sun, Xingya Wang, Haoran Wu, Ding Duan, Zesong Sun, and Zhenyu
Chen. 2019. MAF: method-anchored test fragmentation for test code plagiarism

detection. In Proceedings of the 41th ICSE(SEET). 110–120.
[7] Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software Unit Test

Coverage and Adequacy. CSUR 29, 4 (1997), 366–427.

1306

