2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)

Early Detection of Smart Ponzi Scheme Contracts
Based on Behavior Forest Similarity

Weisong Sun, Guangyao Xu
Nanjing University
Nanjing, China
{weisongsun, xgy} @smail.nju.edu.cn

Abstract—Smart contracts empowered by blockchains often
manage digital assets in a distributed and decentralized envi-
ronment. People believe in smart contracts based on these new
technologies. Unfortunately, malicious smart contacts, such as
smart Ponzi scheme contracts (ponzitracts, for short), pose risk.
Existing techniques detect ponzitracts by analyzing the code as
well as a large amount of transaction data after time-consuming
deployment. However, a conclusion based on transaction data
can only be gotten after the damage has been caused. This
paper proposes PonziDetector, a ponzitract detection technique
that does not rely on transaction data. Behavior forest is intro-
duced into PonziDetector to capture dynamic behaviors of smart
contracts during interacting with them, which makes it possible
to early detect ponzitracts. The empirical study demonstrates
that PonziDetector, without transaction data, can improve the
precision and the recall of the state-of-the-art to 94.6% and
93.0% respectively. This means that PonziDetector can avoid
potential losses by early detecting ponzitracts.

Index Terms—Smart contract, Smart Ponzi scheme, Behavior
tree, Behavior forest, Ponzitract detection

I. INTRODUCTION

The advent of Bitcoin makes it possible for anonymous
participants to exchange value securely without the interme-
diation of trusted authorities [1]. The blockchain technology
behind in Bitcoin enables decentralized financial activities
and has become a hotspot in both academia and industry
[2], [3]. After Bitcoin, Ethereum [4] ushered in the second-
generation blockchain [5] that supports the execution of smart
contracts. To make it possible, Ethereum implements Ethereum
Virtual Machine (EVM) which provides a smart contract
execution environment and defines a contract-oriented high-
level scripting language called Solidity [6] to unambiguously
describe smart contracts.

Smart contracts are self-executing programs with the terms
of the agreement among stakeholders. Since a smart contract
enables reliable transactions between mutually distrusting par-
ticipants [7], it has become widely used for a broad spectrum
of financial applications [8]. Unfortunately, malicious financial
applications emerged to exploit technical innovations and
people’s trust in smart contracts. Among which is blockchain
implementation of the notorious Ponzi scheme [9] — a classic
scam originated in the offline world at least 150 years ago.
A Ponzi scheme is a fraudulent investing and disguised as

* Zhenyu Chen is the corresponding author.

978-1-7281-8913-0/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS51102.2020.00047

Zijiang Yang
Western Michigan University
Kalamazoo, Michigan, United States
zijiang.yang@wmich.edu

297

Zhenyu Chen*
Shenzhen Research Institute of Nanjing University
Shenzhen, China
zychen@nju.edu.cn

promising a high rate of returns to investors. The Ponzi
scheme generates returns for early investors by acquiring new
investors. This is similar to a pyramid scheme in that both are
based on using new investors’ funds to pay the earlier backers.
Ponzi schemes eventually bottom out when the flood of new
investors dries up and there isn’t enough money to go around.
At that point, the schemes unravel.

A smart contract implementation of the Ponzi scheme is
called a ponzitract (smart Ponzi scheme contract) [9], [10].
Such implementation is very attractive because it inherits
the inherent properties of smart contracts and blockchains:
decentralized, anonymous and immutable. These properties are
the cornerstones of many legit financial applications. But at the
same time, they make smart Ponzi schemes more dangerous
than traditional Ponzi schemes:

o The initiator of ponzitracts can stay anonymous, which
apparently provides protection against incrimination of
the people who started the scheme.

The deployed ponzitracts are hard to modify and stop.
Once an investor participates there is no easy way out.
In order to avoid loss, the investor has to continually
invite new investors. This exactly matches the malicious
intention of the creators.

Decentralization gives investors the illusion that ponzi-
tracts are reliable and credible.

To the best of our knowledge, the first feasible detection
technique of ponzitracts is proposed by Weili et al. [7]. They
present a classification model trained with two kinds of fea-
tures (i.e., “Account” and “Opcode” features) extracted from
the transaction history data and operation codes (opcodes)
of smart contracts to detect ponzitracts. “Account” features,
such as Known rate (the proportion of receivers who have
invested before payment) and Balance (the balance of the
smart contract), are collected through analyzing the transaction
history data. So their technique relies partly on transaction
data which however are not available in the early days of
ponzitract deployment. It means detection based on transaction
data occurs only after the damage has been done. In the
absence of transaction data, the existing approach gives a much
less satisfactory result.

In this paper, we propose a novel ponzitracts detection
technique according to our speculation that an accurate model

of the opcodes will reveal the behavior of a smart contract
and thus identify whether it is a ponzitract. Based on the
hypothesis we have implemented PonziDetector that does not
rely on transaction data. Behavior trees built on the Ethereum
Testnet are introduced in PonziDetector to fully characterize
the dynamic behaviors of smart contracts. Specifically, at
first, PonziDetector employs the traditional testing techniques
to mining the complete behaviors (i.e., opcodes) of smart
contracts during interacting with them by using tests. We
regard the opcodes as the behaviors of the smart contract,
explained in detail in Section II-B. Secondly, these behaviors
are leveraged to build behavior graphs, and we further use
the pruning technology to eliminate the cyclic edges in that
to produce comparable behavior trees. Then, the adapted All
Path Tree Edit Distance (AP-TED) [11] algorithm is employed
to calculate the similarities among weighted behavior trees. A
behavior forest is constructed on all behavior trees in a smart
contract. Behavior forest similarity is introduced to analyze
the smart contact under detection. Finally, PonziDetector com-
bines with the threshold analysis to detect ponzitracts. Note
that the entire process does not rely on transaction data.

We utilize a publicly available smart contract dataset [7]
to evaluate our approach. The evaluation results show that
the behaviors mined by PonziDetector are more completely,
thereby can effectively improve the recall (increased by nearly
15%) of early detection of ponzitracts while maintaining
precision is no less than that of a previous study [7].

In summary, we make the following contributions:

e PonziDetector detects ponzitracts from the perspective of

the behavior described by the smart contracts themselves.
It does not rely on anything else except for the smart
contract itself and can detect the ponzitract that is just
deployed.

o The experiments are conducted on a public dataset !
and the experimental results show that PonziDetector
can apparently improve the performance of ponzitracts
detection, i.e., high precision and recall.

o We released all our experimental results and a behavior
forest database of known ponzitracts at the website > for
other researchers to conduct related research.

The rest of this paper is organized as follows. Section II
describes two basic concepts. The details of our methodology
are given in Section III. We introduce the experiment in detail
in Section IV. Threats to validity and related work are given
in Section V and Section VI respectively. The conclusion is
in Section VIIL.

II. BASIC CONCEPTS
In this section, we introduce two basic concepts on smart
Ponzi scheme and program behavior.
A. Smart Ponzi Scheme
For ease of comprehension, we use a practical example
to illustrate the smart Ponzi scheme. As shown in Fig.1,

libase.site/scamedb
2 github.com/wssun/PonziDetector

“StackyGame” 3 is a smart contract which implements the
Ponzi scheme. It declares a participant array used to records all
investors’ information (line sg). The function enter() is a core
carrier where the investment and Ponzi scheme occur (lines
S16 — S40). The msg.sender and msg.value are transaction
properties 4 used to record the address and investment amount
of the investor (lines so3 — So4). When the investment amount
of the new investor meets certain conditions (line s17), “Stack-
yGame” firstly collects some fees (lines so5 — s30). Then,
to encourage former investors to invite more new investors,
it also automatically send high rewards to former investors
(lines s35 — s3g) when the balance of the contract account
(i.g., balance declared at line sg) is sufficient (line s3;). The
number of rewards also depends on the former’s investment
amount (lines s3o — S34), and the higher the investment, the
higher the reward. Finally, the function collect Fees() which
can only be accessed by the owner of “StackyGame” makes
it easier to reap without spending a cent (lines s41 — S45).
Note that the former investors have income only based on
new investors falling into the scam and all of them can not
withdraw their investments by themselves. Obviously, it is a
classic smart Ponzi scheme.

B. Program Behavior

There are many studies on program behavior related to
program executions and operations [12]-[18]. A smart contract
is a special program running on EVM. With the guide of the
work [17], we employ opcodes to capture behaviors of the
smart contract. In Ethereum, the opcode is the mnemonic form
of EVM bytecode, and the type of operations corresponding to
opcodes is fixed [4]. For example, the opcode corresponding
to the bytecode ‘0x01’ is ‘ADD’, i.e., representing addition
operation. Therefore, the opcode is more readable while con-
taining all the information contained in the bytecode.

For easy to understand, we use a simple smart contract with
a loop instruction (i.e., while instruction), as shown in Fig.
2, to illustrate the smart contract behavior. After deploying
the smart contract “SimpleSC” into Ethereum Testnet, we can
interact with it by invoking the function “rewardPay()”. For
example, a testing input (amount = 3, balance = 4) can be
used to interact with it, and then we can collect opcodes shown
in Fig. 3-(a). Further, as shown in Fig. 3-(b), directed edges
are used to connect these opcodes to represent continuous
behaviors of the smart contract. To improve the efficiency
of analysis, the cyclic edge would be pruned to produce a
behavior tree, as shown in Fig. 3-(c). Formally, we define a
behavior tree as follows.

DEFINITION 1 (Behavior Tree BT): A behavior tree of a
function f in a smart contract is a labeled tree defined by

BT(f) =<wo,V,E > (1
e v is the entrance of f, as the root vertex of the tree;
3etherscan.io/address/0x8f13a1d43408b6434dd10e161361386£3952d665

4The msg variable is a special global variable that contains properties (e.g.,
msg.sender) which allow access to the blockchain.

298

s ntract StackyGame { enter() {

(msg.value > | ether) {

S5 | fun
S5 truct Participant {

s3 address etherAddress;
Sy uint amount;

S5 }

Sg Participant[] public participants;

S20 }

s; uint public payoutldx = (; sy, | participants.length += 1;

Sg uint public collectedFees; Sps :_Ea;ti_ci_palﬁs_[ia);]}t_hgrkaaress = msg.sender;
So uint public balance = (; Sy | | participants[idx].amount = msg.value;

sjo address public owner; Sys if (idx 1= 0) {

s modifier onlyowner {if (msg.sender == owner) _ } Sx6 collectedFees += msg.value * | / 20;

s;, | function Doubler() { Sy7 balance += msg.value;

owner = msg.sender;

sig | }else {
collectedFees +=
530 }
[function collectFees() onlyowner { _:
(collectedFees == 1) return; !
owner.send(collectedFees); |
collectedFees = (; Reap without i
1 N e

nction setOwner(address _owner) onlyowner {

v
&

owner = _owner;

payoutldx += |;

S39 }

Si0 |}

| [PUSHI

2 | pusHi

3 -

4 POP

5_| JUMPDEST

6 | _buet

7

8 ISZERO

9 | _push1

10 JUMPI

11 PUSHI1

12

13 JUMP

14 | JUMPDEST

i5 |__puet

16 o ~. / N

17 | 15ZERO TUMPDEST:1 (Crusai) (JumPDEST1) (Cpusan2_)
18 | PUSHL (DU‘;}I];“ (porr) (DU‘)LJZ)
1 | Jumer 3 v | T

20 | JUMPDEST 1 (‘+1]’;‘ (T) 2)
21 POP o Y (Cstor) TOMP2
2| ..

23 | stop

(a) Opcodes (b) Behavior Graph (c) Behavior Tree

Fig. 3: Building a behavior tree

o V is a non-empty finite set of vertices, in which each
vertex has two labels: opcode and execution times.
¢ ECV xV isa set of unlabeled undirected edges.

All directed edges of smart contract execution is simplified
as undirected edges in a tree. For each function, a behavior tree
is constructed. In practice, we only construct the behavior tree
for the function that is explicitly claimed in smart contract. In
Fig. 2-(a), four basic blocks ‘b1—b4’ are remarked: b; at line
S4, by at line ss, bs at line sg, and by at line s7. In particular, by
is the “entry block”, by the “exit block”. The Fig. 2-(b) shows
a control flow graph (CFG) [19] that consists of these four
blocks. Fig. 2-(b) and Fig. 3-(c) are compared to illustrate the
difference between two ways. BT not only contains the syntax
(logic structure) the program that CFG mainly focuses on but
also takes the semantics of the smart contract into account.
The state-of-art [7] experimental results show that opcodes
can be more critical and valuable for detecting ponzitracts.
These inspires us to introduce BT to detect ponzitracts.

msg.sender.send(msg.value);

uint idx = participants.length;

msg.value;

{ (balance > participants[payoutldx].amount *) {
uint transactionAmount =
* (participants[payoutIdx].amount
- participants[payoutldx].amount / ")

participants[payoutldx].etherAddress 1

.send(transactionAmount); 1

balance -= participants[payout!

s, |pragma solidity 70.4.25;
mtract SimpleSC {
on rewardPay (uint8 amount, uint8 balance) {

@

S5 me

s, balance = balance + amount; b,

S5 iile (amount < balance) { b,
S amount = amount + ; b
Sy } by

Rix].amount * 7;
Former
Investor

exit block

(b) A corresponding control flow graph

Fig. 2: A simple smart contract

III. METHODOLOGY

Our methodology PonziDetector, as shown in Fig. 4, has
the following parts: generating simulation data for transaction
properties, generating tests by fuzzing, constructing behavior
trees using tests, calculating behavior forest similarity and
detecting ponzitracts using behavior forest similarity. The solid
blue line (labeled ‘3’ in Fig. 4) indicates the deployment of
smart contracts, and the other solid black lines represent the
flow of various data.

A. Data Generation

Given a smart contract X, before interacting with it, we
firstly need to prepare data for transaction properties. The
property msg.sender is an address type and refers to the
sender of the message (current caller). In our Ethereum
Testnet, there are many simulated account addresses that can
be used as external callers of X, i.e., senders of the message.

For the property msg.value, it is a uint type and refers to
the number of wei sent with the message. Ether units consist
of wei, finney, szabo and ether, among which wei is the
minimum unit [6]. To dig out the complete smart contract
behavior as much as possible, it is necessary to generate rea-
sonable data for msg.value. We employ the seeding strategy
[20] to generate candidate data. Specifically, we firstly extract
numeric values along with ether units from code statements
related to msg.value. For example, the numeric 1 ether
would be extracted from the statement sy in Fig. 1. We
consider these seeds as boundaries. Further, with the guidance
of mutation operation from genetic algorithms [20], for each
boundary, we generate two new values (known as offsprings)
that less and larger than the boundary respectively through
two simplest mutation operators (i.e., + and —). For example,
given the boundary I ether, we firstly transfer it to minimum
unit (1 ether = 1 * 10'® wei); then automatically generate
two offsprings, e.g., 10'® & A. In practice, A usually set
as the minimum disturbance. In our case, the input space of

299

Test Generation

i o]
R C& (i !

Fuzzmg ABI Parser Adapted Cornpller T
S------IZZZZZD-IDZDIZZDIDZDIZDDIto- 1

Address Table

Data Generation

b=

\ Mutation Operator Seeds Extractor ,

msg.address

msg.value

/ Interaction Trigger

tests 1

A smart contract
under detection

O(BF(X),BF(Y)) > &

Y € PonziBF
larity I Ponzi Detection

@

ndino

CBF =CBF u{l}
Y € PonziBF

X is a ponzitract!

Prune BT

-

Fig. 4: Framework of PonziDetector

msg.value is uint thereby 1 is the minimum disturbance.
All seeds and offsprings are saved to a constant pool for
subsequent interaction with X.

B. Test Generation

Given a smart contract X, the Adapted Compiler module in-
tegrating multiple versions of the solc compiler is responsible
for compiling it. Some smart contracts specified the version
number of the compiler in the first line of code by using the
instruction “pragma solidity ***”, and “***” will be replaced
by the specific version number of solc compiler, such as the
first line s; in Fig. 2. The Adapted Compiler automated scans
the X’s source code statically to find the best matching version
of the solc compiler. If the target compiler version is not found,
the Adapted Compiler will try to compile it using multiple
versions of the compiler, from high to low versions until X
is compiled successfully.

The ABI Parser module analyzes and extracts all functions
information from the compilation results of X. For each func-
tion, the name and parameters of this function are extracted.
This module employs the fuzzing [21] technique and aims
at generating one set of candidate tests for each function
that requires inputs. Specifically, the test generation module
equipped with the tool ContractFuzzer [22] receipts types of
parameters as inputs and outputs some specific values against
specific types. ContractFuzzer [22] takes different strategies to
generate inputs for fixed-size inputs (e.g., uint) and non-fixed-
sized inputs (e.g., string). For example, in Fig. 2, the function
“rewardPay()” with two uint parameters, our generator may
generate tests like (amount = 3,balance = 4) for it.
Considering the expensive runtime cost of the execution of
test cases on smart contracts, our test generator creates 10 test
cases for each input. Finally, all tests are saved to test set T,
so that we can leverage them to interact with the more smart
contracts in the next step.

300

C. Behavior Forest Construction

DEFINITION 2 (Behavior Forest BJF): A behavior forest
of a smart contract X = {f1, fo, -+, fm} is defined by

BF(X) = UL BT (fi) ()

Algorithm 1 describes the construction process of behavior
forest for a given smart contact. The inputs are a smart
contract X with a set of functions {f;}, a test set T' = {t;}
generated by fuzzing and a set of simulated account address
A = {msg.addressy} from Ethereum Testnet. The output is
a behavior forest BF(X) with respect to T

Algorithm 1 Construction of BF

Imput: X ={f;}, T ={t;}, A= {msg.addressy};
Output: BT
Set BF = (;
Set V = simulate MV (X);
var comResult = compile(X);
var Addr = deploy(comResult);
var funcList = ABIParser(comResult);
for each function f; € X do

var BT (f;) = NULL;

for each msg.value v,, € V do

for each test t; € T' do

10: op = interact(xAddr, msg.addressy, vm, fi, t;);
var BT = build BT (op);

Rl A A ol e

—_
—_

12: BT (f;) = mergeAndPrune(BT (f;), BT);
13: end for

14: BF(X)=BF(X)U{BT(X, i)}

15: end for

16: end for

17: output BF(X);

For a smart contract X, it is firstly statically analyzed to pro-
duce simulation data for the transaction property msg.value
(line 2). Then, it is compiled and deployed by invoking
the interfaces of compile() and deploy() respectively (lines

3-4). Then, the function information is extracted from the
compilation results and the opcodes are produced for each
function f; by invoking the interface interact() (line 10). In
essence, an interaction is a transaction. The elements required
to complete a transaction include: address of X xAddr,
address of the transaction initiator msg.addressy, transaction
amount of msg.value v,,, the function for executing the
transaction f; and its parameters ¢;. The interface build BT ()
is used to generate a partial behavior tree (line 11). These
partial behavior trees are merged and pruned to produce
a behavior tree for each function (line 12). The merging
operation is responsible for merging partial behavior trees
generated under different v,,, and ¢; into a complete behavior
tree or behavior graph. (as shown in Fig. 3-(b)). The pruning
operation is responsible for eliminating the cyclic edge so that
producing the easy-to-analyze behavior tree (as shown in Fig.
3-(c)).Finally, for each X, a behavior forest BF(X) is the
output (line 17).

Behavior Tree Filtering: Obviously, some functions in a
ponzitract present normal program behavior. Hence, we need
to filter these normal behavior trees in a ponzitract. Given a
ponzitract Y'*’ and a non-Ponzi smart contract YV, Algorithm
1 is used to generate two sets of behavior trees, BF(Y ') and
BF (YY), respectively. In order to improve the performance
of ponzitract detection, BF (YY) is used to filter BF(YT).
That is, we use BF(YF) — BF(Y™) for ponzitract detection
in practice.

D. Behavior Forest Similarity Measurement

In order to introduce behavior forest similarity, we first
define behavior tree similarity based on the tree edit dis-
tance [23], i.e., D(BT(f),BT(f’)). The edit distance is the
minimal-cost sequence of vertex edit operations that trans-
forms one tree into another via insertion, deletion and rela-
beling operations. An efficient method AP-TED [11] is used
for tree edit distance calculation in this paper. Please note that
each vertex in a behavior tree has two labels: specific opcode
and its execution times. For example, in Fig. 3-(c), there is a
vertex with the label ‘DUP1:3’ where 3 is execution times of
the opcode ‘DUPI1’. That is one label is counted into 0.5 for
relabeling in our methodology.

Let |BT(f)| be the number of vertices in BT (f). It is
not difficult to see that D(BT(f),BT(f’)) is not larger
than max{|BT (f)|, |BT(f")|}. Intuitively, two trees are more
similar if the tree edit distance is lower. In this paper, we use
d(BT(f),BT(f")) to represent the behavior tree similarity
and ¢ € [0,1] is calculated by the following equation:

D(BT(f), BT (1))
max{|BT (f)|, |BT(f)|}

Given two smart contracts X = {f1, fa,---, fm} and Y =
{f1, f5 -+, f1}, the behavior forests can be constructed from
Algorithm 1 with filtering and denoted by BF (X)= {BT (f1),
BT (f2), -++» BT (fm)}, BF(Y)= {BT(f1), BT(f3), -~
BT (f])}, respectively. The similarity of two sets is normally
defined by the maximum similarity between two elements in

G(BT(f), BT (")) =1- (©)

301

the two sets. In order to balance each behavior tree BT (f;) in
a forest, a' weight w; .: % is introduced. Formally,
the behavior forest similarity is defined as follows.

DEFINITION 3 (Behavior Forest Similarity): Given two
behavior forests BF(X) and BF(Y), the behavior forest
similarity & is defined as,

m

O(BF(X), BF(Y)) = Zw X jg%§]{¢(57(fi)737(f§)}

“

It is not difficult to see that ®(BF(X), BF(Y)) € [0, 1] for
any X and Y, because each ¢ € [0,1] and the result is the
average. Please note that ®(BF (X), BF(Y)) is asymmetrical,
ie, ®(BF(X), BF(Y)) # ®BF(Y), BF(X)) in some cases.
In our methodology, X is a smart contract under detection and
Y is a known ponzitract. The asymmetric can work well on
the one-way comparison in ponzitract detection.

Ponzitract Detection: Given a smart contract X under
detection, Algorithm 1 is used to construct a behavior forest
BF(X). Please note that a large number of known ponzitracts
and non-Ponzi smart contracts have been collected. All the
behavior forests will be constructed in advance to generate a
PonziBF database. For each ponzitract Y € PonziBF, we
calculate the behavior forest similarity between X and Y, i.e.,
O(BF(X),BF(Y)). If ®(BF(X),BF(Y)) > ¢, X will be
classified as a ponzitract, in which § is a threshold, which will
be discussed in Section 4. All Y with ®(BF(X),BF(Y)) > ¢
will also be collected for manually inspecting X in further.

IV. EVALUATION

In this section, we present the details of our experiments
as well as the results analysis. To evaluate the performance
of PonziDetector, we applied it to a public smart contracts
dataset and investigated the following research questions:

« RQ1: How effective is PonziDetector for ponzitract de-
tection?

« RQ2: How efficient is PonziDetector for ponzitract de-
tection?

« RQ3: What prompts PonziDetector to employ the be-
havior forest similarity (behavioral similarity for short)
instead of common textual similarity to detect ponzitract?

A. Experimental Setup

Experimental Environment. All the experiments were
performed on 64-bits Ubuntu 16.04.4 desktop with Intel i5-
3470 CPU and 8GB of memory. We setup a private blockchain
as the Ethereum Testnet with the geth client version 1.8.21.
We used web3.js in our node.js program to interact with the
geth client and used JSON-RPC to gain the results of runtime
opcodes. In order to deploy smart contracts with different
versions, we built a solc.js compiler with binaries of soljson
from vO0.1.1-nightly to v0.6.0-nightly.

Experimental Design. To answer our three research ques-
tions, we designed the following two experiments:

The first experiment is to evaluate the effectiveness and
efficiency of PonziDetector by comparing the precision and

recall of ponzitract detection achieved by PonziDetector with
a previous work [7] under the same dataset of smart contracts.
The second experiment is to compare the textual and behav-
ioral similarity among smart contracts, aiming at proving that,
in the application scenario of ponzitract detection, it is more
accurate to use the behavioral similarity rather than the textual
similarity to represent the similarity among smart contracts. In
this comparison, we used Difflib [24] to compare two smart
contracts’ codes, then calculated the textual similarity.

B. Experimental Subjects and Evaluation Metrics

In this paper, we utilized a public dataset of smart contracts
released by [7] as our experimental subjects, and downloaded
3,972 smart contracts with verified source code from ibase.site,
of which 132 were labeled as ponzitracts. 129 ponzitracts were
deployed successfully. Three ponzitracts deployed failed for
two reasons: (1) two of them failed due to a wrong compilation
of the source code; (2) the remaining one prompted “This
contract does not implement all functions and thus cannot be
created.”. Then, we tried to interact with 129 ponzitracts, one
of which > can’t be interacted with because its code specifies
two specific addresses that do not exist in our Ethereum
Testnet. In this study, we temporarily ignore this ponzitract,
and will explore this issue further in future research.

We randomly split 128 ponzitracts into two groups, one
group containing 96 ponzitracts is used to build a PonziBF
database, and the remaining 32 ponzitracts is used to verify
the performance of PonziDetector (corresponding to the SC
column in Table I). Furthermore, we randomly selected 192
out from 3,840 non-Ponzi smart contracts, and all of them
can be successfully deployed and interacted with. 96 of 192
non-Ponzi smart contracts were used to filter behavior trees
(i.e., normal program behaviors) that are also appearing in
the behavior forest database of non-Ponzi smart contracts
from PonziBF (corresponding to the G1’s SCY column
in Table I). The remaining 96 non-Ponzi smart contracts
were randomly divided into three groups. All groups were
combined with 32 ponzitracts respectively to get three test
datasets (corresponding to G2, G3, G4 in Table I). The ratio of
ponzitracts to non-Ponzi smart contracts in each group is 1:1.
It should be noted that we used the same 32 ponzitracts in G2,
G3, and G4, that is, among which ponzitracts are identical, but
the other 32 non-Ponzi smart contracts are entirely different.
In summary, four groups of datasets as shown in Table I are
used in our experiments.

To evaluate the performances of PonziDetector, three mea-
sure metrics: precision (P = TP/(TP + FP)), recall (R =
TP/(TP+ FN)), and F-measure (F} = 2x PxR/(P+ R))
are employed. The T'P and F'P values are the number of
ponzitracts and non-Ponzi smart contracts among the detected
results respectively; and the T'N and F'N values are the
number of non-Ponzi smart contracts and ponzitracts among
the rest results respectively. The precision corresponds to the
proportion of ponzitracts in all smart contracts detected by

Setherscan.io/address/0x723dff0e27cc38b805565¢05dfdbdcb721654d7

TABLE I: Division of experimental subjects

Groups | SCT | SCN
Gl 96 96
G2 32 32
G3 32 32
G4 32 32

Total 128 192

the threshold, which indicates how useful the detected results
are. The recall corresponds to the proportion of ponzitracts
detected by the threshold in all ponzitracts labeled manually,
which indicates how complete the detected results are. Since
both precision and recall are important in ponzitract detection,
we further use the F’-measure to evaluate PonziDetector. The
Fj-measure is the harmonic average of the precision and
recall, where an F -measure reaches its best value at 1 (perfect
precision and recall) and worst at 0.

C. Experimental Results and Analysis

This part of the experiment study is mainly used to answer
RQ1 and RQ2.

PonziDetector employs threshold analysis to classify smart
contracts. When the behavior forest similarity between the
smart contract under detection X and the ponzitract Y is
greater than a given threshold ¢ (i.e., ®(BF(X), BF(Y)) >
0), we classify X as the ponzitract. Therefore, the performance
of the PonziDetector is affected by the choice of threshold. To
find an optimal threshold or a suitable threshold interval, we
experimented with several different thresholds. Specifically,
the initial threshold was set to 0.05, and each time the increase
was 0.05 to the end of 1.00, a total of 20 experiments were
performed.

Table II lists the experimental results of PonziDetector
on test datasets G2, G3 and G4 with different thresholds.
Due to the limited space, for the experimental results on the
PonziBF database after filtering, we only list its F}-measure
(corresponding to the F| column in the G2, G3, and G4
columns) and average of each metric results (corresponding to
the P’, R’ and F} columns in “Average” column) to represent
the performance of PonziDetector, without showing precision
and recall details. When the threshold is 0.75, PonziDetector
has achieved a precision of 1.0 on every test dataset, so we
didn’t list the experimental data after 0.75.

1) PonziDetector’s Effectiveness: In order to better illus-
trate the effectiveness of PonziDetector, we directly compared
the experimental results of PonziDetector with that shown in
the paper [7] reported by Weili et al. The reason for comparing
with them are: (1) the smart contract dataset we used is public
by them; (2) we all tried to solve the same problem, that is,
ponzitract detection; and (3) the opcodes of smart contracts
were used in both two methodology. The best performance
of their methodology presented in their paper as follows: the
precision is 0.94, the recall is 0.81, and the F}-measure is
0.86. Compared with their methodology, as shown in Table II,

302

TABLE II:

The experimental results on test datasets G2, G3, and G4

G2 G3 G4 Average
é P R I3 F{ P R I Fy P R I F P’ R F{
0.05 | 0.525 | 0.969 | 0.681 | 0.681 | 0.585 | 0.969 | 0.729 | 0.729 | 0.544 | 0.969 | 0.697 | 0.697 | 0.551 | 0.969 | 0.702
0.10 | 0.525 | 0.969 | 0.681 | 0.681 | 0.585 | 0.969 | 0.729 | 0.729 | 0.544 | 0.969 | 0.697 | 0.697 | 0.551 | 0.969 | 0.702
0.15 | 0.526 | 0.938 | 0.674 | 0.674 | 0.577 | 0.938 | 0.714 | 0.714 | 0.577 | 0.938 | 0.714 | 0.714 | 0.560 | 0.938 | 0.701
0.20 | 0.526 | 0.938 | 0.674 | 0.674 | 0.600 | 0.938 | 0.732 | 0.732 | 0.588 | 0.938 | 0.723 | 0.723 | 0.564 | 0.938 | 0.704
0.25 | 0.588 | 0.938 | 0.723 | 0.723 | 0.652 | 0.938 | 0.769 | 0.769 | 0.625 | 0.938 | 0.750 | 0.750 | 0.622 | 0.938 | 0.747
0.30 | 0.625 | 0.938 | 0.750 | 0.750 | 0.714 | 0.938 | 0.811 | 0.811 | 0.682 | 0.938 | 0.789 | 0.789 | 0.674 | 0.938 | 0.783
0.35 | 0.698 | 0.938 | 0.800 | 0.800 | 0.769 | 0.938 | 0.845 | 0.845 | 0.714 | 0.938 | 0.811 | 0.811 | 0.727 | 0.938 | 0.819
0.40 | 0.789 | 0.938 | 0.857 | 0.870 | 0.811 | 0.938 | 0.870 | 0.870 | 0.732 | 0.938 | 0.822 | 0.822 | 0.784 | 0.938 | 0.854
0.45 | 0.857 | 0.938 | 0.896 | 0.896 | 0.882 | 0.938 | 0.909 | 0.909 | 0.811 | 0.938 | 0.870 | 0.870 | 0.850 | 0.938 | 0.891
0.50 | 0.938 | 0.938 | 0.938 | 0.938 | 0.909 | 0.938 | 0.923 | 0.923 | 0.909 | 0.938 | 0.923 | 0.923 | 0.919 | 0.938 | 0.928
0.55 | 0.968 | 0.938 | 0.952 | 0.952 | 0.968 | 0.938 | 0.952 | 0.952 | 0.938 | 0.938 | 0.938 | 0.938 | 0.958 | 0.938 | 0.947
0.60 | 0.967 | 0.906 | 0.935 | 0.935 | 0.967 | 0.906 | 0.935 | 0.935 | 0.967 | 0.906 | 0.935 | 0.935 | 0.967 | 0.906 | 0.935
0.65 | 0.966 | 0.875 | 0.918 | 0.900 | 0.966 | 0.875 | 0.918 | 0.900 | 1.000 | 0.875 | 0.933 | 0.915 | 0.976 | 0.844 | 0.905
0.70 | 0.963 | 0.813 | 0.881 | 0.862 | 1.000 | 0.813 | 0.897 | 0.877 | 1.000 | 0.813 | 0.897 | 0.877 | 0.987 | 0.781 | 0.872
0.75 | 1.000 | 0.813 | 0.897 | 0.877 | 1.000 | 0.813 | 0.897 | 0.877 | 1.000 | 0.813 | 0.897 | 0.877 | 1.000 | 0.781 | 0.877

PonziDetector achieves the best performance on the G2, G3,
G4 test datasets when the threshold 6 = 0.55. At this time,
except for the precision on the G4 is less than 0.94, the values
of other metrics are higher than their methodology.

In addition, if only the “Opcode” features are considered,
regardless of the “Account” features, the performance of their
methodology is as follows: the precision is 0.90, the recall
is 0.80, the Fj-measure is 0.84. It is worth noting that there
may not be enough “Account” features available in the early
stages of a ponzitract release. Fortunately, PonziDetector does
not rely on the “Account” features, so it is not limited by how
long the contract has been deployed on Ethereum blockchain
and can be used for early detection of ponzitracts.

We suspect that some behavior trees in PonziBF may also
exist in some non-Ponzi smart contracts. However, the exis-
tence of them may not only reduce the accuracy of ponzitract
detection but also reduce the detection efficiency. To improve
the effectiveness and efficiency of PonziDetector, we tried to
filter the database PonziBF. It is well known that a decrease
in recall usually accompanies the increase in precision. In our
scenario, when the threshold is 0.55, PonziDetector achieves
the best performance, and the corresponding F) value is the
largest. From Fig. 5 (a) - (¢), combining with the detailed data
in Table II, we can find two phenomena :

(1) when ¢ € [0.00,0.55), the F; and F} value will increase
as the ¢ increases, and in the case of the same 4, the FY value
is greater than or equal to the value Fy (i.e., F| >= F});

(2) when 6 € (0.55,1.00], the F; and Fy value will decrease
as the § decreases, and in the case of the same 4, the F} value
is less than or equal to the value Fy (ie., F| <= F).

The reason behind these phenomena is that in the case of the
same J, the number of results searched after filtering may be
less than before filtering. And when § € [0.00, 0.55), the num-
ber of F'P is reduced faster than T'P, while ¢ € (0.55,1.00]

is the reverse. In summary, the filter improves the accuracy of
the behavioral similarity measure, making F; converge faster,
which improves the effectiveness of PonziDetector.

To make PonziDetector gain better ability of generalization,
we do not intend to set the similarity threshold § to a fixed
value of 0.55. Instead, we hope to find a value interval for
the threshold (I'VI) in which PonziDetector can perform
satisfactorily. To find such an interval, we first need to find
a satisfactory value interval for three metrics (i.e., precision,
recall, and Fj-measure). In other words, PonziDetector’s per-
formance would be satisfactory if the values of three metrics
fall within this interval. The value interval of the threshold
corresponding to the value interval of metrics (MVI) is
which we expect to find. As we have described before, we
consider that precision and recall are equally crucial for
ponzitract detection. Fj-measure is the harmonic average of
the precision and recall. Therefore, we set the lower bound
of the value interval of metrics to the maximum between
the precision and the recall. In summary, we set the upper
and lower bounds of the value interval of metrics to 0.90
and 1.00, respectively, i.e., MVI € [0.90,1.00]. The value
0.90 is inspired by the maximum precision and recall that
can be achieved by the methodology proposed by Weili et
al. [7] in the absence of “Account” features. Fig. 6 shows
the performance of PonziDetector (i.e., three metrics) with
different thresholds. In Fig. 6, we can see a black division line
(corresponding to the value of three metrics are 0.9), and the
interval MV I corresponds the part above the division line. We
can clearly see that the nodes (circles, diamonds, and triangles
nodes) used to represent the values of the three metrics appear
three times at the same time above the division line, and the
corresponding thresholds are 0.5, 0.55, and 0.60, respectively.
Therefore, we conclude that the upper and lower bounds of
the value of the threshold are 0.5 and 0.6, respectively, i.e.,

303

«O=Before filtering == After filtering <O=Before filtering == After filtering <O-Before filtering == After filtering
e S ot
e) / . . P mammA S
b AR e S S N
~ r } R
. / \ pou e \\ ot A\
/ T Sl N A >
= / Zon 0T \ Lon ™
Oty
OO ot S e O g 0T o o e e
(a) Filter on G2 (b) Filter on G3 (c) Filter on G

Fig. 5: Comparison of the value of F}-measure value before and after filtering the database PonziBF

TVT € [0.50,0.60].

Recall =O=F1-Measure ==DivisionLine

i

@—O—M

=/v=Precision
1.000

0.900

0.800

0.700

0.600

Performance

0.500
0.400
0.300

0.05 0.10 0.15 020 0.25 0.30 0.35 040 045 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Threshold

Fig. 6: The performance of PonziDetector with different
thresholds

Moreover, to objectively evaluate the effectiveness of
PonziDetector in our limited ponzitract set, we also adopted
cross-validation. Cross-validation is any of various similar
model validation techniques for assessing how the results of a
statistical analysis will generalize to an independent data set
[25]. Specifically, we use k-fold cross-validation to evaluate
the effectiveness of PonziDetector. For experimental research,
30 subjects per group are often cited as the minimum [26].
30 is a rule of thumb. Like all rules of thumb it only says
something about reasonableness. Thus, to ensure statistical
significance, we set the value of k to 4 so that the sample
size of ponzitracts is 32 > 30 in each group. Table III shows
the experimental results of 4-fold cross-validation.

In Table III, R1, R2, R3 and R4 are the four groups of
results for 4-fold cross-validation, respectively. We can get
the following observations: (1) PonziDetector still achieved the
best performance at § = 0.55; (2) When § € [0.55,1.00], the
value of all three evaluation metrics (i.e., precision, recall, F-
measure) are larger than 0.9 (the T'V I discussed on the above).
Thus, based on these observations, we can conclude that
PonziDetector is superior to the state-of-the-art [7]. In addition,
the value (including T'V'I) of threshold our recommended is
reasonable and stable so that we can envision PongziDetector
to achieve better generalization ability in the future.

2) PonziDetector’s Efficiency: During the evaluation of
PonziDetector, most of the time was spent on building a
PonziBF database. This is a fundamental and essential work
for our approach, but it is a preparation work that does not take

up the new smart contract detection time. When detecting a
new smart contract X, the time-consuming processes include
(1) interaction with X, and (2) searching for the candidate
behavior forest set (CBF) in PonziBF.

In the process (1), in order to improve the interaction
efficiency, we set the number of tests to 10 instead of more, to
limit the times of interactions with the smart contract deployed
on Ethereum Testnet.

In the process (2), PonziDetector tries to search for the
candidate ponzitract set CBF that used to assist in judging
whether X is a ponzitract. To improve search efficiency, we try
to filter some behavior trees from PonziBF that are irrelevant
to judge whether X is a ponzitract.

Table IV shows the comparison of experimental results
before and after filtering PonziBF. Although we only filtered
40 irrelevant behavior trees from PonziBF, the efficiency
of search for C'BF is still significantly improved (increased
by nearly 25%). By optimizing the above two processes,
PonziDetector takes an average of 4.8 seconds to detect X.

D. Textual and Behavioral Similarity

This part of the experimental study is mainly used to answer
RQ3. We have further studied the textual similarity of smart
contracts to prove that it is more accurate and reliable for
PonziDetector to detect ponzitracts from the perspective of
behavioral similarity.

We use Difflib [24], a baseline tool for textual similarity
measure, to compare smart contracts, and calculate the textual
similarity with the following equations:

min(|sa|*9C, |D(s1, s2)[*99)
(52| EOC

&)

simp(s1,82) =1—

(6)

Difflib relies on the class “difflib.Differ” to compare se-
quences of lines of text and produce human-readable dif-
ferences or deltas [24]. It has been used in code similarity
analysis [27], [28]. Referring to these papers, given two
smart contracts s; and s, their textual similarity is calculated
by Equation (5), where |s1|*9¢ and |s3|*©¢ correspond
to the number of lines of code (LOC) in s; and sq re-
spectively. D(s1,s2) represents the output of Difflib. Note

sim(s1, s2) = mazx{simp(sy, sa2), simp(se,s1)}

304

TABLE III: The experimental results of 4-fold cross-validation

R1 R2 R3 R4 Average
4 P R I3 P R Py P R I3 P R Fy P R Py
0.50 | 0.919 | 0.938 | 0.928 | 0.923 | 0.875 | 0.898 | 0.893 | 0.938 | 0.941 | 0.921 | 0.969 | 0.944 | 0.914 | 0.930 | 0.921
0.55 | 0.958 | 0.938 | 0.947 | 0.945 | 0.875 | 0.908 | 0.931 | 0.938 | 0.933 | 0.949 | 0.969 | 0.959 | 0.946 | 0.930 | 0.937
0.60 | 0.967 | 0.906 | 0.935 | 0.955 | 0.875 | 0.913 | 0.947 | 0.906 | 0.926 | 0.958 | 0.938 | 0.947 | 0.956 | 0.906 | 0.930
TABLE IV: Comparison of PonziDetector’s efficiency before and after filtering the database PonziBF

| Count_PonziBF Search_Time_G2 (s)

Search_Time_G3 (s)

Search_Time_G4 (s) Search_Time_Average (s)

Before filtering 318 506.30 403.26 313.01 407.52

After filtering 295 342.84 330.15 244.42 305.80

Reduce 23 163.46 73.11 68.59 101.72
Improvement — 32% 18% 22% 25%

that simp(sy, s2) is sensitive to parameter order, and thus
simp(s1,$2) # simp(sa,s1) in most cases. As Equation
(6) shows, we regard the maximum in simp(s1,s2) and
simp(sa, s1) as the similarity between two smart contracts.

>40 & <=50 >80 & <=90
1% 3%
>10 & <=p0 70 & <=R0

1%

>0 & <=1
1%

1%
>70 & <=80
2% >60 &if: 0

(a) Textual Similarity Distribution

(b) Behavioral Similarity Distribution

Fig. 7: Comparison of similarity distribution

Fig. 7 shows the distribution of the textual and behavioral
similarity on different similarity intervals. Among 128 ponzi-
tracts, we found that 95% (i.e., 37% + 58% in Fig. 7-(b)) of
smart contract pairs have a behavioral similarity higher than
90%, while the textual similarity of the 91% smart contract
pairs is O (as shown in Fig. 7-(a)). Undoubtedly, it would
be more accurate for us to measure the similarity of smart
contracts by behavior rather than text.

We counted LOC for 128 ponzitracts and found that LOC
is mainly between 20 and 80, accounting for about 70%.
After a statistic of LOC distribution, we further tried to
figure out how the textual and behavioral similarity between
smart contracts would change as the LOC' gap increases,
and experimental results shown in Table V and Fig. 8. In
Table V, AV Erg and AV Epg represent the average value

of textual and behavioral similarity values respectively; SC'P
represents the number of smart contract pairs; AVEY and
SCPY are the unified processing of the value intervals of
AV Epg (calculation formula: AVEY s = AV Epg/10) and
SC'P respectively for presentation and comparison in Fig. 8.
The formulas for calculating and SCPY are as follows:

SCP /100 {LOC Gap < 21}
scpY ={ SCP /100 @)
1575 {LOC Gap > 20}

where IS refers to the interval size of the LOC' gap, and the
value of 1.5 is 5 or 20 when the LOC' gap is less than 20 or
more than 20.

TABLE V: The effect of LOC gap on similarity

LOC Gap AVErs% | AVEgs% | AVEZ | SCP | SCPY
0-5 19.9 99.6 9.96 1201 12.01
6-10 10.40 99.3 9.93 947 9.47
11-15 6.00 99.1 991 581 5.81
16-20 2.10 98.6 9.86 416 4.16

21-40 0.10 98.6 9.86 1156 2.89
41-60 0.10 953 9.53 651 1.63
61-80 0.00 97.3 9.73 829 2.07
81-100 0.00 96.7 9.67 475 1.19
101-120 0.00 98.3 9.83 590 1.48
121-140 0.00 97.3 9.73 465 1.16
141-160 0.00 97.7 9.77 245 0.61
161-180 0.00 98.3 9.83 50 0.13
181-200 0.00 985 9.85 17 0.04
> 200 0.00 959 9.59 505 0.06
Total & AVE 2.76 97.9 9.79 8128 —

From Fig. 8, we can find, obviously, with the increasing
of the LOC gap, in addition to a significant decrease in
the number of smart contract pairs (SC'P, corresponding to
rectangles), the average textual similarity of smart contracts
drops rapidly (AV Epg, corresponding to a curve connected
by circles), while change of the average behavioral similarity
of them is slight (AV EY g corresponding to a curve connected
by triangles). Therefore, based on the above experiments, we
can conclude that it is more accurate and independent of smart
contract size (i.e., the LOC) to use the behavioral similarity

305

< AVErs e AVEUps W scPv

20.00

15.00

10.00

5.00

0.00

21-40 61-80 101-120 141-160 181-200
LOC Gap Distributions

0-5 11-156

Fig. 8: The changing trend of the number of smart contract
pairs and similarity as the LOC gap increases

of smart contracts rather than textual similarity to represent
the similarity between them.

V. THREATS TO VALIDATION
A. Internal validity

The behaviors extracted by PonziDetector may be incom-
plete. For example, some branches may require special inputs
to achieve. Since each interaction with the smart contract takes
a long time, the more interactions, the more complete the
mining behavior will be, and of course the longer it takes.
So we took a compromise and generated 10 tests for each
smart contract to dig out the full smart contract behavior as
much as possible. We will further improve and optimize the
extraction of behaviors by combining mature test technologies
[29], [30], in the future.

We use the similarity threshold to assist in judging whether a
smart contract under detection is a ponzitract. Thus, the choice
of threshold affects PonziDetector’s performance. In order to
reduce the bias of threshold J, referencing the paper [28], we
tried different ¢ (J increased from O to 1 by 0.05 each time) for
many experiments. And we also employ k-fold cross-validation
to ensure that we got a reasonable threshold.

B. External validity

Our experiments were conducted on a public dataset that
contained smart contracts that were significantly different from
the smart contracts we recently observed on Ethereum. Most
of the smart contracts observed today are based on specific
Ethereum standards (e.g, ERC-20 [31] and ERC-721 [32]),
and although the structure is clear, the logic is more complex,
which may affect the generalization of our approach. In the
future, we are going to experiment on more new datasets.

VI. RELATED WORK

Smart Ponzi Schemes Detection are mainly focused on the
two widely used blockchain platforms, i.e., Bitcoin [33], [34]
and Ethereum [7], [9], [35]. Massimo et al. [34] and Weili et al.
[7] employed a specific method, i.e., data mining and machine
learning techniques, to detect Ponzi schemes on Bitcoin and

Ethereum respectively. The research most relevant to us is the
study by Weili et al. [7]. Both of us think opcodes as one
of the critical features for detecting ponzitracts that appear on
Ethereum. The opcodes analyzed by [7] are extracted from the
compilation results of smart contracts while we collected that
by interacting with smart contracts. The dynamically collected
opcodes can more accurately describe the complete running-
time behaviors of smart contracts. Besides, they only statistic
the frequency of opcodes appearing in compilation result but
we utilize them to full characterize the semantic information
of smart contracts. Because of these, we succeeded in getting
rid of the control of trading data.

Behavioral Similarity usually refers to semantic similarity
in existing researches [18], [36], [37]. Sihan et al. [18] regard
the proportion of inputs producing the same output on both
programs over the specific input domain as the behavioral
similarity between two programs. They have applied code
behavior similarity measure to promote software engineering
education. Coen De et al. [37] aim at using a single ab-
stract pattern description to detect multiple concrete pattern
instances, in order to achieve this, they take information about
a program’s run-time behavior into account. By incorporating a
similarity-based unification algorithm like the one in LikeLog
[38], they can overcome failures in the refutation process
caused by a syntactic difference between parse tree nodes
which might actually evaluate to overlapping sets of objects at
run-time and are also able to evaluate the confidence our plat-
form has in the discovered software pattern instances. In [36],
it divides the types of program similarity into syntactic (also
called representational) and semantic or behavioral similarity
two categories and details several potential ideas for measuring
semantic similarity, such as Input-Output Relation Similarity
idea for behavioral similarity measure. After learning these
papers, we find, obviously, that utilize behavioral similarity
to represent program similarity is more accurate, which also
leads us to believe that employ behavioral similarity to detect
ponzitracts is feasible.

Malware Detection is a subject of extensive research
[39], [40]. Malware authors use obfuscation techniques [41]
like dead code insertion, register reassignment, subroutine
reordering, instruction substitution, code transposition, and
code integration to evade detection by traditional defenses like
firewalls, antivirus and gateways which typically use signature
based techniques and are unable to detect the previously
unseen malicious executables [39]. The initiator of the ponzi-
tract conceal malicious scam behavior by implementing Ponzi
schemes as smart contracts. However, from the perspective of
software program property, the ponzitract is also a type of
malware. In [17], the authors construct the opcode running
tree to simulate the dynamic execution of a program and use
the n-gram method [42] to extract executables features to train
a classifier to detect malware. The approach of this study is
the closest to ours, and we all think the opcode can represent
the behavior of the program or smart contract. But there are
two clear distinctions: (1) The opcodes our approach used are
dynamically collected during interacting with smart contracts

306

while that in [17] are extracted from executables; (2) Our
approach uses complete opcode behaviors to support detection
while that used in [17] is partial (i.e, extracting partial features
from the opcode running tree). Therefore, even if we can’t
directly compare with their methods, we believe that, to a
certain extent, our approach should be more accurate.

VII. CONCLUSION

Smart contracts running on Ethereum have become widely
used for a broad spectrum of financial applications. Unfortu-
nately, the advantages of blockchain-managed financial assets
have also been exploited by criminals, and fraudulent means
such as ponzitracts have appeared. To solve this problem
in the early days of ponzitract deployment, We developed
PonziDetector to supporting detect ponzitracts. More impor-
tantly, PonziDetector does not rely on a large number of
practical transaction data which indicated that many investors
had been deceived. Thus, PonziDetector can detect ponzitracts
early. Our experimental results have proven the effectiveness
and efficiency of PonziDetector. We are setting up a smart
Ponzi schemes detection platform for users to easily detect
deployed smart contracts early and prevent to be deceived.

We observed the latest smart contracts on the Etherscan
platform [43] that are significantly different from that released
by [7]. Most of today’s smart contracts are based on new
Ethereum standards (e.g, ERC-20 [31] and ERC-721 [32]).
In the future, we are going to further validate and improve
PonziDetector against the latest smart contracts. Also, more
applicable testing techniques, such as symbolic execution
[29], will be explored to support PonziDetector mining more
complete behaviors to further improving the performance of
ponzitract detection.

ACKNOWLEDGMENT

This work is supported partially by National Key R&D Pro-
gram of China (2018YFB1403400), National Natural Science
Foundation of China(61772014), and Fundamental Research
Funds for the Central Universities(14380021).

REFERENCES
[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” pp. 1-9,
2008.
[2] M. Swan, Blockchain: Blueprint for a new economy. “O’Reilly Media,
Inc.”, 2015.

[3]1 Z.Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “Blockchain challenges
and opportunities: A survey,” International Journal of Web and Grid
Services, vol. 14, no. 4, pp. 352-375, 2018.

G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, pp. 1-32, 2014.
T. Moore, “The promise and perils of digital currencies,” International
Journal of Critical Infrastructure Protection, vol. 6, no. 3-4, pp. 147—
149, 2013.

A. Beregszaszi and Chris.
//solidity.readthedocs.io

W. Chen, Z. Zheng, J. Cui, E. C. H. Ngai, P. Zheng, and Y. Zhou,
“Detecting Ponzi schemes on Ethereum: Towards healthier blockchain
technology,” in Proceedings of the 27th World Wide Web Conference on
World Wide Web. Lyon, France: ACM, 2018, pp. 1409-1418.

I. Grishchenko, M. Maffei, and C. Schneidewind, “Foundations and tools
for the static analysis of ethereum smart contracts,” in Proceedings of the
30th International Conference on Computer Aided Verification. Oxford,
UK: Springer, 2018, pp. 51-78.

[4]

[3]

[6] Available:

(7]

Solidity. [Online]. https:

[8

307

[91

[10]
(11]

[12]

[13]

[14]

[15]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, “Dissecting Ponzi
schemes on Ethereum: identification, analysis, and impact,” The Com-
puting Research Repository, vol. 1, pp. 1-32, 2017.

T. U. Securities and E. Commission. What is a Ponzi scheme? [Online].
Available: https://www.sec.gov/spotlight/enf-actions-ponzi.shtml

M. Pawlik and N. Augsten, “Tree edit distance: Robust and memory-
efficient,” Information Systems, vol. 56, pp. 157-173, 2016.

E. Duesterwald, C. Cascaval, and S. Dwarkadas, “Characterizing and
predicting program behavior and its variability,” in Proceedings of the
12th International Conference on Parallel Architectures and Compila-
tion Techniques. New Orleans, LA, USA: IEEE Computer Society,
2003, pp. 220-231.

M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications
of malicious behavior,” in Proceedings of the 6th joint meeting of
the European Software Engineering Conference and the International
Symposium on Foundations of Software Engineering. Dubrovnik,
Croatia: ACM, 2007, pp. 5-14.

H. Liu and H. B. K. Tan, “Covering code behavior on input validation in
functional testing,” Information & Software Technology, vol. 51, no. 2,
pp. 546553, 2009.

S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, “Using semi-
supervised clustering to improve regression test selection techniques,”
in Proceedings of the 4th International Conference on Software Testing,
Verification and Validation. Berlin, Germany: IEEE Computer Society,
2011, pp. 1-10.

Y. Feng and Z. Chen, “Multi-label software behavior learning,” in Pro-
ceedings of the 34th International Conference on Software Engineering -
New Ideas and Emerging Results. Zurich, Switzerland: IEEE Computer
Society, 2012, pp. 1305-1308.

Y. Ding, W. Dai, Y. Zhang, and C. Xue, “Malicious code detection
using opcode running tree representation,” in Proceedings of the 9th
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing. Guangdong, China: IEEE Computer Society, 2014, pp.
616-621.

S. Li, X. Xiao, B. Bassett, T. Xie, and N. Tillmann, ‘“Measuring
code behavioral similarity for programming and software engineering
education,” in Proceedings of the 38th International Conference on
Software Engineering, Companion Volume. Austin, TX, USA: ACM,
2016, pp. 501-510.

F. E. Allen, “Control flow analysis,” in ACM Sigplan Notices, vol. 5,
no. 7. Urbana-Champaign, Illinois: ACM, 1970, pp. 1-19.

J. M. Rojas, G. Fraser, and A. Arcuri, “Seeding strategies in search-
based unit test generation,” Software Testing, Verification & Reliability,
vol. 26, no. 5, pp. 366-401, 2016.

J. E. Forrester and B. P. Miller, “An empirical study of the robustness
of windows nt applications using random testing,” in Proceedings of the
4th Conference on USENIX Windows Systems Symposium. Berkeley,
CA, USA: USENIX Association, 2000, pp. 59-68.

B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: fuzzing smart
contracts for vulnerability detection,” in Proceedings of the 33rd Inter-
national Conference on Automated Software Engineering. Montpellier,
France: ACM, 2018, pp. 259-269.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: scalable
and accurate tree-based detection of code clones,” in Proceedings of the
29th International Conference on Software Engineering. Minneapolis,
MN, USA: IEEE Computer Society, 2007, pp. 96-105.

T. P. S. Library. difflib-helpers for computing deltas. [Online]. Available:
https://docs.python.org/3.7/library/difflib.html

Wikipedia. Cross-validation (statistics). [Online]. Available: https:
/len.wikipedia.org/wiki/Cross- validation_(statistics)

R. Hill, “What sample size is “enough” in internet survey research,”
Interpersonal Computing and Technology: An electronic journal for the
21st century, vol. 6, no. 3-4, pp. 1-12, 1998.

C. Ragkhitwetsagul, J. Krinke, and D. Clark, “A comparison of code
similarity analysers,” Empirical Software Engineering, vol. 23, no. 4,
pp. 2464-2519, 2018.

W. Sun, X. Wang, H. Wu, D. Duan, Z. Sun, and Z. Chen, “MAF:
method-anchored test fragmentation for test code plagiarism detection,”
in Proceedings of the 41st International Conference on Software Engi-
neering: Software Engineering Education and Training. Montreal, QC,
Canada: IEEE / ACM, 2019, pp. 110-120.

J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385-394, 1976.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

X. Wang, H. Wu, W. Sun, and Y. Zhao, “Towards generating cost-
effective test-suite for ethereum smart contract,” in Proceedings of the
26th International Conference on Software Analysis, Evolution and
Reengineering. Hangzhou, China: IEEE, 2019, pp. 549-553.

F. Vogelsteller. (2015) Eip 20: Erc-20 token standard. [Online].
Available: https://eips.ethereum.org/EIPS/eip-20

D. Shirley. (2018) Eip 721: Erc-721 non-fungible token standard.
[Online]. Available: https://eips.ethereum.org/EIPS/eip-721

M. Vasek and T. Moore, “Analyzing the bitcoin ponzi scheme ecosys-
tem,” in Proceedings of the 22th Financial Cryptography and Data
Security - Workshops, BITCOIN, VOTING, and WTSC. Nieuwpoort,
Curacao: Springer, 2018, pp. 101-112.

M. Bartoletti, B. Pes, and S. Serusi, “Data mining for detecting Bitcoin
Ponzi schemes,” in Proceedings of the Ith Crypto Valley Conference on
Blockchain Technology. Zug, Switzerland: IEEE, 2018, pp. 75-84.
N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts,” IJACR Cryptology ePrint Archive, vol. 2016, pp. 164—
186, 2016.

A. Walenstein, M. El-Ramly, J. R. Cordy, W. S. Evans, K. Mahdavi,
M. Pizka, G. Ramalingam, and J. W. von Gudenberg, “Similarity in pro-
grams,” in Duplication, Redundancy, and Similarity in Software. Inter-
nationales Begegnungs- und Forschungszentrum fuer Informatik(IBFI),
Schloss Dagstuhl, Germany, 2006, pp. 1-8.

C. D. Roover, J. Brichau, and T. D’Hondt, “Combining fuzzy logic and

[38]

[39]

[40]

[41]

[42]

[43]

308

behavioral similarity for non-strict program validation,” in Proceedings
of the 8th International Conference on Principles and Practice of
Declarative Programming. Venice, Italy: ACM, 2006, pp. 15-26.

F. A. Fontana and F. Formato, “Likelog: A logic programming language
for flexible data retrieval,” in Proceedings of the 14th Symposium on
Applied Computing. San Antonio, Texas, USA: ACM, 1999, pp. 260-
267.

E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classifica-
tion: A survey,” Journal of Information Security, vol. 5, no. 02, p. 56,
2014.

Y. Ye, T. Li, D. A. Adjeroh, and S. S. Iyengar, “A survey on malware
detection using data mining techniques,” ACM Computing Surveys,
vol. 50, no. 3, pp. 41:1-41:40, 2017.

I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”
in Proceedings of the 5th International Conference on Broadband
and Wireless Computing, Communication and Applications. Fukuoka
Institute of Technology, Fukuoka, Japan: IEEE Computer Society, 2010,
pp. 297-300.

C. D. Manning and H. Schiitze, Foundations of statistical natural
language processing. ~ Cambridge, Massachusetts, London, England:
MIT Press, 2001.

ETHERSCANERS. Etherscan platform. [Online]. Available: https:
//etherscan.io

