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ABSTRACT
With the application of deep learning (DL) in signal detection,
improving the robustness of classification models has received
much attention, especially in automatic modulation classification
(AMC) of electromagnetic signals. A large amount of electromag-
netic signal data is required to obtain robust models in the training
and testing process. However, the high cost of manual collection
and the issue of low quality of automatically generated data con-
tribute to the AMC model’s defects. Therefore, it is essential to
generate electromagnetic data by data augmentation. In this pa-
per, we propose a novel electromagnetic data augmentation tool,
namely ElecDaug, which directs the metamorphic process by elec-
tromagnetic signal characteristics to achieve automatic data aug-
mentation. Based on electromagnetic data pre-processing, trans-
mission or time-frequency domains characteristic metamorphic,
ElecDaug can augment the data samples to build robust AMC mod-
els. Preliminary experiments show that ElecDaug can effectively
augment available data samples for model repair. The video is at
https://youtu.be/x5g6IVX_Q3s. Documentation and source code
can be found here: https://github.com/ehhhhjw/tool_ElecDaug.git.
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1 INTRODUCTION
Over the past few years, deep learning (DL) has been widely used
in many security-critical application scenarios, such as self-driving
cars and wireless communications [7]. When radar is used in driver-
less applications (e.g., Tesla), the onboard system will receive elec-
tromagnetic signals from GPS and perform automatic modulation
classification (AMC) on them, the precision of which will directly
relate to the vehicle security [4].

DL models with high robustness rely on a large amount of train-
ing data with diverse scenarios. However, existing electromagnetic
data is hard to meet the needs of DL. The scarcity of data causes
deficiencies in the boundary values, training data limitations, and
sample diversity of DL-related AMCmodels, resulting in the trained
models being prone tomake erroneous predictions [3]. Existing elec-
tromagnetic data hardly supports DL in performing high-accuracy
AMC models’ training process as the high cost of manual collection
and the low quality of automatic generation. Therefore, augmenting
the existing electromagnetic data is a helpful solution to the issues
caused by insufficient data and poor quality, which can repair the
defects of AMC models in classification.

There are specific challenges in augmenting electromagnetic
data. Since radio signals store information in electromagnetic waves,
it is difficult for us to perceive the scenes expressed in the waves by
human senses. Some existing electromagnetic data augmentation
methods are performed by simulating the data generation process.
For example, O’Shea et al. [6] augmented electromagnetic data by
simulating transmitter parameters. The data augmented by this
method does not consider the characteristics of the electromagnetic
signal during the propagation of the physical channel, resulting in
significant artifacts that cannot be used as training data.

In this paper, we propose a novel electromagnetic signal data
augmentation tool, namely ElecDaug. By combining the charac-
teristics of electromagnetic signals, we use metamorphic methods
to pre-process the input data. A large amount of data with elec-
tromagnetic signal characteristics is augmented, compensating for
the shortcoming caused by the lack of high-quality data while
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training electromagnetic correlation models. ElecDaug contains
two components: the transmission metamorphic component and
the time-frequency metamorphic component. The transmission
metamorphic component takes into account external disturbances
encountered during signal propagation (detailed in Section 3.1).
The time-frequency metamorphic component considers the elec-
tromagnetic signal’s transmission characteristics in the time and
frequency domains (detailed in Section 3.2). We conduct a series
of experiments to demonstrate the effectiveness and availability of
ElecDaug and evaluate the classification effect of the AMC model
trained with the augmented data. The experimental results show
that data augmented by ElecDaug can repair the defects of the
model, and the precision of the trained AMC model is improved by
nearly 11% compared with the original one.

2 PRELIMINARIES
2.1 Metamorphic Relation
Metamorphic relations are central elements of metamorphic testing,
which are necessary properties of the target function related to
multiple inputs and their expected outputs [1]. Drawing on meta-
morphic testing, we use metamorphic relations to ensure that the
augmented data is available. The metamorphic formula is as follows:

fw (x) , fw (x + rx ) (1)

Where the disturb strength rx should be small that x + rx from the
unperturbed input data x remains the same. And the augmented
data with perturbation is different from the original data, which
has the perturbation obtained through the metamorphic relation.

The metamorphic relation utilizes an alternative mindset. When
we cannot solve a problem from a particular perspective, we can
corroborate it sideways by solving its equivalent. Due to the im-
perceptibility of electromagnetic signals, we cannot augment them
intuitively like image processing methods; we do this by equiva-
lently mapping their corresponding features to the data layer.

2.2 Signal Transfer Properties
During the transmission of the signal, conversion is usually per-
formed by modulation to reduce external interference to the signal.
As shown in Figure 1, the signal is transformed into different mod-
ulation types. We can not directly obtain valid information from
the received wave. It is required to identify the signal’s modula-
tion type and demodulate the signal according to the modulation
type. All the information is stored as plural numbers for modulated
signals in this case. The signal Secho (t) received by the receiver is
stored in the complex form of Iecho (t)/Qecho (t) channel data like:
Secho (t) = σ Iecho (t) · Qecho (t). t denotes the time domain; σ is
a constant and denotes the echo amplitude. Iecho (t) and Qecho (t)
store the time and frequency domain information of the signal, and
both can be converted to each other.

In the signal propagation process, there is generally a specific loss
in the received data, which makes the transmitter-generated data
differ from the received data. To ensure the resemblance between
the augmented and received data, we are required to model the
signal loss due to external interference during transmission and
the internal time-frequency domain. Besides, the internal time-
frequency domain variation of the signal due to signal propagation

(a) BPSK (b) QPSK (c) QAM16

Figure 1: Different Modulation Signal

also needs to be considered. We can simulate the signal variation in
the channel and apply it to the data augmentation process, fixing
the model’s deficiencies due to the lack of sufficient high-quality
data samples by deformation methods.

3 METHODOLOGY
In this section, we introduce the implementation of ElecDaug in
detail. Figure 2 shows the workflow of ElecDaug, which consists of
three key components: metamorphicmethods, variable settings, and
data augmentation. The metamorphic methods contain the trans-
mission metamorphic components (Radio Noise, Signal Outage,
Signal Disruptions) and the time-frequency metamorphic compo-
nents (Channel Transformation, Power Zooming). After selecting
the metamorphic methods, the label and parameters are set through
the variable settings. The label of the augmented data can be modi-
fied, and the gap intensity also can be set. After that, we enter the
data augmentation part, simulate the physical layer and data layer
of the input data according to the selected metamorphic methods
and the set parameters, augment the augmented data, and assign
the label to the augmented data.

Figure 2: Overview of ElecDaug

3.1 Transmission Metamorphic Component
The transmission variation component generates scenario-specific
data by simulating the external effects of electromagnetic signals
during channel transmission. It contains three metamorphic opera-
tors: radio noise, signal outage, and signal disruptions.

Radio Noise. The radio noise metamorphic operator simulates
mechanical, thermal, and Gaussian white noise in the signal trans-
mission process by injecting radio noise into the electromagnetic
signal. The metamorphic formula is: I

′

o (t) = Io (t) + ρ · f (µI ,σ
2
I ),

Q
′

o (t) = Qo (t) + ρ · f (µQ ,σ
2
Q ). Among that, ρ is the perturbation

intensity, µ is the expected value, σ 2 is the variance. By changing
the intensity of the injected noise, it can generate electromagnetic
signal data under different noise environments.
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Signal Outage. The signal outage metamorphic operator sim-
ulates the scenario of partial data missing due to transient trans-
mission interruption during electromagnetic signal transmission.
We set the threshold a, and a numbers are randomly selected in
range of [0,n) to develop the set A = {A1,A2, ...Aa }. Set Ii = 0 and
Qi = 0, i ϵ A, n is the channel length of signal.

Signal Disruptions. The signal disruption metamorphic opera-
tor simulates the signal delay during signal transmission by select-
ing a continuous segment of signal data and changing the data to
the I/Q average of this continuous data. We set the threshold a ,b
and c , c is the length of block in range of [1,n], and a numbers are
randomly selected in [0,n−c) to develop the setA = {A1,A2, ...Aa },
b is a number in range of [0,n − c). n is the channel length of the
signal and set Ii = (

∑b+c−1
j=b Ij )/c and Qi = (

∑b+c−1
j=b Q j )/c , i ϵ A.

In the transmission metamorphic component, for these three
methods, we select the optimal parameter as the interference thresh-
old for ElecDaug by variable setting. By adjusting the interference
threshold, we can obtain electromagnetic data with different per-
turbation intensities during data augmentation.

3.2 Time-frequency Metamorphic Component
The time-frequency metamorphic component contains two kinds
of metamorphic operators based on electromagnetic signals’ time
and frequency domains. In addition, these features are converted
to the data layer by the interference between the signals present
in the electromagnetic signal. The time and frequency domain
information is as follows.

S (τ , t ) = σ ·r (
t
Ta

)e {−j
4πR(t )

λ
} ·r (

τ −
2R(t )
c

τp
)e {jπb(τ −

2R(t )
c

)2 } (2)

Where τ represents its characteristic of the echo wave in the fre-
quency domain, S(τ , t) is derived from St (t), which considers the
electromagnetic data in the time domain and frequency domain.
The time-frequency metamorphic relations are based on S(τ , t)
transformation of the original data.

Channel Transformation. The channel transformation meta-
morphic operator mainly simulates the time domain interaction
caused by the interference of adjacent electromagnetic signals in
the timing sequence during signal propagation. We simulate this
correlation by undirected interaction of partial I/Q data.

S (τ + ϕ, t + ϕ), S (τ , t ) = S (τ + ϕ, t + ϕ)
⊕

S (τ , t ) (3)

where, S(τ , t) is the received data at t moment, S(τ + ϕ, t + ϕ) is
the received date at t + ϕ moment.

⊕
represents the exchange

formula. τ is the interval between exchanged electromagnetic data.
We control the metamorphosis intensity by setting threshold η,
which controls the number of interacted electromagnetic data.

Power Zooming. The power zooming metamorphic operator
considers the phenomenon of signal energy superposition due to
the reflection of the signal. By directly varying the signal strength,
the reflection of the signal when encountering a static obstacle is
simulated. We simulate the strength of the received electromagnetic
signal by controlling the deflation of S(τ , t). The metamorphic for-
mula is S

′

(τ , t) = ρS(τ , t). Where S(τ , t) and S
′

(τ , t) is the original
and deflated data. ρ is the strength of deflation.

In the time-frequency metamorphic component, we experiment
with the variation approach on the time-frequency domain to get

the optimal parameter value of ElecDaug. In augmenting process,
the user inputs the original data, sets the variable parameter, and
gets the augmented data of the corresponding intensity.

4 EVALUATION
To evaluate the effectiveness and availability of ElecDaug, we design
the following research questions:

• RQ1 (Effectiveness): Whether ElecDaug augment valid
data to repair the defects of the model?

• RQ2 (Availability):Whether the data augmented by Elec-
Daug always remain available?

4.1 Experimental Setup
We conduct experiments on the RML_2016.10a dataset [6]. The
dataset contains 220, 000 input data, which are divided into 11 dif-
ferent modulations and consisting of 20 different signal-noise-ratio
(SNR) ranging from −20dB to 18dB in 2dB steps. And the SNR is the
ratio of signal to noise in an electronic device or system. Besides, the
VT-CNN2 model [6] is selected as the primary neural network ar-
chitecture to extract the characters from the RML_2016.10a dataset.

4.2 RQ1: Effectiveness of ElecDaug
We conducted several comparison experiments to demonstrate the
effectiveness of augmented data in repairing model defects. In this
process, we take the classification precision of the model on the test
set as the reference for model repairing. The experiment processes
are divided into the following steps: (1) divide the original data
(RML_2016.10a) into the train set and test set in the ratio of 9 : 2; (2)
choose metamorphic methods to augment data with the train set;
(3) use the original and augmented training sets to train VT-CNN2
models and label them with its method; (4) compare the perfor-
mance of the augmented data on VT-CNN2 models. For different
metamorphic methods, we choose the optimal parameter for differ-
ent metamorphic methods in our experiments, and the SNR is set
to 0dB. In addition, since ML models may achieve different results
in different rounds, we ran each model 10 times and de-averaged
its performance. The experiment results are shown in Table 1.

Table 1: The Result of Model Classification Result

Augmentation Method Augmentation Type Accuracy(%)
Original Original 71.97
Radio Noise Transmission 73.35
Signal Outage Transmission 74.43
Signal Disruptions Transmission 75.51
Channel Transformation Time-frequency 77.23
Power Zooming Time-frequency 78.69
All Five Methods All 79.84

As shown in Table 1, the data augmented by the fivemetamorphic
methods in ElecDaug have significant improvement in improving
the model for sample classification. In particular, the improvement
effect of the time-frequency metamorphic methods is better than
the transmission methods, and the models trained by combining
the data augmented by the five metamorphic methods have the
best classification performance. The results illustrate that all the
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electromagnetic data augmented by ElecDaug have positive results
in repairing the model defects.

4.3 RQ2: Availability of ElecDaug
To verify the availability of ElecDaug, we compare the availability
of the augmented data in different SNR environments. We perform
incremental experiments in 20 SNR environments (between −20dB
and 18dB with an interval of 2dB) to augment data to verify the
availability of the metamorphic method in different SNR environ-
ments. We conduct incremental experiments and perform the same
procedure as for RQ1 for electromagnetic data with different SNRs,
and the experimental results are shown in Figure 3.
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Figure 3: Data Effect under Different SNRs

As shown in Figure 3, all of these methods of ElecDaug have im-
proved over the original in different SNRs. The result indicates that
the data augmented by ElecDaug is available in different scenarios,
which implies the availability of data augmentation methods based
on the electromagnetic signal characteristics. In conclusion, we
experimentally demonstrate that the ElecDaug tool works well to
address the defects of the existing AMC model in classification.
Data augmentation methods by the characteristics of the electro-
magnetic signal are available for repairing the model defects in
different SNR environments.

5 USAGE
Figure 4 shows the page on the electromagnetic signal data aug-
mentation page of ElecDaug. Through ElecDaug, users can upload
the data to be augmented, select the corresponding metamorphic
methods, set the metamorphic intensity, and complete the augmen-
tation of electromagnetic data. After the augmenting process, users
can enter the ElecDaug preview page and select a piece of aug-
mented data. The selected data will be presented in the graph. The
comparison data shows in Figure 5. Figure 5(a) shows the original
data, and Figure 5(b) shows the augmented data, where the x-axis
is the I-channel value, and the y-axis is the Q-channel value. When
users click the "Reset" button, the existing task is cleared, and the
user can continue with the next task.

6 RELATEDWORK
While there are many groups working to improve the capacity of
AMCs. O’Shea et al. [6] proposed the VT-CNN2 model and achieved
good effects in AMC. However, the DL model is limited by the scene

Figure 4: The User Guidance of ElecDaug System

(a) The Input Data (b) The Augmented Data

Figure 5: The Data Comparison Page

features. Liang et al. [3] proposed that the deficiency in the quan-
tity of data and the unbalanced rate of data quality can lead to the
poor performance of existing classification models in real life, and
proposed an ensemble learning model to improve the classification
ability of the model under different data. Hou et al. [2] proposed the
TauMed tool to augment the dataset and carried out that data aug-
mentation by metamorphic relationships can effectively improve
the classification ability of deep learning models. It was not until
Moin et al. [5] explored the feature differences between the inverse
and original samples. Most researchers focus on the relationship
of features between the enhanced data and the original data. Dif-
fering from previous research, we investigate the properties of the
electromagnetic signal in the time domain, frequency domain, and
signal transmission process. We use these properties to propose
some metamorphic methods that form our prototype tool ElecDaug
to augment more data consistent with real scenarios.

7 CONCLUSION
In this paper, we propose a novel electromagnetic signal data aug-
mentation tool, namely ElecDaug, to solve the issue of low efficiency
of modulation identification for electromagnetic application tools.
Based onmetamorphic relations, we obtain three transmissionmeta-
morphic methods and two time-frequency metamorphic methods
according to the characteristics of wireless signals in transmission
and time-frequency domains. To the best of our knowledge, it is the
first attempt to augment data through metamorphic relations, and
ElecDaug provides an effective instruction of data augmentation for
repairing model defects. To verify the effectiveness and availability
of the data augmented by ElecDaug, we conducted comprehen-
sive experiments on the VT-CNN2 model with the RML_2016.10a
dataset. Experimental results show that the data augmented by
ElecDaug has a usable effect on repairing model defects due to
insufficient data and poor diversity.
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