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ABSTRACT

Deep Neural Networks (DNNs) are becoming an integral part of

many real-world applications, such as autonomous driving and

financial management. While these models enable autonomy, there

are however concerns regarding their ethics in decision making.

For instance, fairness is an aspect that requires particular attention.

A number of fairness testing techniques have been proposed to

address this issue, e.g., by generating test cases called individual

discriminatory instances for repairing DNNs. Although they have

demonstrated great potential, they tend to generate many test cases

that are not directly effective in improving fairness and incur sub-

stantial computation overhead. We propose a new model repair

technique, Ruler, by discriminating sensitive and non-sensitive at-

tributes during test case generation for model repair. The generated

cases are then used in training to improve DNN fairness. Ruler

balances the trade-off between accuracy and fairness by decom-

posing the training procedure into two phases and introducing a

novel iterative adversarial training method for fairness. Compared

to the state-of-the-art techniques on four datasets, Ruler has 7-

28 times more effective repair test cases generated, is 10-15 times

faster in test generation, and has 26-43%more fairness improvement

on average.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Computing methodologies → Neural networks.
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1 INTRODUCTION

Deep Neural Networks (DNNs) are being widely employed in real-

world applications, such as face recognition [10], speech recogni-

tion [11], autonomous driving [12]. A criminal identification system

may determine whether a suspect is an actual criminal based on the

background information of the suspect, such as prior record, race,

gender, etc. A financial institution may decide whether to authorize

a loan to a customer based on one’s personal information. Fairness

in such decisions is hence particularly important. For instance, a

criminal identification system with biases towards a certain race

would have detrimental societal ramifications.

The fairness problems in DNNs can be the discrimination against

certain protected or sensitive attributes, such as race, gender, etc [6].

That is, a DNN model’s prediction is inappropriately tied with spe-

cific values of protected/sensitive attributes (e.g., gender) [2, 45].

The bias/unfairness of DNNs can also lie in the prediction outcome

differences towards different labels, such as divergent predication

errors for different persons in face identification. There exist a

number of fairness types in the literature, such as individual dis-

crimination [14], group discrimination [15], etc. Different fairness

problems require specific designs to achieve the mitigation goal.

In this paper, we focus on the individual discrimination problem

following existing works [43, 45]. Specifically, given an input 𝑥 ,
there exists another sample 𝑥 ′ that has different values on sensitive

attributes but the same values on non-sensitive ones. Sample 𝑥 ′ is
an individual discriminatory instance (IDI) if the model produces

different predictions for 𝑥 and 𝑥 ′. Addressing the individual dis-

crimination problem is hence to reduce the number of such cases

for a given model.

In order to build a fair DNN model, existing techniques aim to

generate IDIs [1, 2, 4, 16] and some use generated IDIs to repair the

model [14, 37, 42, 43]. THEMIS [16] randomly selects values from

the valid ranges of all attributes to generate IDIs. AEQUITAS [37]

first exhaustively enumerates all the values for sensitive attributes
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to generate random samples. It then perturbs other attributes of

each random sample. To improve the diversity of IDIs, SG [2] lever-

ages dynamic symbolic execution to generate IDIs. The aforemen-

tioned methods, namely, THEMIS, AEQUITAS, and SG, are mainly

designed for traditional machine learningmodels, such as logistic re-

gression [26], support vector machine [8], and decision tree [9], etc.

They may be inapplicable to DNNs or too expensive as DNNs are

more complex. Recent work leverages gradient information from

DNN models to better assist fairness improvement (e.g., ADF [43],

EIDIG [42], and NeuronFair [45]). They mainly follow a similar

instance generation procedure by adversarially perturbing input

attributes and leveraging majority voting [25] to assign labels for

IDIs during retraining. The magnitude of adversarial perturbation

on those attributes is usually not bounded, which can lead to ille-

gitimate samples. Existing techniques strictly follow the definition

of individual discrimination (details in Section 2.2) during instance

generation and only perturb one sensitive attribute at a time. This

incurs substantial computation overhead and may generate samples

that are not IDIs. In addition, existing techniques are not iterative

in model repair due to their high cost. They hence may not achieve

the optimal fairness improvement.

Adversarial training is one of the most effective techniques in

constructing robust models [28, 36]. It iteratively generates adver-

sarial examples with respect to the current state of the model at

each training step. It aims to flip the prediction of an input by

adding a small perturbation on the input. A straightforward idea

is to directly leverage adversarial training for improving fairness.

We observe that adversarial training can address the problem but

at the cost of non-trivial accuracy degradation. It is known that

adversarial training affects normal functionalities [28].

We propose a novel fair model training method, called Ruler,

which is specially designed for improving fairness. It decomposes

the training procedure into two phases: warm-up and fairness ad-

versarial training. The first phase follows the normal training to

ensure the functionalities (i.e., model accuracy). A validation set

is utilized to determine whether a model has satisfactory perfor-

mance on normal samples. In the fairness adversarial training phase,

Ruler iteratively generates IDIs for repair. Different from existing

fairness improving techniques that strictly follow the definition

of individual discrimination by requiring a coupling sample that

only differs on sensitive attributes from an input when perturbing

sensitive and non-sensitive attributes, Ruler relaxes the conditions

by allowing small perturbations on non-sensitive attributes without

coupling samples. Although perturbing non-sensitive attributes has

been explored before, the relaxation in Ruler and the small bound

on non-sensitive attributes substantially enlarges the chance of

generated samples being real IDIs. Specifically, we impose different

bounds on sensitive and non-sensitive attributes, where sensitive

attributes shall be within their valid value ranges, and non-sensitive

ones shall be in the neighborhood of the original input (bounded

by a small 𝐿∞). Ruler also introduces a queue to ensure that all the

original training samples are utilized in each adversarial training

epoch to prevent model accuracy degradation. By balancing the

number of normal samples and IDIs during repair, Ruler achieves

better accuracy and fairness compared to the state-of-the-art. In

this paper, we mainly focus on tabular data with explicitly extracted

features. Ruler can be possibly extended to other domains, which

is discussed in Section 6.

Our contributions are summarized as follows.

• We relax the conditions in individual discrimination defi-

nition and allow small perturbations on non-sensitive at-

tributes without coupling samples. It leads to more effective

and efficient IDI generation.

• We formulate the fairness improvement task as a min-max

optimization problem by adversarially and iteratively train-

ing on generated IDIs. It also features a warm-up phase and

a sample fusion technique to retain normal functionalities

of the repaired model.

• We develop a prototype Ruler and evaluate it on four widely

used public datasets. The experimental results demonstrate

that Ruler has 97.86% relative fairness improvement with

only 0.55% accuracy degradation on average. We compare

with three state-of-the-art fairness improvement techniques

and show that Ruler is 10-15 times faster in generating IDIs

and has 26-43% more fairness improvement. The implemen-

tation is publicly available [35].

2 BACKGROUND

In this section, we briefly review relevant background, including

DNN, individual discrimination, and adversarial attack. We then

define our problem.

2.1 Deep Neural Network

A DNN can be represented as a function 𝑓 : X → Y, where X

is the input space and Y the output space. A DNN model usually

consists of a sequence of 𝑛 layers that are connected as follows.

𝑓𝜃 (𝑥) = 𝑓𝑛−1 ◦ 𝑓𝑛−2 · · · ◦ 𝑓0 (𝑥), (1)

where 𝑓0 is the first layer and 𝑓𝑛−1 the last. Variable 𝜃 denotes all

the weight parameters in the 𝑛 layers. To train a model that can

correctly predict output𝑦 ∈ Y given an input 𝑥 ∈ X, a loss function

L is utilized for searching the optimal parameters 𝜃 such that the

empirical risk is minimized as follows.

argmin
𝜃

E
(𝑥,𝑦)∼{X,Y}

[
L
(
𝑓𝜃 (𝑥), 𝑦

) ]
. (2)

The empirical risk is the expectation of the loss on all the samples in

the given training set as shown above. The goal is to obtain a set of

parameters 𝜃 that has the smallest empirical risk, which is supposed

to correctly predict unseen inputs, i.e., those from the test set. The

prediction accuracy on the test set denotes the functionality of 𝑓 .
The higher the test accuracy is, the better a DNN model is.

2.2 Individual Discrimination

Individual discrimination describes the scenario where a decision-

making outcome is inappropriately tied with a specific value of

some sensitive/protected attribute, such as gender and race. In this

paper, we follow the formal problem definition introduced in the

literature [42, 43, 45].

Let X ∈ R𝑛×𝑑 be the input space, where 𝑛 is the number of

input samples and 𝑑 the number of attributes. We use 𝐴 = {𝑎𝑖 |𝑖 ∈
{1, · · · , 𝑑}} to denote the attributes. Suppose each attribute 𝑎𝑖 ∈
I𝑖 (valid value domain), then I = I1 × I2 × · · · × I𝑑 denotes all
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possible combinations of attribute values. Let 𝑃 ⊂ 𝐴 denote a set

of sensitive/protected attributes, and 𝐴\𝑃 the set of non-sensitive

attributes. An individual discriminatory instance for a DNN model

𝑓 trained on X is defined as follows.

Definition 1 (Individual Discriminatory Instance). Let 𝑥 =
{𝑥1, 𝑥2, · · · , 𝑥𝑑 } be an arbitrary instance in I, where 𝑥𝑖 is the value
of the 𝑖-th attribute, i.e., 𝑎𝑖 . Instance 𝑥 is considered an individual

discriminatory instance for model 𝑓 if there exists an instance 𝑥 ′ ∈ I
that satisfies the following conditions:

• ∃𝑝 ∈ 𝑃, 𝑥𝑝 ≠ 𝑥 ′𝑝
• ∀𝑞 ∈ 𝐴\𝑃, 𝑥𝑞 = 𝑥 ′𝑞
• 𝑓 (𝑥) ≠ 𝑓 (𝑥 ′)

Pair (𝑥, 𝑥 ′) denotes an individual discriminatory instance pair.

The above conditions are strict and defined on the whole value

space I. In real world scenarios, the input space X is a subset of

all possible instances in the value range I. There may not exist an

𝑥 ′ that satisfies the above conditions. To explore more possible

individual discriminatory instances, we relax the conditions during

instance generation, which is discussed in Section 4.2.

2.3 Adversarial Attack

Adversarial attacks craft human-imperceptible small perturbations

that can induce misclassification on DNNs when added to normal

inputs [33]. It has been extensively studied in the literature [3, 13, 20,

21, 38, 40, 44]. A pioneer work by Goodfellow et al. [33] introduces

Fast Gradient Sign Method (FGSM) that leverages the gradient sign

to perturb an input. Specifically, it computes the gradient of a loss

function with respect to the input and adds the sign value of the

gradient (with some proportion) onto the input. Given an input 𝑥
and a subject model loss function L (e.g., cross entropy loss), an

adversarial example is crafted as follows.

𝑥𝑎𝑑𝑣 = 𝑥 + 𝜖 · sign
(
∇𝑥L

(
𝑓𝜃 (𝑥), 𝑦

) )
, (3)

where 𝜖 is a hyper-parameter determining the magnitude of added

perturbation; sign(·) takes the sign of input values (e.g., −1 for

value −2.5); L is the loss function of subject model 𝑓𝜃 with 𝜃 the

weight parameters and 𝑦 the ground truth label; ∇𝑥 computes the

gradient of L with respect to the input 𝑥 . FGSM uses one step of

gradient information according to the loss function to construct

adversarial examples. The perturbation magnitude is constrained

by the hyper-parameter 𝜖 such that | |𝑥𝑎𝑑𝑣 − 𝑥 | |∞ ≤ 𝜖 .
Advanced adversarial attacks extend FGSM for leveraging the

gradient information via multiple steps [7, 24, 27]. Projected Gra-

dient Descent (PGD) [28] is one of such variants. It also projects

the perturbed input onto the valid input space (i.e., the legitimate

value range) at each step during adversarial generation. Formally,

𝑥𝑡+1 =
∏
𝑥+S

(
𝑥𝑡 + 𝛼 · sign

(
∇𝑥L

(
𝑓𝜃 (𝑥), 𝑦

) ))
, (4)

where 𝑥𝑡+1 is the modified input at step 𝑡 + 1; S is a set of allowed

perturbationswithin the valid input space;
∏

denotes the projection

to valid space 𝑥 + S; Variable 𝛼 is a hyper-parameter controlling

the perturbation magnitude at each step.

2.4 Problem Statement

Existing DNNs have undesirable discrimination against certain

sensitive attributes. That is, the prediction of a model can be flipped

when only some sensitive attribute of an input is altered. This leads

to unfair decision-makings when such models are used in critical

systems, such as criminal identification system. In this paper, we

aim to repair DNNs by mitigating the discrimination rooted in

models. A repaired DNNmodel shall produce the same prediction if

two inputs only differ on sensitive attributes. Given an input 𝑥 ∈ X

and a model 𝑓 , the fairness goal is as follows.

∀𝑥 ′, ∀𝑝 ∈ 𝑃, 𝑥𝑝 ≠ 𝑥 ′𝑝 , ∀𝑞 ∈ 𝐴 − 𝑝, 𝑥𝑞 = 𝑥 ′𝑞, 𝑓 (𝑥) = 𝑓 (𝑥 ′), (5)

where 𝑝 ∈ 𝑃 is a sensitive attribute and 𝐴 − 𝑝 the attributes other

than 𝑝 . As it is infeasible of having the whole input distribution, a

sampled set X is commonly used in practice to evaluate the per-

formance of 𝑓 . For every sample 𝑥 ∈ X, a validation tool evaluates

the fairness of model 𝑓 according to Equation 5. The details are

elaborated in Section 5.2. The more samples satisfy the goal, the

fairer a model is on sensitive attributes.

3 MOTIVATION

Effectively generating individual discriminatory instances is the

first step towards mitigating unfairness in DNNs. Existing tech-

niques [42, 43, 45] mainly follow a similar instance generation

procedure by (1) adversarially perturbing input features and (2)

leveragingmajority voting [25] to assign labels for a set of randomly

selected discriminatory instances. In the first phase of adversarial

perturbation, existing techniques do not constrain the magnitude

of the perturbation. That is, any input feature dimensions can be

altered to arbitrary values (e.g., changing age 50 to 10) as long as

they can induce the intended output, i.e., flipping the predicted

label (e.g., from authorizing to NOT authorizing a loan). As the pre-

diction changes when the sensitive attribute is altered, this sample

𝑥 ′ (from the original input 𝑥) might be considered an individual

discriminatory instance (IDI). Hence, to improve the model fairness,

this sample 𝑥 ′ will be added to the original training dataset by re-

taining its original label 𝑦 (e.g., authorizing a loan). However, there

is no guarantee for those generated instances to be legitimate as

they may not follow the normal data distribution (e.g., authorizing

a loan to an age 10). To determine whether the generated samples

are indeed IDIs, existing techniques adopt a majority voting pro-

cess. Specifically, they first train a set of models on the original

training dataset without the sensitive attributes and then feed the

generated samples to obtain predictions. The final label 𝑧 is deter-
mined by the majority voting on these predictions. As the majority

voting models are not trained on sensitive attributes, they may

produce a legitimate label (of not authorizing a loan to an age 10).

Ideally, all the generated samples shall be IDIs, whose labels shall

be the same as the original labels (before perturbations) according

to Equation 5, i.e. 𝑧 = 𝑦. However, we find that more than 40% of

the generated samples by the state-of-the-art techniques ADF [43]

and EIDIG [42] have labels (by voting) different from their original

labels (𝑧 ≠ 𝑦), meaning those samples are not real IDIs but some

arbitrary samples. As a result, using these samples in training can

hardly improve fairness. In addition, existing techniques strictly

follow Definition 1 when generating IDIs. That is, the adversarial
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Table 1: Unfairness of models trained with different strate-

gies. Sen. Att. denotes sensitive attributes. OL denotes using

the original labels of the generated samples.

Sen. Att. Original ADF ADF OL EIDIG EIDIG OL
Age 11.7% 4.45% 27.7% 2.28% 24.8%
Race 9.9% 2.61% 24.5% 1.00% 18.9%
Gender 3.6% 1.24% 12.1% 0.89% 9.6%
Accuracy 84.32% 83.66% 82.64% 84.12% 82.85%

perturbation ought to have the same gradient direction (the value

sign) on non-sensitive attributes for the coupling pair 𝑥 and 𝑥 ′ such
that they only differ on sensitive attributes. They also only generate

instances for one single sensitive attribute at a time. This induces

high computation costs during generation. They often take minutes

to produce one thousand instances (10x times slower than Ruler)

as shown in Section 5.3.

We conduct a study to validate the discrimination of generated

samples by existing techniques, that is, using the original labels in-

stead of the majority voted ones as the labels to train. We then train

the subject model with these samples following the same procedure

in [42, 43]. We use the Adult dataset [22] as an example. Table 1

shows the unfairness of different models. Rows 2-4 show the model

unfairness on three sensitive attributes (Sen. Att.), i.e., Age, Race,

and Gender. The smaller the value, the fairer the model on sensitive

attributes. The last row denotes model accuracy on the test set (the

higher, the better). Column 2 shows the results of the original DNN

model without any discrimination mitigation techniques. Columns

3 and 5 show the results of two state-of-the-art techniques ADF [43]

and EIDIG [42]. Columns 4 and 6 present the results of removing

the majority voting component in ADF and EIDIG and using the

original labels as the ground truth (ADF OL and EIDIG OL). Ob-

serve that both ADF and EIDIG have reasonable performances in

improving fairness. However, when considering all the generated

samples as IDIs by assigning them their original labels, the fairness

on all three sensitive attributes becomes substantially worse. The

test accuracies are also lower. This validates our hypothesis that

a large number of generated samples by existing techniques are

in fact not IDIs. It undermines the effectiveness and efficiency of

existing techniques as we will demonstrate in Section 5.3.

The ultimate goal of generating discriminatory instances is to

construct DNN models with improved fairness. Existing techniques

usually randomly select 5-10% of their generated instances and add

them to the original training dataset for retraining [42, 43, 45]. Such

a procedure only focuses on the discriminatory cases regarding the

original model. Just like adversarial examples can still be generated

for the model retained on a set of previously generated adversarial

examples, discriminatory instances still exist in the models fixed

by existing techniques. Iteratively applying existing techniques for

retraining the model is very expensive as many generated cases

are non-discriminatory, and the cost is high as discussed earlier.

Adversarial training generates adversarial examples with respect

to the current state of the model at each training step. It aims to

flip the prediction of an input by adding a small perturbation to

the input. The perturbation on every dimension of the input is

bounded by the same 𝐿𝑝 norm. A straightforward idea is to directly

leverage adversarial training for improving fairness. We employ a

well-known adversarial training approach PGD [28] and show the

results in Figure 1. The x-axis denotes the training epoch, and the y-

axes denote the validation accuracy on the left and unfairness on the

right. The red triangle line (Acc_PGD) shows the accuracy and the

red circle line (Unfair_PGD) the unfairness for PGD-trained model.

Observe that adversarial training can reduce the discriminatory

instances to almost 0%. The accuracy, however, is only 76.56%,

much lower than that of a naturally trained model (84.32%). It

is known that adversarial training leads to non-trivial accuracy

degradation [28], which is undesirable for normal functionalities.

Our solution.We propose a novel adversarial training technique

Ruler particularly designed for improving fairness. We decompose

the training procedure into two phases: warm-up and discriminative

and iterative adversarial training. In the first phase, Ruler follows

the normal training to construct a model such that the normal

functionalities (i.e., model accuracy) are guaranteed. We leverage

a validation set to determine whether a preset criterion is met. If

so, Ruler moves to the next phase for fairness adversarial training.

Unlike traditional adversarial training that treats each input feature

indiscriminately, Ruler distinguishes sensitive and non-sensitive

attributes. As we aim to expose any potential unfair problems in

the model for sensitive attributes, Ruler does not constrain the per-

turbation on these input features. That is, as long as the adversarial

perturbations are within the valid value range, they are legitimate.

For non-sensitive attributes, Ruler uses a small 𝐿∞ bound to ensure

that the generated sample is within the neighborhood. While clas-

sic adversarial training induces non-trivial accuracy degradation,

we address the problem by limiting the number of discriminatory

instances in each training batch. Ruler also introduces a queue to

ensure that all the training samples are utilized in each epoch. This

is important as there are a limited number of training samples (for

representing the whole input distribution). Missing any of those

training samples may affect the final accuracy. The blue lines in

Figure 1 (Acc_Ruler denotes the accuracy and Unfair_Ruler the

unfairness) show the results of Ruler on the Adult dataset. Ob-

serve that Ruler achieves a higher accuracy (83.73%) than PGD

adversarial training (76.56%) with a similar unfairness value. In

Section 5.3, we empirically demonstrate that Ruler outperforms

three state-of-the-art techniques in improving fairness.

4 DESIGN

Figure 2 illustrates the overview of Ruler. Given a set of training

data, Ruler decomposes the training process into two phases: warm-

up and fairness adversarial training. In the first phase, it follows

the traditional DNN training procedure that updates model weights

guided by the cross entropy loss. Ruler periodically checks the

functionality of model by computing the prediction accuracy on the

validation data. If it meets a preset criterion, Ruler proceeds to the

second phase, in which an adversarial sample generation method

is introduced for generating IDIs ( 1©). Different from existing tech-

niques, Ruler relaxes the conditions in Definition 1 by allowing

small perturbations on non-sensitive attributes without requiring

coupling samples. It adopts different constraints on the sensitive

and non-sensitive attributes when adversarially perturbing the in-

put ( 2©). Details are discussed in Section 4.2. Ruler combines the

generated discriminatory samples with normal training data using
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Figure 1: Comparison of PGD adver-

sarial training and Ruler.

Figure 2: Framework of Ruler

a sample fusion method ( 3©). This method balances the percentage

of normal samples and IDIs in each training batch. All the original

training data are guaranteed to be utilized in every training epoch.

The training is iterative and terminates when it converges. Please

see details in Section 4.2. Note that iterative training is easily af-

fordable in Ruler due to the low cost in generating discriminatory

samples. In contrast, existing techniques are not iterative. Finally,

Ruler outputs a model with improved fairness.

4.1 Warm-up

The goal of Ruler is to improve model fairness while preserving

normal functionalities (i.e., high test accuracy). It is known that

adversarial training causes undesirable accuracy degradation on

the trained model, which is also demonstrated in Figure 1 in Sec-

tion 3. In addition, unlike adversarial examples existing in almost

all the models, IDIs might not be found when the model has a low

accuracy. This is because the existence of IDIs relies on the model

overfitting on certain sensitive attribute values, causing the model

to misclassify when these attributes are modified. If a model is not

well-trained, it may underfit on these attributes and hence is not

easy to be exploited with discriminatory cases. To this end, we

resort to first constructing a base model with a reasonable accu-

racy such that we can further explore IDIs regarding this model.

The cross entropy loss L𝑐𝑒 is utilized for updating model weights

during the warm-up as follows.

argmin
𝜃

E
(𝑥,𝑦)∼D

[
L𝑐𝑒

(
𝑓𝜃 (𝑥), 𝑦

) ]
, D = {X,Y}, (6)

where 𝜃 denotes the weight parameters of the DNN model 𝑓𝜃 (·);
(𝑥,𝑦) is a sample from the training dataset D with 𝑥 ∈ X the input

data and 𝑦 ∈ Y the output label. The training aims to minimize the

expectation of the cross entropy loss over the whole training dataset.

To validate the functionality of the model during warm-up, Ruler

leverages the validation set to compute the prediction accuracy,

which is a common practice in DNN training [17, 34, 45]. We use a

threshold to determine whether the base model is satisfactory for

proceeding to the next training phase.

4.2 Discriminative and Iterative Adversarial
Training

To improve model fairness, a commonly employed approach is to

generate IDIs and then repair the model by training on these cases.

Those instance generation methods aim to explore the input space

where the pre-trained model is unfair regrading some sensitive

attribute(s). Existing works only focus on the discrimination of the

final state of the subject model and aim to repair it regardless the

following states (e.g., the state after retraining). They hence can

hardly consider the constantly changing states of a model during

retraining regarding discrimination. As we will show in Section 5.3,

the design choice is likely due to the high cost of generating discrim-

inatory samples in existing works. Just like adversarial examples,

discriminatory instances can still be found after one-time repair

by existing works (as discussed in Section 3). It is hence crucial

to model the changing discriminatory states of the DNN during

retraining. We formulate it as a min-max optimization problem in

the following.

argmin
𝜃

E
(𝑥,𝑦)∼D

[
max

𝑥 ′=𝑔 (𝑥)
L𝑐𝑒

(
𝑓𝜃 (𝑥

′), 𝑦
) ]
, (7)

where 𝑔(·) is our discriminative adversarial sample generation func-

tion that produces IDIs, which is discussed later in this section. The

inner maximization problem aims to find an IDI for a given input

𝑥 that has a maximum cross entropy loss. This is a harder case

than simply finding an arbitrary discriminatory instance as in the

existing works. The outer minimization problem is to find a set of

optimal parameters so that the hard discriminatory cases produced

by the inner problem are eliminated. This is the problem of training

a fair DNN model against the hardest discriminatory scenarios.

Discriminative Adversarial Sample Generation. Existing gen-

eration methods [42, 43, 45] strictly follow Definition 1 to produce

IDIs. That is, theymutate both sensitive and non-sensitive attributes

by requiring a coupling sample that only differs on sensitive at-

tributes from an input. They also only perturb one single sensitive

attribute at a time and do not constrain the change on non-sensitive

attributes. This however largely restricts the possibility of exploring

the neighborhood of the input, especially when the input space

X is limited and only a subset of the whole distribution is avail-

able. Existing techniques have low effectiveness and efficiency as

demonstrated in Section 3. We relax the conditions in Definition 1

by allowing any perturbations on non-sensitive attributes within

a small bound (no coupling sample is required). For sensitive at-

tributes, there is no constraint on the magnitude of perturbations

as long as they are within the valid value range. We use function 𝑔
in Equation 7 to generate hard discriminatory instances. Formally,

max
𝑔 (𝑥)

L𝑐𝑒

(
𝑓𝜃
(
𝑔(𝑥)

)
, 𝑦
)
,

s.t. ∀𝑞 ∈ 𝐴\𝑃, | |𝑔(𝑥)𝑞 − 𝑥𝑞 | |∞ ≤ 𝜖,
(8)
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Algorithm 1 Discriminative Adversarial Sample Generation

Input: input sample 𝑥 , generation budget 𝐾 , DNN model 𝑓
Output: success flag true/false, discriminatory instance 𝑥′

1: 𝑥0 ← 𝑥
2: for 𝑖 in 0...𝐾 do

3: 𝑥𝑖+1 ← 𝑥𝑖+ sign
(
∇𝑥𝑖 L𝑐𝑒

(
𝑓 (𝑥𝑖 ), 𝑦

) )
4: 𝑥𝑖+1 ← clip𝑝 (𝑥

𝑖+1) � 𝑝 : sensitive attributes
5: 𝑥𝑖+1 ← clip𝑞 (𝑥

𝑖+1) � 𝑞: non-sensitive attributes
6: if 𝑓 (𝑥) ≠ 𝑓 (𝑥𝑖+1) then
7: 𝑥′ ← 𝑥𝑖+1

8: return true, 𝑥′

9: end if

10: end for

11: return false, 𝑥

where 𝑞 ∈ 𝐴\𝑃 denotes non-sensitive attributes; 𝑔(𝑥)𝑞 is the value

of the generated instance for attribute 𝑞; 𝜖 is the upper bound of

the allowed perturbation for non-sensitive attributes. Note that

we do not constrain the perturbation on sensitive attributes as we

aim to explore as many cases as possible when perturbing these

attributes. In addition, multiple sensitive attributes can be explored

simultaneously as the gradient can be applied on all the attributes.

The discriminative adversarial sample generation function 𝑔 can

be instantiated in various ways following Equation 8.

We use Algorithm 1 to realize 𝑔. Given an input 𝑥 , we first com-

pute the gradient with respect to all the attributes using the cross

entropy loss (line 3). Note that each input attribute has already been

discretized into integer values. We hence directly use the gradient

sign as the perturbation without a hyper-parameter 𝛼 to control the

magnitude as in Equation 4. Our discriminative sample generation

distinguishes sensitive and non-sensitive attributes, namely, we use

different clipping functions to project attributes to their desired

value ranges. For sensitive attributes, we clip the perturbed values

to the valid range of these attributes (line 4). For non-sensitive at-

tributes, the mutated values shall satisfy the condition in Equation 8,

whose magnitude is bounded by 𝜖 (line 5). We use 𝜖 = 1 in the paper.

If the perturbed sample at some step is already a discriminatory

instance, we output this instance and stop the generation process

(lines 6-9). Otherwise, we keep mutating the input until the budget

𝐾 . We return with the original sample if no discriminatory instance

can be found (line 11).

Sample Fusion. The key of improving fairness is to incorporate

generated IDIs in the training as illustrated in Equation 7. Directly

adopting adversarial training in our context leads to non-trivial

accuracy degradation as demonstrated in Section 3. We hence de-

compose the training procedure into two phases where the first

phase ensures a reasonable accuracy, which is discussed earlier in

this section. However, when training on discriminatory instances,

the normal functionality may still be compromised if not designed

carefully. Our design hence considers the balance between normal

training samples and generated discriminatory instances. Exces-

sive normal samples leads to limited fairness improvement and too

many discriminatory instances causes accuracy degradation. We

hence limit the number of discriminatory instances in each training

batch using a hyper-parameter 𝜂. If the ratio of discriminatory in-

stances exceeds 𝜂 in a batch, we stop including more such instances

Algorithm 2 Sample Fusion

Input: training set X, batch size 𝑏, model 𝑓 , threshold 𝜂
Output: repaired model 𝑓 ′

1: 𝑓 ′ ← 𝑓
2: 𝑏𝑎𝑡𝑐ℎ ← ∅ � batch of samples

3: 𝑛𝑢𝑚_𝑖𝑑𝑖 ← 0 � number of individual discriminatory instances

4: 𝑄 ← 𝑄𝑢𝑒𝑢𝑒 ()
5: 𝑄.𝐸𝑛𝑄𝑢𝑒𝑢𝑒 (X)

6: while𝑄.𝐸𝑚𝑝𝑡𝑦 () == false do

7: while 𝑏𝑎𝑡𝑐ℎ.𝑠𝑖𝑧𝑒 < 𝑏 do

8: 𝑥 ← 𝑄.𝐷𝑒𝑄𝑢𝑒𝑢𝑒 ()
9: 𝑏𝑎𝑡𝑐ℎ ← 𝑏𝑎𝑡𝑐ℎ

⋃
{𝑥 }

10: if 𝑏𝑎𝑡𝑐ℎ.𝑠𝑖𝑧𝑒 == 𝑏 then

11: break

12: end if

13: 𝑓 𝑙𝑎𝑔, 𝑥′ ← 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐴𝑑𝑣𝐺𝑒𝑛 (𝑥,𝐾, 𝑓 ′) � Algorithm 1

14: if 𝑓 𝑙𝑎𝑔 == true then

15: 𝑏𝑎𝑡𝑐ℎ ← 𝑏𝑎𝑡𝑐ℎ
⋃
{𝑥′ }

16: 𝑛𝑢𝑚_𝑖𝑑𝑖 ← 𝑛𝑢𝑚_𝑖𝑑𝑖 + 1

17: end if

18: if 𝑛𝑢𝑚_𝑖𝑑𝑖 ≥ 𝜂 × 𝑏 then

19: 𝑏𝑎𝑡𝑐ℎ ← 𝑏𝑎𝑡𝑐ℎ
⋃
𝑄.𝐷𝑒𝑄𝑢𝑒𝑢𝑒 (𝑏 − 𝑏𝑎𝑡𝑐ℎ.𝑠𝑖𝑧𝑒)

20: break

21: end if

22: end while

23: 𝑓 ′ ← 𝑡𝑟𝑎𝑖𝑛 (𝑓 ′, 𝑏𝑎𝑡𝑐ℎ) � update 𝑓 using cross entropy loss

24: end while

in the current batch. In addition, since there are only a limited

number of samples in the original training dataset (for representing

the whole input distribution), missing any of them during training

may lead to low accuracy. We encourage incorporating all original

samples in each training epoch. Particularly, we leverage a queue

to monitor the usage of samples. A sample is dequeued when used

in the training. An epoch of training is finalized when no sample is

left in the queue.

Algorithm 2 illustrates the sample fusion procedure in one train-

ing epoch. Note that Ruler trains for multiple epochs to obtain a

final repaired model. We initialize necessary variables in lines 1-5,

such as 𝑏𝑎𝑡𝑐ℎ for storing a batch of samples, 𝑛𝑢𝑚_𝑖𝑑𝑖 for counting
the number of IDIs in the batch, and 𝑄 for monitoring the usage

of original training samples. For a sample 𝑥 in the training set, we

add it to the current training batch if the batch is not full (lines

8-12). Otherwise, it will be added to the next batch. We then use

Algorithm 1 to generate a discriminatory instance 𝑥 ′ for the given
𝑥 in line 13. If the generated sample can induce misclassification,

we add this sample 𝑥 ′ to the batch as well and increase 𝑛𝑢𝑚_𝑖𝑑𝑖
by one (lines 14-17). When the total number of IDIs exceeds the

preset threshold, we fill the remaining batch with normal samples

from the training set (lines 18-21). The model parameters are then

updated according to the cross entropy loss in line 23. Observe that

all the training samples are utilized in one epoch. Multiples rounds

of Algorithm 2 are applied when repairing a DNN model. Ruler

outputs a repaired model with improved fairness when the training

converges and terminates.

5 EVALUATION

We conduct experiments to answer the following questions:
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Table 2: Dataset statistics

Dataset #Attributes Sen. Att. Size
Adult 12 age, race, gender 48,842
Statlog 24 age, gender 1,000
Bank 16 age 45,211

COMPAS 12 race 5,278

RQ1. How effective is Ruler in improving fairness?

RQ2. How effective is Ruler in generating individual discrim-

inatory instances?

RQ3. How efficient is Ruler in generating individual discrimi-

natory instances?

RQ4. How does the warm-up phase affect Ruler’s perfor-

mance?

RQ5. How do hyper-parameters in Ruler affect the results?

RQ6. Why does Ruler work with non-sensitive attributes per-

turbed without coupling samples?

5.1 Experimental Setup

Datasets and Models. We evaluate Ruler on four real-world

datasets, which are most commonly used in studying individual

discrimination problems [2, 16, 19, 37, 41–43], including Adult [22],

Statlog [18], Bank Marketing [30], and COMPAS [29]. Details of

each dataset are shown in the following:

• Adult is a dataset for predicting whether one’s income ex-

ceeds $50K/yr based on census data. It is also known as Cen-

sus Income [42, 43] or Adult Income [41] dataset. It contains

12 attributes with three sensitive attributes.

• Statlog is a dataset used to classify customers’ credit risk

level. It is also known as German Credit dataset [41–43]. It

has 24 attributes with two sensitive ones (age and gender).

• Bank Marketing (abbr. Bank): is a dataset from direct

marketing campaigns (phone calls) of a Portuguese banking

institution. It is used to predict whether a client will subscribe

a term deposit.

• COMPAS is a dataset for assessing the likelihood of a crim-

inal defendant re-offending. It is also known as COMPAS

Score [41]. It has 12 attributes with race the sensitive one.

Table 2 presents the statistics of the four datasets, including the

number of attributes, sensitive attributes, and the size of the dataset.

We use a DNN architecture with 6 fully-connected layers, which is

the same as existing works [40, 41, 43].

Settings. For a fair comparison, all the baselines are configuredwith

the settings that have the best performance reported in the original

papers [42, 43, 45]. Table 3 shows the hyper-parameters used in

our experiment for reproducing baselines. In the table, 𝑛𝑢𝑚_𝑐 de-
notes the number of clusters for global generation; 𝑛𝑢𝑚_𝑔 denotes

the number of seeds for global generation;𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 denotes the
maximum number of iterations for each seed; 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 denotes
the perturbation size for each iteration. We also set the maximum

iteration𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 to 10 and the perturbation size of each iteration

𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 to 1.0 in Ruler, which are the same as in [42, 43]. We set

the ratio of discriminatory instances in a batch to 𝜂 = 0.3 and the

number of adversarial training epochs to 70. We study the effect of

these two hyper-parameters in Section 5.3.

Table 3: Baseline hyper-parameter settings. Global and lo-

cal denote the corresponding hyper-parameters used in the

global and local phases, respectively. Symbol ‘-’ denotes the

corresponding hyper-parameter is not required.

Parameter
Value (global/local)

ADF [43] EIDIG [42] NeuronFair [45]

𝑛𝑢𝑚_𝑐 4/- 4/- 4/-

𝑛𝑢𝑚_𝑔 1,000/- 1,000/- 1,000/-

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 40/1,000 10/1,000 10/1,000

𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 1.0/1.0 1.0/1.0 1.0/1.0

All the experiments are conducted on a server with Intel Xeon

Gold 5218R 2.10GHz CPU, Nvidia RTX 3090, and 503 GB RAM. The

operating system is Ubuntu 20.04.

5.2 Evaluation Metrics

We leverage four metrics in the evaluation, including fairness im-

provement, the total number of generated individual discriminatory

instances (#IDIs), the generation diversity, and the time cost.

Fairness Improvement. The purpose of generating IDIs is to

improve model fairness regarding sensitive attributes. We adopt

an existing unfairness estimation method to evaluate the unfair-

ness of the original model and the repaired model. The estimation

method is proposed by Sakshi Udeshi et al. [37] based on the Law

of Large Numbers (LLN), which has been extensively used in the

literature [37, 42, 43]. Specifically, the method randomly samples a

large set of instances and computes the percentage of IDIs in this set.

For one trial of evaluation, it first generates𝑚 samples uniformly

at random, which are independent and identically distributed (IID).

It then passes these samples to the model and counts the number of

samples being discriminatory, denoted as𝑚′. The estimated unfair-

ness for this trial is hence 𝑒 = 𝑚′

𝑚 . The method carries out 𝑇 trails

to obtain the final estimated unfairness 𝐸 =
∑𝑇

𝑖=1 𝑒𝑖
𝑇 . The lower the

estimated unfairness, the fairer the model is. We use𝑚 = 10000

and 𝑇 = 100 in our experiments for estimating unfairness. We then

calculate the fairness improvement using the following equation.

|𝐸𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 − 𝐸𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 |

𝐸𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
× 100%, (9)

where 𝐸𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the unfairness of the original model and 𝐸𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑
the unfairness of the model repaired by various methods.

Number of Individual Discriminatory Instances (#IDIs). A

true IDI shall satisfy the conditions in Definition 1. To evaluate the

effectiveness of different instance generation methods, for the gen-

erated instances, we count the total number of true IDIs according

to Definition 1. Note that duplicate instances are filtered out.

Generation Diversity. The generation diversity evaluates how di-

verse our generated instances are compared to baselines. The more

diverse the generated samples are, the more discriminatory space

the technique explores. We use the following metric to calculate
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Table 4: Overall performance on fairness improvement

Dataset Sen. Attr. Original
ADF EIDIG NeuronFair Ruler

Repaired Improve. Repaired Improve. Repaired Improve. Repaired Improve.

Adult
Age 11.78% 4.45% 62.22% 2.28% 80.65% 3.80% 67.74% 0.50% 95.76%
Race 9.33% 2.61% 72.03% 1.00% 89.28% 5.15% 44.80% 0.29% 96.89%
Gender 3.81% 1.24% 67.45% 0.89% 76.64% 2.81% 26.25% 0.07% 98.16%

Statlog
Age 30.80% 1.80% 94.16% 2.20% 92.86% 6.44% 79.09% 0.00% 100.00%
Gender 9.20% 3.50% 61.96% 2.40% 73.91% 4.70% 48.91% 0.00% 100.00%

Bank Age 10.36% 3.73% 64.00% 2.83% 72.68% 0.00% 100.00% 0.60% 94.21%
COMPAS Race 0.05% 0.07% -40.00% 0.04% 20.00% 0.01% 84.40% 0.00% 100.00%

Average 10.76% 2.49% 54.55% 1.66% 72.29% 3.27% 64.45% 0.21% 97.86%

Table 5: Model accuracy before/after repair

Dataset Original
Repaired

ADF EIDIG NeuronFair Ruler
Adult 84.32% 83.66% 84.12% 84.29% 83.82%
Statlog 78.00% 77.25% 77.00% 76.00% 77.50%
Bank 89.22% 89.03% 89.14% 87.93% 89.12%
COMPAS 76.61% 75.28% 74.72% 70.73% 75.50%

Average 82.04% 81.31% 81.25% 79.73% 81.49%

the diversity as in [45].

𝐺𝐷Ruler (𝜌𝑐𝑜𝑠 , 𝐵) =
𝐶𝑅Ruler−𝐵
𝐶𝑅𝐵−Ruler

𝐶𝑅Ruler−𝐵 =
#IDIs of baselines fall in

∏
Ruler

#IDIs of baselines

𝐶𝑅𝐵−Ruler =
#IDIs of Ruler fall in

∏
𝐵

#IDIs of Ruler
,

(10)

where 𝐵 denotes the baseline method; 𝐶𝑅Ruler−𝐵 represents the

coverage rate of Ruler’s IDIs to baseline’s IDIs;
∏

Ruler is the area

with Ruler’s IDIs as the center and cosine distance 𝜌𝑐𝑜𝑠 as the

radius. The Ruler’s IDIs are more diverse when 𝐺𝐷Ruler > 1.

Efficiency. We compute the time cost of generating 1,000 IDIs

(#sec/1,000 IDIs) following [43, 45].

5.3 Evaluation Results

In this section, we present and analyze the experimental results to

answer the five research questions.

RQ1: How effective is Ruler in improving fairness?

Table 4 and Table 5 show the unfairness and accuracy of repaired

models by different techniques. In Table 4, the first two columns

denote the evaluated dataset and sensitive attribute. The third col-

umn shows the unfairness of the original model. Column Repaired

presents the unfairness of repaired models and column Improve-

ment the relative improvement over the original model (computed

using Equation 9). Observe that existing techniques have reason-

able performance in improving DNN fairness. However, they fail

in some cases. For instance, ADF cannot improve the fairness for

Race attribute on COMPAS dataset with -40% improvement. EIDIG

has slightly better performance with 20% improvement. NeuronFair

can further improve the result (with the sacrifice of accuracy as

shown in Table 5) but still has discriminatory cases. Ruler, on the

other side, can completely remove the discrimination against Race

on COMPAS. The COMPAS dataset is to assess the likelihood of a

criminal defendant re-offending. The decision made by DNNs for

this task is critical as any discrimination against Race can cause

negative social impacts. Ruler is able to completely address the

problem. For the Statlog dataset, ADF, EIDIG, and NeuronFair have

limited improvement for the Gender attribute, i.e., from 48.91% to

73.91%. Ruler can reduce the unfairness to 0% (with 100% improve-

ment). Overall, Ruler has the largest fairness improvement with

97.86%, outperforming the three state-of-the-art techniques. Table 5

shows the model accuracy before and after repair. Observe that

almost all the repaired models have minimal accuracy degradation
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ated IDIs

except for NeuronFair on COMPAS. The repaired model by Neuron-

Fair on COMPAS has more than 5% accuracy degradation, which

is substantial. We suspect this is due to incorrect identifications of

biased neurons.

As Ruler iteratively generates individual discriminatory in-

stances (IDIs) and uses them for repair, we also study the perfor-

mance of iteratively applying existing techniques. We use one of

the state-of-the-art techniques EIDIG and the Statlog dataset for the

study.We run EIDIG for five rounds. In each round, EIDIG generates

IDIs and repair the previous round model following the procedure

in the original paper [42]. Figure 3 shows the results of EIDIG for

the different rounds. The x-axis denotes the training round and the

y-axes denote the accuracy on the left and the unfairness on the

right. Observe that EIDIG can improve the fairness in the first round

but it saturates after that. This is because EIDIG and other existing

methods generate IDIs for each sensitive attribute independently.

They do not consider the correlations between different sensitive

attributes. Once they fix the independent discrimination problem

for a single attribute, they can hardly further improve the overall

fairness. In addition, EIDIG and existing techniques use majority

voting to assign labels for the generated samples. The first-round

model may already learn the pattern of those samples from major-

ity voting, which is fixed in later rounds. Table 6 shows the cost

of each part in each round. Column Global and Local denote the

two generation phases in EIDIG that focus on different parts of

the input. Column Retrain denotes retraining the model using the

original training samples and IDIs. Observe that EIDIG takes more

than 11 hours to repair a model for the first round. As the first-

round repaired model has better fairness, the number of generated

IDIs decreases in later rounds so as the repair time. However, it

still takes more than 1.5 hours. In total, it takes 18.73 hours to run

EIDIG for 5 rounds, where Ruler only needs 6 minutes to train for

70 epochs. In summary, iteratively applying existing techniques is

less effective and efficient than Ruler.
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Table 6: Time cost (in seconds) of iter-

atively applying EIDIG

Round
IDI Generation

Retrain TotalGlobal Local
Age Gender Age Gender

1 286 26,111 495 15,586 106 42,834
2 471 2,268 536 1,522 10 5,279
3 467 2,091 586 2,341 14 5,893
4 705 2,634 702 2,097 12 6,856
5 708 2,387 694 2,061 11 6,569

Total 2,620 35,420 3,013 23,607 152 67,431

Table 7: Number of individual discriminatory

instances (#IDIs) generated in 300 seconds

Dataset Sen. Att. ADF EIDIG NeuronFair Ruler

Adult

Age 540 7,699 6,817 26,342
Race 164 281 6,137 24,206
Gender 215 4,477 3,807 22,610

Statlog
Age 2,240 7,847 1,388 33,843
Gender 570 2,894 1,729 27,404

Bank Age 1,524 9,699 3,918 27,813
COMPAS Race 103 3,389 952 11,324

Average 876 5,184 3,535 24,792

Table 8: Time cost (in seconds) of gener-

ating 1,000 IDIs

Dataset Sen. Att. ADF EIDIG NeuronFair Ruler

Adult
Age 218.31 163.96 105.64 11.97
Race 349.78 300.61 114.25 13.25
Gender 237.66 178.20 121.56 10.91

Statlog
Age 142.32 117.29 103.91 14.45
Gender 220.00 180.35 296.46 17.04

Bank Age 156.34 118.49 116.52 8.04
COMPAS Race 236.41 198.57 187.50 26.31

Average 222.97 179.64 149.41 14.57

Table 9: Effect of warm-up. Ruler-NT denotes performing

discriminative adversarial training from scratch (without

warm-up).

Dataset Sen. Attr.
Original Ruler-NT Ruler

Accuracy Unfairness Accuracy Unfairness Accuracy Unfairness

Adult

Age 84.32% 11.78% 83.34% 0.33% 83.82% 0.50%

Race 84.32% 9.33% 83.34% 0.09% 83.82% 0.29%

Gender 84.32% 3.81% 83.34% 0.92% 83.82% 0.07%

Statlog
Age 78.00% 30.80% 70.50% 0.00% 77.50% 0.00%

Gender 78.00% 9.20% 70.50% 0.00% 77.50% 0.00%

Bank Age 89.22% 10.36% 89.05% 0.80% 89.12% 0.60%

COMPAS Race 76.61% 0.05% 72.35% 0.00% 75.50% 0.00%

RQ2: How effective is Ruler in generating individual dis-

criminatory instances?

We consider two aspects of instance generation, namely, the

number of generated individual discriminatory instances (#IDIs)

and their diversity. Table 7 shows #IDIs generated by different meth-

ods in 300 seconds. Observe that Ruler substantially outperforms

baselines with 7-28 times more generated IDIs. This allows Ruler

to explore more discrimination problems resident in the model.

For studying the diversity, we randomly select a few datasets and

sensitive attributes. Figure 4 presents the diversity of generated

IDIs, which is computed according to Equation 10. It measures

how different the generated IDIs by different generation methods

are. The x-axis denotes the radius and y-axis the diversity value.

The diversity value larger than 1 indicates that Ruler has more

diverse IDIs than the compared counterpart. Observe that the di-

versity values are all larger than 1 in Figure 4. Particularly, Ruler

has relatively more diverse IDIs compared to ADF and EIDIG on

Statlog for Gender. With the increase of radius, the diversity values

decrease. This is reasonable as a large radius may already cover all

the generated IDIs.

RQ3: How efficient is Ruler in generating individual dis-

criminatory instances?

Table 8 shows the time cost of generating one thousand IDIs by

different techniques. Observe that ADF has the highest time cost

with an average of 222.97 seconds. EIDIG has lower time cost of

179.64 seconds on average. NeuronFair further reduces the time

cost. Ruler is the most efficient method with 14.57 seconds for

generating 1,000 IDIs, which is 10-15 times faster than baselines.

RQ4: How does the warm-up phase affect Ruler’s perfor-

mance?

In order to preserve normal functionalities of the DNN model,

we introduce a warm-up phase in Ruler. We conduct an ablation
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Figure 5: Effect of hyper-parameters 𝜂 and 𝑎𝑑𝑣_𝑒𝑝𝑜𝑐ℎ

study to understand the effect of this phase on the accuracy and

unfairness of repaired models. Table 9 presents the results. Column

Ruler-NT denotes the results without the warm-up. Observe that

Ruler obtains better accuracy on repaired models compared to

Ruler-NT. Especially on Statlog and COMPAS, the repaired models

by Ruler have 7% and 3.15% higher accuracy than those of Ruler-

NT, respectively. The fairness improvement are similar for Ruler

and Ruler-NT, delineating the effectiveness of our discriminative

and iterative adversarial training in improving DNN fairness.

RQ5: How do hyper-parameters in Ruler affect the results?

Two hyper-parameters are used in Ruler, namely, 𝜂 and 𝑎𝑑𝑣_
𝑒𝑝𝑜𝑐ℎ, to control the number of IDIs in each batch and the number

of adversarial training epochs, respectively. We conduct an ablation

study on Adult dataset and the results are shown in Figure 5. From

Figure 5(a), observe that with the increase of epochs, the accuracy

increases as the model gradually converges. Different values of 𝜂
have slightly different convergence speeds but they all converge

at 50 epochs and have similar accuracy. We use 𝑎𝑑𝑣_𝑒𝑝𝑜𝑐ℎ = 70 in

all our experiments. Figures 5(b), 5(c), and 5(d) show the results on

unfairness for different sensitive attributes. Parameter 𝜂 = 0.1 has
the largest impact on unfairness for Age and Gender. The unfairness

results fluctuate during training. The is because the number of IDIs
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Table 10: Description of attributes in COMPAS

Attribute Description
sex 0: “Female”; 1: “Male”
age 0: “25-45”; 1: “Greater than 45”; 2: “Less than 25”
race 0: “African-American”; 1: “Caucasian”
juv_fel_count (JFC) a continuous variable containing the number of juve-

nile felonies
juv_misd_count (JMC) a continuous variable containing the number of juve-

nile misdemeanors
juv_other_count (JOC) a continuous variable containing the number of prior

juvenile convictions that are not considered either
felonies or misdemeanors

priors_count (PC) a continuous variable containing the number of prior
crimes committed

days_b_screening_arrest
(DBSA)

days between the arrest and COMPAS screening (a
negative value means the screening is taken before the
arrest)

jail_time (JT) the total number of days arrested in jail
date_dif_in_jail (DDIJ) the date interval between two times arrested in jail
charge_degree (CD) 0: “Felony”; 1: “Misdemeanor charge”
is_recid (IR) 0: “not a recidivist”; 1: “a recidivist”

is too small, which makes the model not able to fully learn IDIs in

each epoch. Other values of 𝜂 have minimal impact on unfairness

for all three sensitive attributes. We use 𝜂 = 0.3 in the paper.

RQ6: Why does Ruler work with non-sensitive attributes

perturbed without coupling samples?

As Ruler perturbs both sensitive and non-sensitive attributes

simultaneously without requiring coupling samples, we measure

the number of perturbed non-sensitive features in IDIs. On aver-

age, 4.62/9, 9.85/22, 7.23/15, and 5.69/11 non-sensitive features are

perturbed for Adult, Statlog, Bank, and COMPAS, respectively. As

Ruler uses the original labels for those IDIs during model repair,

one may wonder whether this is reasonable to preserve the labels

for those IDIs with such a number of changes on the input features.

We study a few cases in the COMPAS dataset as an example to

show the validity of label preserving.

The COMPAS dataset is to assess the likelihood of a criminal de-

fendant re-offending (label 1 means high risk and label 0 means low

risk). It has 12 attributes with race the sensitive one. Table 10 lists

each attribute name and its meaning. Table 11 shows a few example

pairs of original samples and our generated adversarial samples.

The first row denotes the attributes. The following every two rows

show the original sample (Original) and the generated adversarial

sample (Adversarial). The last column presents the predicted label

of the sample.

In the first case, six attributes are perturbed, namely, age, race,

priors_count (PC), days_b_screening_arrest (DBSA), jail_time (JT),

and date_dif_in_jail (DDIJ), respectively. Observe that the sensitive

attribute race is changed from “Caucasian” to “African-American”.

Other attributes in the adversarial example are similar to those

in the original sample. Values for priors_count (PC) and jail_time

(JT) of the adversarial sample are smaller than those of the origi-

nal sample. This adversarial sample is predicted as label 1 by the

model, meaning the defendant has high risk, which does not seem

reasonable compared to the original sample. We hence use label 0

during training.

In the second case, the perturbed attributes are sex, race, days_b

_screening_arrest (DBSA), jail_time (JT), and date_dif_in_jail (DDIJ),

respectively. Observe that the race attribute is changed from “African-

American” to “Caucasian”. The value of jail_time (JT) is reduced.

Table 11: Case study

Attribute sex age race JFC JMC JOC PC DBSA JT DDIJ CD IR Label
Original_1 1 0 1 0 0 0 5 0 6 7 0 0 0

Adversarial_1 1 1 0 0 0 0 4 1 5 6 0 0 1
Original_2 1 0 0 0 0 0 0 -1 41 41 0 0 0

Adversarial_2 0 0 1 0 0 0 0 -2 40 42 0 0 1

The date interval (date_dif_in_jail) is larger between two times

arrested in jail. The predicted label for this adversarial sample how-

ever is 1 (high risk), different from the original label. We hence use

label 0 for training.

The above two cases demonstrate that although Ruler perturbs

non-sensitive attributes, it ensures that the generated sample is

within the neighborhood of the original input as we use a small

bound on perturbed attributes. Samples within the neighborhood

of the original input hence shall maintain the same label, which

avoids introducing abnormal data distribution.

6 THREATS TO VALIDITY

Limited Model Structures and Machine Learning Algorithms.

We evaluate on the fully-connected deep neural networks in the

experiments following the literature [42, 43, 45] as the tasks are rel-

atively simple. The key idea of Ruler is generic and can be directly

applied on more complex neural networks such as convolutional

neural networks (CNNs) as long as the model is differentiable. If

non-NN machine learning (ML) algorithms are not differentiable,

there are many existing techniques such as evolution algorithm, gra-

dient approximation [5], etc., to obtain the perturbation directions.

Ruler can then constrain the obtained perturbation according to

Equation 8 and repair those algorithms. For ML models with primi-

tive inputs such as images, the key challenge is to identify sensitive

regions of the input regarding fairness. One possible solution is to

first use the gradient (e.g. Grad-CAM [31]) to locate such regions

and then apply Ruler to improve the fairness. For NLP tasks, it

is possible to construct a list of sensitive words and Ruler can

leverage the gradient to search for the replacement of those words.

The fairness then can be improved by Ruler’s adversarial training.

We leave the experimental exploration to future work.

Access to Model Parameters. Ruler is a white-box technique

that generates individual discriminatory instances based on the

gradient according to the loss function of the subject model. It

requires the full access to the model parameters, which is the same

as in the literature [43, 45]. It is a common practice to have the full

knowledge of the subject model for repairing [45].

Hyper-parameter. The step size of Ruler during instance genera-

tion is set to 1 following existing work [43]. The datasets evaluated

in the paper have categorized attributes. It hence is straightforward

to use 1 as the step size. For other non-categorical datasets, further

study may be needed to determine the optimal step size. We leave

the exploration to future work.

7 RELATEDWORK

There is a line of work aiming to generate test inputs for exposing

individual discrimination resident in the model. THEMIS [16] auto-

matically generates individual discriminatory instances (IDIs) by

randomly selecting values from the valid range for all the attributes.
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It measures the discrimination of the subject system based on

whether the system discriminates certain attributes. AEQUITAS [37]

adopts a two-phase generation method. In the global phase, it gen-

erates a random sample in the input domain and exhaustively enu-

merates all the values for sensitive attributes to obtain an IDIs. In

the local phase, it then perturbs other attributes for the generated

IDIs in the first phase. However, AEQUITAS can only search in a

narrow input space and it easily falls into the local optimum [45].

To improve the diversity of IDIs, SG [2] leverages dynamic symbolic

execution to generate IDIs. The aforementioned methods, namely,

THEMIS, AEQUITAS, and SG, are mainly designed for traditional

machine learning models, such as logistic regression, support vec-

tor machine, and decision tree, etc. They may not be applicable

to deep neural networks (DNNs) or are very expensive as DNNs

are more complex. A few methods have been proposed recently

that are specifically designed for DNNs. Zhang et al. [43] propose a

gradient-based method called ADF for generating individual dis-

criminatory instances. They demonstrate that ADF can improve

the effectiveness and efficiency of IDIs generation for DNNs based

on the guidance of gradients. EIDIG [42] extends ADF by leverag-

ing prior gradient information (i.e., momentum) to accelerate the

convergence of instance generation. However, it may still suffer

from gradient vanishing, leading to local optimization [45]. FairNeu-

ron [17] detects neurons that particularly contribute to sensitive

attributes to generate IDIs. Similarly, NeuronFair [45] searches for

biased neurons and generates samples to enlarge the activation val-

ues of those neurons. More related works can be found in survey [6].

We compare Ruler with three state-of-the-art techniques, namely,

ADF, EIDIG, and NeuronFair, in Section 5.3. Ruler outperforms

these baselines in improving fairness on four evaluated datasets.

Adversarial training is one of the most effective methods in im-

proving model robustness [23, 28, 32, 36, 39]. They can be leveraged

to improve fairness as demonstrated in Section 3. However, it is

known that adversarial training induces non-trivial accuracy degra-

dation. We also have the same observation in our context. Ruler

improves traditional adversarial training by decomposing the train-

ing into two phases and introducing sample fusion to have a better

accuracy-fairness balance.

8 CONCLUSION

We propose a novel discriminative and iterative adversarial training

method particularly designed for improving DNN fairness. We

evaluate our prototype Ruler on four popular datasets. It has 97.86%

relative fairness improvementwith only 0.55% accuracy degradation

on average, outperforming three state-of-the-art techniques.
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