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Context: Unit testing has been widely regarded as an effective technique to ensure software quality. Writing
unit test cases is time-consuming and requires developers to have abundant knowledge and experience.
Automated test case generation, a promising technology for liberating developers and improving test efficiency,
currently performs not satisfactory in real-world projects. As a complement, test case recommendation (TCR)
has been receiving the attention of researchers. TCR can improve the efficiency of test case writing by
recommending test case code to developers for their reference and reuse. The overarching idea of TCR
techniques is that two similar test targets can reuse each other’s test cases.
Objective: Existing TCR techniques either fail to recommend relevant test cases for a given test target or are
vulnerable to the mismatch of test target signatures. Our objective is to effectively and robustly recommend
relevant test cases for test targets given by developers.
Method: In this paper, we propose a novel TCR technique that measures the similarity of test targets based on
a balanced distance. The balanced distance integrates the distances on code snippets and comments, making
the measurement of test target similarity more accurate and robust. In particular, we take the distance on
control flows into account to compensate for the shortcomings in measuring the similarity only based on the
literal text of code snippets. As a proof-of-concept application, we implement a test case recommender named
BDTCR.
Results: We construct a test case corpus containing more than 13,000 test cases collected from GitHub. Based
on this corpus, we conduct comprehensive experiments to evaluate the effectiveness and usefulness of BDTCR.
The experimental results show that BDTCR can effectively recommend relevant test cases and outperform the
state-of-the-art techniques.
Conclusion: It can be concluded that (1) BDTCR is an effective TCR technique; (2) BDTCR is a robust TCR
technique that can effectively resist the interference of the mismatch of test target signatures; (3) BDTCR is
practical to help developers write test cases quickly and effectively.
. Introduction

Unit testing [1] has been widely recognized as an essential and
aluable means of improving software quality, as it exposes bugs early
n the software development life cycle [2,3]. A lack of adequate testing
an have a high economic impact [4]. However, unit test coverage is
ot high in most open-source projects. The prior studies [5–8] show
hat most of the developers’ efforts are focused on production code
evelopment and with a dismissive and negative view on software
esting [9]. Besides, writing unit test cases is a time-consuming task and
equires developers to have a lot of testing knowledge and experience.
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Automated test case generation, a promising technology for liber-
ating developers and improving test efficiency, has been extensively
studied [10–15], but its current effectiveness is limited in real-world
applications [16,17]. For example, Eduard Enoiu et al. [18] conducted
a case study on real-world industrial control software to compare
manually and automatically created tests. The study result shows that,
although automatically generated tests can efficiently achieve similar
code coverage as manually created tests, they do not result in better
fault detection than manual testing. Manual tests more effectively
detect logical, timer, and negation types of faults than automatically
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Fig. 1. An example of test case recommendation.

generated tests. The key findings of the study conducted by Domenico
Serra et al. [19] further confirm that the automatic tools can achieve
high coverage and mutation score; however, most of the actual defects
cannot be identified. In addition, Sina Shamshiri et al. [20] conducted
an empirical study to specifically evaluate the influence of automat-
ically generated tests on developers’ effort and effectiveness when
performing software maintenance tasks. And their results show that,
despite being less complex, automatically generated tests are harder to
understand because they execute unrealistic scenarios.

Recommendation techniques as an effective means of improving
the productivity of software engineering tasks have been widely in-
vestigated, such as developer recommendation [21–23], code recom-
mendation [24–26], test case recommendation [6,27,28]. Among them,
test case recommendation (TCR), which aims to provide test case code
written by previous developers in existing projects to developers for
their reference and reuse, has been proved to be an effective technique
to assist unit testing. The idea of code reuse is widely adopted by TCR
techniques [6,27–30], that is, two similar test targets can reuse each
other’s test cases. Formally, given a test case 𝑡𝑖 whose test target is
the method 𝑚𝑖, assuming that we plan to test a new test target 𝑚𝑗 ,
if 𝑚𝑖 and 𝑚𝑗 are similar measured by a similarity function 𝑠𝑖𝑚(⋅), the
𝑖 can be recommended to 𝑚𝑗 . For example, as shown in Fig. 1, two
est targets 𝑚1 and 𝑚2 are similar in functionality, and thus the test
ase 𝑡1 that belongs to 𝑚1 can be recommended to the new test target
2. Obviously, the main problem that TCR solves is to measure the

imilarity of test targets accurately.
Existing TCR techniques [6,27–30] provide us with some valuable

nsights and inspirations for measuring the similarity of test targets, but
hey still have some deficiencies. The test case search algorithms are
esigned to search for accurate and relevant test cases from the test
ase corpus. Although these techniques design various 𝑠𝑖𝑚(⋅) functions
n their search algorithms, they all measure the test target similarity
rudely in terms of the code part. The prior works [28–30] design
he function 𝑠𝑖𝑚(⋅) based on the method signature and class name
atching. The method signature (signature for short) is a combination

f the method name and parameter types [31]. The accuracy of such
𝑖𝑚(⋅) is easily affected by the modification of the method or class
ames (e.g., abbreviations, synonyms). The search algorithm used in
he work [6] is based on a mature clone detector called NiCad [32]. The
ore function 𝑠𝑖𝑚(⋅) designed by NiCad is based on the longest common
ub-sequence matching algorithm. Thus, this 𝑠𝑖𝑚(⋅) is easily affected by
he modification of the literal text of the code snippet. For example,
2

Fig. 2. The CFGs of the methods 𝑚1 and 𝑚2 in Fig. 1.

we feed two test targets 𝑚1 and 𝑚2 shown in Fig. 1 to NiCad, and the
detection results show that they are not a clone pair. In this case, the
test case 𝑡1 would not be recommended to the test target 𝑚2.

In this paper, we propose a novel TCR technique based on the
alanced distance, which combines the distances of code snippets and
omments. These distances can reflect the test target similarity in
unctionality to a certain extent. For the code snippet, considering
hat two test targets may share a low similarity in the literal text
ut implement the same or similar functionality, we compensate for
his by measuring the similarity in control flows. For example, the
est targets 𝑚1 and 𝑚2 shown in Fig. 1 share a low similarity in
iteral text while almost identical in control flow graphs (as shown
n Fig. 2). Besides, the branch coverage is one of the most important
valuation criteria of test adequacy [33–35]. The control flow of a test
arget can intuitively show which branches of it need to be tested.
n control flow-based test adequacy, node coverage is often called
tatement coverage or basic block coverage, and edge coverage is often
alled branch coverage [1,33]. If two test targets have similar control
lows, developers can learn how to write similar test cases from the
ecommended test cases to achieve similar branch coverage in the new
est target. Therefore, the TCR technique that takes control flows into
ount may make the recommended test cases suitable for the new test
arget. Based on the proposed TCR technique, we implement a test case
ecommender, namely BDTCR.

In addition, test case recommendation cannot be carried out when
here is no corpus that provides a large number of high-quality test
ases for retrieval. We implement a tool TConstructer to extract test
ases automatically. The design details of TConstructer are introduced
n Section 3.2. We extract includes not only a test method but also
ther context code elements it must depend on at runtime, such as
xternal or third-party variables and method calls. We collectively refer
o these context code elements as test dependencies. In practice, for
CR across project boundaries, developers may more or less need to
odify recommended test cases to adapt to the new test targets. Test

ases containing complete test dependencies are highly readable and
nderstandable, reducing the time and cost for developers to under-
tand and modify them. In this paper, our primary motivation toward
tudying Java projects that use the JUnit framework1 is applicability.

1 https://junit.org.

https://junit.org
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Existing studies indicated that Java and JUnit are one of the most pop-
ular programming languages [36] and Java libraries [37], respectively.
Hence, constructing a dataset of projects that use Java and JUnit leads
to the potential for impact on real-world software development [38].
For practical application, we construct a test case corpus that contains
more than 13,000 JUnit test cases. Based on this corpus, we conduct
comprehensive experiments to evaluate the effectiveness and usefulness
of BDTCR. And the experimental results show that BDTCR outperforms
the state-of-the-art technique (i.e., TestTenderer) by 11% and 26.43%
in terms of 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒@5 and 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒@10.

In summary, we make the following contributions.

• We propose a novel TCR technique that measures the test target
similarity based on the balanced distance. The balanced distance
combines the distances of code snippets and commends, which
allows our technique to recommend test cases more accurately
and robustly.

• We develop an automated tool named TConstructer used to con-
struct a corpus of test cases. We construct a test case corpus that
contains 13,000 JUnit test cases through TConstructer.

• We implement a test case recommender BDTCR and integrate
it into a mature testing platform Mooctest.2 The comprehen-
sive evaluation results show that BDTCR can recommend more
accurate test cases than the state-of-the-art techniques.

• We release the implementation code of BDTCR and all the data
for future researchers. BDTCR (equipped with TConstructer) and
the test case corpus can be downloaded on the website.3

The remainder of this paper is organized as follows. Section 2
rovides basic concepts involved in this study. Section 3 introduces our
pproach, i.e., the design of BDTCR. Section 4 presents the evaluation
n detail. Section 5 describes a discussion about test case recommen-
ation. Section 6 presents threats to validity. Section 7 discusses the
elated work. We conclude the paper in Section 8.

. Basic concepts

In this section, we refine related terms in TCR. From one simple
iew, the source code is composed of production code (P) and test code
T). Test cases are extracted from T and used to check the test targets
n P.
Test Target. In unit testing, a unit under test is the smallest testable

art of the software, a single method/function. All methods in P are
otential test targets. Listing 1 shows an example of production code
here the method integerRepresentation() is a test target. For each test

arget 𝑚 ∈ P, it is an essential task for TCR to understand 𝑚’s semantics
i.e., functionality). According to software development experience,
e can infer the functionality that a test target implements from its

ode snippets and comments. Code snippets contain lots of textual
nformation (e.g., identifiers) and structural information (e.g., control
lows) that explicitly express the functionality. Comments are the nat-
ral language descriptions providing additional information that is not
eadily available in the code itself [39], which are used to explain
r describe what the method wants to do. Thus, method comments
re valuable information to help developers comprehend programs
nd reduce additional time spent on reading and navigating source
ode [40].

1 public class ALU {
2 public String integerRepresentation(String

number, int length) {
3 ...
4 String tmpNum;
5 boolean isMinus;

2 http://www.mooctest.net.
3 https://github.com/wssun/BDTCR.
3

6 if (number.charAt(0) == ’-’) {
7 isMinus = true;
8 tmpNum = number.substring(1);
9 } else {
0 isMinus = false;
1 tmpNum = number;
2 }
3 ...
4 return result.toString();
5 }
6 }

Listing 1: An Example of Production Code

Test Method. A test method (𝑚𝑡) is a method in T. It is mainly
responsible for completing the execution of the test task. It is usually
declared by marking with the annotation ‘‘@Test’’ [38]. Listing 2 shows
an example of test code where the method test() is a test method.

1 import org.junit.Test;
2 import static org.junit.Assert.*;
3 public class ALUTest {
4 ALU alu = new ALU();
5 @Test
6 public void test() {
7 String expected1 = " 00001001 " ;
8 String actual1 = alu.integerRepresentation( " 9

" , 8);
9 String expected2 = " 00010100 " ;
0 String actual2 = alu.floatRepresentation( "

0.01 " , 2, 5);
1 assertEquals(expected1 , actual1);
2 assertEquals(expected2 , actual2);
3 }
4 }

Listing 2: An Example of Test Code

Test Dependency. Test dependency () refers to a set of context
statements that a test method depends on at runtime, encompassing
global variable declaration statements, callee method code statements,
etc. The dependency on variables is considered as the variable depen-
dency. The dependency on method calls is considered as the method
dependency. Four kinds of variables are considered in the variable
dependency: local, global, external variables, and variables from a
third-party library. For example, in Listing 2, the global variable decla-
ration statement ALU alu = new ALU() (line 4) is a variable dependency
that the test method test() must depend on during executing testing.
Three kinds of methods are considered in the method dependency: in-
ternal, external methods, and methods from third-party libraries. These
test dependencies are contexts that a test method depends on during
executing testing. For example, in Listing 2, the method code corre-
sponding to the external method call alu.integerRepresentation(‘‘0.9’’, 8)
is a method dependency. More details about test dependency analysis
are introduced in Section 3.2.2.

Test Assertion. Test assertion () refers to the assert statement
ontained in the test method. In unit testing, assert statements pro-
ide necessary logic checks to ensure that test targets are functioning
roperly and produce expected results [38]. For example, in Listing 2,
he assert statement assertEquals(expected1, actual1); (line 11) is used to
heck whether the actual logic of the test target integerRepresentation()
line 8) works as expected.
Test Case. Above all, in this paper, a test case 𝑡 is composed of a

est method (𝑚𝑡) and corresponding test dependencies (). In addition,
should also meet the following conditions:

• 𝑡 must have explicit test targets. In other words, if the core part
𝑚𝑡 of 𝑡 does not call any test targets, such 𝑡 is worthless.

• 𝑡 must have the assert statements. As mentioned earlier, the core
part 𝑚𝑡 of 𝑡 should contain assert statements used to check the
actual logic of the test target works as expected.

http://www.mooctest.net
https://github.com/wssun/BDTCR
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Table 1
A summary of notations.

Name Notation Meaning

Production Code P A part of source code
Test Code T A part of source code
Test Target 𝑚 A method under test
Test Method 𝑚𝑡 A method in T and used to test 𝑚
Test Dependency  𝑚𝑡 ’s test dependencies
Test Assertion  Assert statements in 𝑚𝑡

Test Case 𝑡 A test case

1 @Test
2 public void testIntegerRepresentation() {
3 String expected1 = " 00001001 " ;
4 String actual1 = alu.integerRepresentation( " 9

" , 8);
5 assertEquals(expected1 , actual1);
6 }
7

8 @Test
9 public void testFloatRepresentation() {
0 String expected2 = " 00010100 " ;
1 String actual2 = alu.floatRepresentation( "

0.01 " , 2, 5);
2 assertEquals(expected2 , actual2);
3 }

isting 3: An Example of Slicing Results

In particular, a test case should only check one test target. It is
discouraged practice that combining multiple unrelated tests into
single test method [27,41–43]. It is inappropriate and not user-

riendly to directly recommend the non-normalized test methods to
evelopers. For example, in Listing 2, the test method test() checks two
est targets, i.e., integerRepresentation() and floatRepresentation(). In this
ase, if a novice wants to learn how to test integerRepresentation(), it is
nappropriate to directly recommend a test case composed of test() and
ts  to him because test() also checks other test targets. Therefore, to
ake test case more suitable for TCR, with the guide of our previous

tudy [27], we use program slicing technique [44] to slice the original
est case into multiple test cases, and each of them has a single assert
tatement (i.e., || = 1). For example, Listing 3 shows two test methods
hat are sliced from test() using program slicing technique. And more
etails are introduced in Section 3.2.4.

In Table 1, we provide a summary of notations used in defining the
erms as well as those introduced later in the paper.

. Approach

.1. Overview

As shown in Fig. 3, BDTCR mainly consists of two parts: (a) test
ase construction – an offline task, and (b) test case search – an
nline task. Test case construction (TConstructer) is responsible for
onstructing a corpus (𝑇𝐶𝐶) that encompasses substantial test cases
o support subsequent test case search. TConstructer is an offline mod-
le. It is inclusive of four core sequential components: test method
xtraction (TM Extraction), test dependency analysis (TD Analysis),
est target recognition (TT Recognition), and test assert normaliza-
ion (TA Normalization). Given a pair of production code and test
ode, TConstructer first uses the TM Extraction component to extract
ll test methods, detailed in Section 3.2.1. These test methods may
se/invoke some global variables/methods, which are essential for
xecuting test methods and are therefore considered as test depen-
encies. TConstructer uses the TD Analysis component to extract test
4

ependencies for test methods, detailed in Section 3.2.2. Considering
hat some test methods are invalid, that is, they do not test any test
argets, TConstructer uses the TT Recognition component to select valid
est methods, detailed in Section 3.2.3. As mentioned in Section 2,
ome test methods are non-normalized, so TConstructer further uses
he TA Normalization component to normalize all valid test methods,
etailed in Section 3.2.4. Each normalized test method and its test
ependencies constitute a test case. Finally, all test cases are stored
nto the corpus 𝑇𝐶𝐶 to support subsequent test case retrieval. Test
ase search (TSearcher), corresponding to the part (b) of Fig. 3 is
esponsible for retrieving test cases related to the given query (i.e., new
est target) in 𝑇𝐶𝐶. TSearcher is an online module. It is composed of
ultiple components that are designed to complete five processes: 1⃝

uery extraction, 2⃝ test target loading, 3⃝ basic distances (i.e., DL,
G, DC) calculation, 4⃝ balanced distance (i.e., BD) calculation, and

5 search result renewal. Given a query 𝑚, TSearcher first passes it
nto the query extraction process to extract the code, keywords of the
omment, and CFG, detailed in Section 3.3.1. Then, TSearcher retrieves
test target (𝑚′) with a test case from 𝑇𝐶𝐶, detailed in Section 3.3.2.

n the calculation process of the basic distances, TSearcher calculates
he distances in three dimensions between 𝑚 and 𝑚′ (i.e., DL, DG, and
C), detailed in Section 3.3.3. Based on the distances DL, DG, and DC,
Searcher further calculates the balanced distance (BD), detailed in
ection 3.3.4. All pairs of 𝑚′ and BD are stored into a similar list of
est targets 𝑀𝑆 . In the process of search result renewal, TSearcher first
orts all 𝑚′ by BD, then determines whether to trigger the next retrieval,
etailed in Section 3.3.5. TSearcher repeats the above five processes
ntil the number of search results reaches the expected number or all
he test targets in 𝑇𝐶𝐶 have been traversed. We discuss the above
omponents and processes in detail in the following sections.

.2. Test case construction

In this section, we mainly introduce the implementation of the
Constructer module in BDTCR. As described above, TConstructer in-
ludes four core sequential components used to complete four se-
uential tasks, i.e., test method extraction, test dependency analy-
is, test target recognition, and test assert normalization. We discuss
ow TConstructer completes these tasks in detail in the following
ubsections.

.2.1. Test method extraction (TM extraction)
As mentioned in Section 2, the test method, as an essential part of

test case, is responsible for completing the execution of the test task.
herefore, it is fundamental work for test case construction to extract
est methods from T.

TConstructer designs the TM Extraction component to extract test
ethods from complex T. In this component, TConstructer uses the

haracteristics of unit testing frameworks and test assertion libraries
s the indicators to extract test methods. Specifically, according to the
haracteristics of JUnit testing frameworks, that is, in JUnit 4.x4 or
igher (JUnit 3.x is outdated, so it not be discussed.), test methods
re annotated with ‘@Test’. TConstructer first extracts all such methods
ith ‘@Test’ from T. These methods are considered as candidate test
ethods. TConstructer further checks whether the candidate test meth-

ds contain assert statements. Assert statements provide necessary logic
hecks to ensure that test targets are functioning properly and produce
xpected results [38]. In addition to the assertions equipped in JUnit,
ssertJ [45] and Truth [46] are also commonly used assertion libraries.
Constructer detects whether test methods contain assert statements
ccording to external method calls and import information (e.g., lines
1 and 2 in Listing 2). Test methods that do not contain any assert
tatements are discarded.

4 3.x, 4.x, and 5.x refer to the version of the JUnit testing framework.
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Fig. 3. The framework of BDTCR.
3.2.2. Test dependency analysis (TD analysis)
As described in Section 2, test dependency () is a set of context

statements that a test method (𝑚𝑡) depends on during executing testing.
Test dependency analysis aims at extracting 𝑚𝑡’s . In addition,  is a
prerequisite for recognizing the test targets in 𝑚𝑡 (i.e., TT Recognition),
and more details are introduced in Section 3.2.3.

TConstructer designs the TD Analysis component to extract test
methods’ contexts from T and P. In this component, test dependency
analysis is further subdivided into variable dependency analysis (VDA)
and method dependency analysis (MDA). Considering that method calls
may use the variables declared previously as arguments, the prereq-
uisite for analyzing method calls is to know the data types of these
arguments. Therefore, VDA must be performed before MDA.

Variable dependency analysis (VDA). Given a test method (𝑚𝑡), VDA
aims to extract all statements related to the variables that appear in 𝑚𝑡.
In practice, TConstructer first uses JavaParser5 to extract the depen-
dencies among statements and generate a program dependency graph
(PDG). Based on PDG, TConstructer employs Bidirectional (Backward
and Forward) Static Slicing (BSS and FSS, for short) [42,44,47] to
extract statements that are related to the slicing criterion. Static slicing
selects all statements that can affect the slicing criterion directly or
indirectly without executing the program [44]. All statements in 𝑚𝑡 are
considered as slicing criteria 𝐶. A slicing criterion 𝑐 ∈ 𝐶 is composed
of two-tuple 𝑐 = ⟨𝑠, 𝑣⟩ where 𝑠 is a statement and 𝑣 are variables in
𝑠. BSS extracts the statements that 𝑐 directly or indirectly depends on
because of the usage of 𝑣. FSS extracts the statements that directly
or indirectly depend on 𝑐 because they used the 𝑣 declared in 𝑠. The
slicing results of 𝑐 is a union set of results from BSS and FSS. All slicing
results of 𝐶 constitute the result of VDA. For local variables, they are
stored persistently along with test methods where they are declared.
For global variables, their declaration statements are extracted and

5 https://javapaser.org.
5

persistently stored. Besides, the code blocks of the static initializers in
which the static variables are initialized are also stored. For external
variables, declaration statements are extracted by analyzing import
information. For variables from the third-party libraries, we store the
import statements and the version information of libraries.

Method dependency analysis (MDA). Given a 𝑚𝑡, MDA aims to extract
all methods related to 𝑚𝑡. In practice, TConstructer first statically scans
P and T and extracts all methods’ signatures. A signature can uniquely
represent a method in the project [31]. Signatures are utilized to help
TConstructer quickly determine methods when analyzing method calls.
For internal and external method calls, TConstructer first analyzes vari-
able dependencies and determines the data types of variables involved
in the method calls (e.g., the variables in arguments). Then, TConstruc-
ter determines the specific method corresponding to the method call
by comparing the signatures obtained in advance. In particular, for
external method calls, TConstructer labels where they originate from,
production code, or test code. Such a label is instrumental in test target
recognition. All signatures of methods that are related to 𝑚𝑡 constitute
the result of MDA. All method code snippets of the internal and external
method calls are persistently stored. For method calls from the third-
party libraries, the import statements and the version information of
libraries are stored. Listing 4 shows an example of the results of test
dependency Analysis, which are test dependencies of the test method
𝑡𝑒𝑠𝑡(). Among which, the top 2 rows (lines 1–2) are MDA’s results, and
the last row (line 3) is VDA’s result.
1 import org.junit.Test;
2 import static org.junit.Assert.*;
3 ALU alu = new ALU();

Listing 4: An Example of Test Dependency Analysis

3.2.3. Test target recognition (TT recognition)
As described in Section 2, a test case must have explicit test tar-

gets. Test target recognition aims to recognize test targets within test
methods.

https://javapaser.org
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TConstructer designs the TT Recognition component to recognize
test targets tested by test methods. In this component, TConstructer
recognizes the test target in a 𝑚𝑡 under two progressive constraints: (1)
test target is an external method call; and (2) test target is a method
originating from P. During TD Analysis, TConstructer has labeled which
methods are external method calls and originate from P. Thus, test
target recognition is a simple task for TConstructer. In practice, TCon-
structer first extracts all method calls within the test method. The list of
invoked methods is then queried against the previously extracted list of
methods defined in P, considering the complete method signature. With
the help of the TD Analysis component, like [38,48], TConstructer then
considers that the last method call before the assert is the test target of
the assert statement. In some instances, the assert statement contains
the method call within its parameters. In these instances, we consider
the method call within the assertion parameters as the test target.

For example, in Listing 2, there are three method calls in the
test method test(), i.e., integerRepresentation(), floatRepresentation() and
ssertEquals(). TConstructer knows assertEquals() is a method call from

the third-party libraries though the TD Analysis component, it therefore
only considers integerRepresentation(), floatRepresentation() as two test
targets. They are the test targets of lines 11 and 12 assert statements,
respectively.

3.2.4. Test assert normalization (TA normalization)
As described in Section 2, it is inappropriate and not user-friendly

to directly recommend non-normalized test methods to developers. For
example, the test method test() shown in Listing 2 is coupled and hard
to read. Test assert normalization is to normalize each test method and
make the number of assert statement (test target) of it 1, i.e., || = 1.
For example, the two test methods shown in Listing 3 are intuitively
easier to understand than the original test method test().

TConstructer designs the TA Normalization component to normal-
ze test targets within test methods. In this component, TConstructer
onsiders each assert statement as a slicing criterion and employs
idirectional Static Slicing to extract statements related to the slicing
riterion. For example, TConstructer considers lines 11 and 12 in
isting 2 as two slicing criteria, and the part of the slicing results are
hown in Listing 3. In addition, by their very nature, test methods are

class of methods with a special purpose (i.e., testing) and should
herefore follow the lowerCamelCase naming convention [49]. It is
tandard practice to name test methods the same as the methods being
ested with the addition of ‘‘test’’ at the start. For example, the test
ethod used to test the test target integerRepresentation should be
amed testIntegerRepresentation.

.2.5. Test case example

1 import org.junit.Test;
2 import static org.junit.Assert.*;
3 ALU alu = new ALU();
4 @Test
5 public void testIntegerRepresentation() {
6 String expected1 = " 00001001 " ;
7 String actual1 = alu.integerRepresentation( " 9

" , 8);
8 assertEquals(expected1 , actual1);
9 }

isting 5: An Example of a Test Case

isting 5 shows a test case extracted and adjusted by TConstructer
rom the test code in Listing 2. The test case is composed of a test
ethod testIntegerRepresentation (lines 4–9) and its test dependencies

lines 1–3). And its test target is the method integerRepresentation().
All test cases extracted by TConstructer are persisted and stored in
6

he corpus 𝑇𝐶𝐶 to support the subsequent test case search.
.3. Test case search

In this section, we mainly introduce the implementation of the
Searcher module in BDTCR. From one simple view, TCR is a test
ase search process, where the search query is a test target and search
esults are relevant test cases found by TCR techniques. As shown in
ig. 3, in BDTCR, TSearcher takes a new test target 𝑚 as input and

outputs search results (i.e., recommended test cases 𝑇𝐶). TSearcher
encompasses multiple components which cooperate to complete five
processes: 1⃝ extracting 𝑚’s code and comment (Query Extraction), 2⃝
oading a test target 𝑚′ from 𝑇𝐶𝐶 (TT Loading), 3⃝ calculating the
asic distances between 𝑚 and 𝑚′ on code snippets and comments (DL,
G, and DC Calculation), 4⃝ calculating the balanced distance based
n DL, DG, and DC (BD Calculation), 5⃝ adding 𝑚′ to a similar list of
est targets (𝑀𝑆 ), sorting items in 𝑀𝑆 based on BD, and determining
hether to terminate the search (Search Results Renewal). If the search

s finished, TSearcher outputs the test cases 𝑇𝐶 belonging to 𝑀𝑆 ,
therwise, it returns to the process 2⃝. We discuss these processes in
etail in the following subsections.

.3.1. Process 1⃝: Query extraction
Once receiving a new test target given by the developer, TSearcher

ill perform some preprocessing and extract important features from
ode snippets and comments as queries used in the subsequent pro-
esses.

Specifically, in this process, TSearcher takes a test target 𝑚 given by
he developer as input, then separates the code snippet and comments.
or the code part, TSearcher first removes all comments in the method
ody and gets a clean version of the code snippet. Then, TSearcher
tilizes an open-source tool PROGEX6 to generate control flow graphs
CFGs) of the clear version code snippet. Further, TSearcher removes
xtra white spaces in the code snippet, leaving only a single white
pace between every two words. In other words, TSearcher converts
he formatted code snippet with indentation into a string of words. We
all such a string of words the literal text of the code snippet.

For the comment part, three kinds of comments are taken into ac-
ount, Single-Line comments, Multi-Line (also called Block) comments,
nd Javadoc comments [39,49]. For the Javadoc comments, TSearcher
nly extracts the first sentence because such a sentence is a description
f the method documented [50]. The research [51] provides us with in-
piration for processing the comment text. TSearcher uses the Stanford
oreNLP tools [52] to extract keywords from the comment. In addition
o nouns and verbs recommended in existing research [51,53,54],
Searcher also extracts adjectives that also contain important semantic

nformation. For example, the adjectives ‘maximum’ and ‘minimum’ in
he comment /* calculate the maximum value */ and /* calculate the
inimum value */ have opposite semantics.

.3.2. Process 2⃝: Test target loading (TT loading)
Test target loading is responsible for loading test targets that are

ompared to the new test target 𝑚 given by the developer.
In practice, after 𝑇𝐶𝐶 is constructed, TConstructer further generates

he literal text, CFGs, and keywords for each test target by using the
ame method as that used in the process 1⃝. Therefore, in the TT
oading process, TSearcher directly loads the literal text, CFGs, and
eywords of each test target and its test cases from 𝑇𝐶𝐶 in sequence.
his information would further be compared to the queries extracted
rom 𝑚 through the process 1⃝. TSearcher executes the TT Loading
rocess in the following two cases:

Case 1: When TSearcher receives a retrieval request (that is, an input
m’) from the developer, it executes the process once.

Case 2: TSearcher executes the process again when the search
ermination condition is not met, such as when the number of search
esults does not reach the expected number. This case is discussed in
etail in Section 3.3.5.

6 https://github.com/ghaffarian/progex.

https://github.com/ghaffarian/progex
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3.3.3. Process 3⃝: Basic distances (DL, DG and DC) calculation
Basic distances (i.e., DL, DG, and DC) determine the similarity of

he two test targets and whether they can reuse each other’s test cases.
herefore, the calculation of the basic distances is a fundamental work

n TSearcher. Below we introduce in detail how TSearcher calculates
hese distances.
Distance between Comments (DC). TSearcher draws on the prior

work [51] to process comments. As shown in Eq. (2), we slightly adjust
the Jaccard Index to calculate the similarity between two keyword
sets, in which, 𝐾𝑖 and 𝐾𝑗 denote the keyword sets of natural language
escriptions (i.e., comments); 𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑠(𝐾𝑖, 𝐾𝑗 ) is an interface used
o calculate the number of synonym pairs found in 𝐾𝑖 and 𝐾𝑗 ; and
𝑑𝑎𝑝𝑡𝑒𝑑𝐽𝐼(𝐾𝑖, 𝐾𝑗 ) denotes the similarity between two keyword sets 𝐾𝑖
nd 𝐾𝑗 . 𝐷𝐶(𝑚𝑖, 𝑚𝑗 ) in Eq. (1) denotes the distance between comments
f two methods 𝑚𝑖 and 𝑚𝑗 .

We utilize the WordNet [55] to process the problem of languages
ith relatively more prevalent polysemy (i.e., many possible meanings

or a word or phrase). Specifically, we search for the synonyms of
eywords from WordNet and take them into account when calculating
he distance of comments to avoid the negative impacts of synonyms
n analysis.

𝐶(𝑚𝑖, 𝑚𝑗 ) =

{

−1, if 𝐾𝑖 or 𝐾𝑗 is ∅
1 − 𝐴𝑑𝑎𝑝𝑡𝑒𝑑𝐽𝐼(𝐾𝑖, 𝐾𝑗 ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

𝑑𝑎𝑝𝑡𝑒𝑑𝐽𝐼(𝐾𝑖, 𝐾𝑗 ) =
|𝐾𝑖 ∩𝐾𝑗 | + 𝑠𝑦𝑛𝑜𝑛𝑦𝑚(𝐾𝑖, 𝐾𝑗 )
|𝐾𝑖 ∪𝐾𝑗 | − 𝑠𝑦𝑛𝑜𝑛𝑦𝑚(𝐾𝑖, 𝐾𝑗 )

(2)

Distance between Literal text (DL). Chaiyong et al. [56] con-
ducted extensive research on the code similarity analyzer. In their
research, the similarity analysis of the method-level code is also re-
garded as the Boiler-plate code detection problem. Boiler-plate code
occurs when developers reuse a method code to achieve a particular
task. Compared with specialized code similarity tools, Difflib [57] got
the highest AUC (Area Under ROC Curve) in the scenario of Boiler-plate
code detection, although it is a general textual similarity measure tool.
Specifically, it provides an interface ratio() that returns a measure of
the sequences’ similarity as a float in the range [0, 1] where 1.0 if the
sequences are identical, and 0.0 if they have nothing in common. The
calculation formula behind the ratio() interface is shown in Eq. (3).

𝑠𝑖𝑚(𝑠1, 𝑠2) = 2 ∗
𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑠1, 𝑠2)

|𝑠1| + |𝑠2|
(3)

𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑠1, 𝑠2) is the number of matches detected by Difflib. |𝑠1|
and |𝑠2| represent the number of elements in 𝑠1 and 𝑠2, respectively.
Note that Eq. (3) is asymmetric, i.e., 𝑠𝑖𝑚(𝑠1, 𝑠2) ≠ 𝑠𝑖𝑚(𝑠2, 𝑠1) because of
𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑠1, 𝑠2) ≠ 𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑠2, 𝑠1). Thus, we employ Eq. (4) to calculate
the distance on the literal text.

𝐷𝐿(𝑚1, 𝑚2) = 1 − 𝑚𝑎𝑥{𝑠𝑖𝑚(𝑠1, 𝑠2), 𝑠𝑖𝑚(𝑠2, 𝑠1)} (4)

Distance between control flow Graphs (DG). Referring to the
research [58], we adopt the algorithm based on graph edit distance
proposed by Hu et al. [59] to measure the similarity of CFGs. The
algorithm can approximate the minimum number of edit operations
needed to transform one graph into another. In this paper, we assume
uniform costs of edit operations, i.e. 𝑐𝑜𝑠𝑡 ≡ 1. Besides, to ensure that
the operations have unit costs, it only allows adding and deleting zero-
degree nodes. In other words, if we want to delete a node, we must
first delete its incident edges, and if we want to add a node with some
incoming or outgoing edges, we must create the node at first [58]. The
basic idea of the algorithm proposed by Hu et al. [59] is to (1) build a
cost matrix that represents the costs of mapping the different nodes in
the two CFGs. After that, (2) the Hungarian algorithm [60] is used to
find matching between the nodes such that the total cost is minimized.

Step (1) Building Cost Matrix: Let 𝑁1 and 𝑁2 denote the sets of nodes
for 𝐶𝐹𝐺1 and 𝐶𝐹𝐺2 respectively, and |𝑁1| and |𝑁2| are the number of
nodes. Besides, |𝑁2| also represents the number of dummy nodes that
are added to 𝑁 , and |𝑁 | also represents the number of dummy nodes
7

1 1
that are added to 𝑁2. The cost matrix is thus a (|𝑁1|+|𝑁2|)×(|𝑁1|+|𝑁2|)
square matrix (e.g., Fig. 4). It represents the cost of matching each of
the nodes in 𝐶𝐹𝐺1 to any node in 𝐶𝐹𝐺2. Denote the elements in the
cost matrix by 𝑒𝑖𝑗 where 𝑖, 𝑗 ∈ {|𝑁1| + |𝑁2|}.

The cost matrix can be divided into four sub-matrices. The first sub-
matrix is a |𝑁1|× |𝑁2| matrix at the top left corner. It denotes the cost
of matching a real node in 𝐶𝐹𝐺1 to a real node in 𝐶𝐹𝐺2. The values of
the elements in it are calculated by Eq. (5), in which the relabeling cost
is the cost of editing the instructions in a node to make them the same
as those in the node that is matched to it; 𝑛𝑒𝑖−(𝑛𝑖) and 𝑛𝑒𝑖+(𝑛𝑖) are the
number of the in-neighbors and out-neighbors of node 𝑛𝑖, respectively.
The second sub-matrix is a |𝑁2|×|𝑁1| matrix at the bottom right corner.
It is a zero matrix as it represents matching a dummy node to a dummy
node which costs nothing. The third sub-matrix is a |𝑁2| × |𝑁2| matrix
at the top right corner. It represents the matching of a real node in
𝐶𝐹𝐺1 to a dummy node which essentially means a node deletion. The
values of the elements in it are calculated by Eq. (6), where 𝑑𝑒𝑔−(𝑛𝑖)
and 𝑑𝑒𝑔+(𝑛𝑖) are the number of the in-degrees and out-degrees of node
𝑛𝑖, respectively. The elements not at the diagonal are set to ∞. The
fourth sub-matrix at the bottom left corner is defined similarly to the
third sub-matrix. As in the work [58], we also focus on the topology
distance and thus ignore the relabeling cost. For example, Fig. 4 shows
the cost matrix that we created for 𝐶𝐹𝐺1 and 𝐶𝐹𝐺2 is composed of
four sub-matrices enclosed by dotted rectangles.

𝑒𝑖𝑗 = relabeling cost + |𝑛𝑒𝑖−(𝑛𝑖) − 𝑛𝑒𝑖−(𝑛𝑗 )|

+|𝑛𝑒𝑖+(𝑛𝑖) − 𝑛𝑒𝑖+(𝑛𝑗 )|
(5)

𝑒𝑖𝑗 = 1 + 𝑑𝑒𝑔−(𝑛𝑖) + 𝑑𝑒𝑔+(𝑛𝑖) (6)

Step (2) Finding Best Match of the Nodes: After the cost matrix is
built, the target is to find matching between the nodes in 𝐶𝐹𝐺1 and
𝐶𝐹𝐺2 with the minimum cost. The cost of matching is given by the
sum of the costs of the pairs in the matching according to the cost
matrix. This is an instance of the assignment problem [58]. Hungarian
algorithm [60] finds an optimal solution to the assignment problem in
𝑂(𝑛3) time. As shown in Fig. 4, the elements circled by black circles
represent matching between nodes in the two control flow graphs,
which are found by the Hungarian algorithm. Adding up the costs of
these elements, we get the total cost of these edit operations, which is
3.

The distance between two CFGs is calculated by Eq. (7), among
which 𝑁𝑖 and 𝐸𝑖 are the numbers of nodes and edges in 𝐶𝐹𝐺, and
the minimum cost is got in Step (2).

𝐷𝐺(𝐶𝐹𝐺𝑖, 𝐶𝐹𝐺𝑗 ) =
𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑜𝑠𝑡

|𝑁𝑖| + |𝐸𝑖| + |𝑁𝑗 | + |𝐸𝑗 |
(7)

Based on the above theory, we use 𝐷𝐺(𝑚𝑖, 𝑚𝑗 ) represent the dis-
tance between control flow graphs of two test targets 𝑚𝑖 and 𝑚𝑗 ,
i.e., 𝐷𝐺(𝑚𝑖, 𝑚𝑗 ) = 𝐷𝐺(𝐶𝐹𝐺𝑖, 𝐶𝐹𝐺𝑗 ).

.3.4. Process 4⃝: Balanced Distance (BD) calculation
The balanced distance is used to balance the three basic distances

rom the process 3⃝ and get a unique representation of similarity
etween two test targets.

Specifically, in this process, TSearcher first combines the two basic
istances on the code snippets to produce a hybrid distance. TSearcher
ses Eq. (8) to combine the distances between two test targets on the
iteral text and control flows to represent the distance on the code snip-
ets, i.e., 𝐷𝐵. Eq. (8) is a step-wise formula, where the first condition

holds for when the distance on the literal text is 0 (i.e., 𝐷𝐿(𝑚𝑖, 𝑚𝑗 ) = 0)
hich means two test targets are identical. In this case, 𝐷𝐵(𝑚𝑖, 𝑚𝑗 ) = 0.

n the next step, we weight the distances on the literal text and CFGs
y adjusting two factors 𝛼 and 𝛽, and 𝛼 + 𝛽 = 1. The resulting hybrid
istance 𝐷𝐵 represents the pairwise distance of the corresponding code
nippets of two test targets 𝑚𝑖 and 𝑚𝑗 . Then, TSearcher uses Eq. (9)
o combine the code snippet distance (DB) and the comment distance
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(DC). We use 𝐵𝐷(𝑚𝑖, 𝑚𝑗 ) to unique represent the similarity between two
est targets 𝑚𝑖 and 𝑚𝑗 .

𝐵(𝑚𝑖, 𝑚𝑗 ) =

{

0, if 𝐷𝐿(𝑚𝑖, 𝑚𝑗 ) = 0
𝛼 ×𝐷𝐿(𝑚𝑖, 𝑚𝑗 ) + 𝛽 ×𝐷𝐺(𝑚𝑖, 𝑚𝑗 ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

𝐵𝐷(𝑚𝑖, 𝑚𝑗 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if 𝐷𝐵(𝑚𝑖, 𝑚𝑗 ) = 0
𝐷𝐵(𝑚𝑖, 𝑚𝑗 ), if 𝐷𝐶(𝑚𝑖, 𝑚𝑗 ) = −1
𝛾 ×𝐷𝐵(𝑚𝑖, 𝑚𝑗 ), if 𝐷𝐶(𝑚𝑖, 𝑚𝑗 ) = 0

(1 + 𝜔2) × 𝐷𝐵(𝑚𝑖 ,𝑚𝑗 )×𝐷𝐶(𝑚𝑖 ,𝑚𝑗 )
𝜔2𝐷𝐵(𝑚𝑖 ,𝑚𝑗 )+𝐷𝐶(𝑚𝑖 ,𝑚𝑗 )

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(9)

3.3.5. Process 5⃝: Search Results Renewal
In this process, TSearcher first updates the search results. The

search results are composed of a list of similar test targets and their
corresponding test cases. Then, TSearcher needs to give a conclusion
on whether to trigger the next search.

Specifically, TSearcher first updates a similar list of test targets 𝑀𝑆

ased on the results of the process 4⃝. As shown in Fig. 3, TSearcher
first augments 𝑀𝑆 by add 𝑚′ into it. Then, TSearcher sorts each
element in 𝑀𝑆 according to its balanced distance with 𝑚. The smaller
he balanced distance is, the higher the ranking of the test target is. On
he one hand, if the number of similar test targets in 𝑀𝑆 is less than
8

he expected number, TSearcher triggers the next search. On the other
and, if there are test targets in 𝑇𝐶𝐶 that have not been compared,

the next search will also be triggered. Both of the above conclusions on
whether to trigger the next search correspond to Case 2 in Section 3.3.2.

3.3.6. Algorithm of TSearcher

TSearcher uses Algorithm 1 to complete the test case search. The
algorithm’s inputs are a new test target 𝑚𝑖 and the expected number
of search results 𝑘 given by the developer. The algorithm’s outputs are
top 𝑘 results related to 𝑚𝑖. Specifically, before the search, TSearcher
nitializes an empty set 𝑇𝐶 that is used to store recommended test
ases. During the search, TSearcher first executes the processes 1⃝ (line
) and 2⃝ (line 4) to obtain the code snippets and comments of two
est targets (𝑚𝑖 and 𝑚𝑗). Then, TSearcher executes the process 3⃝ and
alculates the distance on the literal text (i.e., 𝑑𝑙) of the code snippets
i.e., 𝑚𝑖.𝑐𝑜𝑑𝑒 and 𝑚𝑗 .𝑐𝑜𝑑𝑒) of two test targets (line 5). It should be noted
hat if the conditional 𝑑𝑙 == 0 is true (line 6), the two code snippets
re identical. In this case, there is no need to calculate 𝑑𝑔, 𝑑𝑏, 𝑑𝑐,
nd 𝑏𝑑 (i.e., lines 10–13), and TSearcher then jumps directly to the
rocess 5⃝ to continue execution. If 𝑑𝑙 is not zero, TSearcher executes
he remainder of the process 3⃝ (lines 10–12), and then executes the
rocess 4⃝ (line 13). After getting the balance distance (𝑑𝑏) of the two
est targets (𝑚𝑖 and 𝑚𝑗), TSearcher executes the process 5⃝ (lines 14–

22). TSearcher first augments the list of similar test targets 𝑀𝑆 with a
similar test target ⟨𝑚𝑗 , 𝑏𝑑⟩ (line 14) and further sorts elements in 𝑀𝑆 by
𝑏 (line 15). If the number of the similar test targets in 𝑀𝑆 is less than
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Algorithm 1 Test Case Searcher
Input: 𝑚𝑖, // a new test target

𝑘, //the expected number of search results
Output: a set of recommended test cases, 𝑇𝐶;
1: 𝑇𝐶 ← ∅;
2: for each 𝑡𝑗 in 𝑇𝐶𝐶 do
3: 𝑚𝑖.𝑐𝑜𝑑𝑒, 𝑚𝑖.𝑐𝑜𝑚𝑚𝑒𝑛𝑡 ← 𝑄𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑚𝑖);
4: 𝑚𝑗 .𝑐𝑜𝑑𝑒, 𝑚𝑗 .𝑐𝑜𝑚𝑚𝑒𝑛𝑡 ← 𝑇𝑇𝐿𝑜𝑎𝑑𝑖𝑛𝑔(𝑡𝑗 );
5: 𝑑𝑙 ← 𝐷𝐿(𝑚𝑖.𝑐𝑜𝑑𝑒, 𝑚𝑗 .𝑐𝑜𝑑𝑒);
6: if 𝑑𝑙 == 0 then
7: 𝑏𝑑 ← 0;
8: goto line 14;
9: end if

10: 𝑑𝑔 ← 𝐷𝐺(𝑚𝑖.𝑐𝑜𝑑𝑒, 𝑚𝑗 .𝑐𝑜𝑑𝑒);
11: 𝑑𝑏 ← 𝐷𝐵(𝑑𝑙, 𝑑𝑔);
12: 𝑑𝑐 ← 𝐷𝐶(𝑚𝑖.𝑐𝑜𝑚𝑚𝑒𝑛𝑡, 𝑚𝑗 .𝑐𝑜𝑚𝑚𝑒𝑛𝑡);
13: 𝑏𝑑 ← 𝐵𝐷(𝑑𝑐, 𝑑𝑏);
14: 𝑀𝑆 ← 𝑀𝑆 ∪ {⟨𝑚𝑗 , 𝑏𝑑⟩};
15: 𝑀𝑆 ← sort 𝑀𝑆 by the balanced distance;
16: if |𝑀𝑆

| ≤ 𝑘 then
17: 𝑇𝐶 ← 𝑇𝐶 ∪ {𝑡𝑗};
18: continue;
19: else
20: 𝑀𝑆 ← select the top 𝑘 from 𝑀𝑆 ;
21: 𝑇𝐶 ← update 𝑇𝐶 according to 𝑀𝑆 ;
22: end if
23: end for
24: output 𝑇𝐶;

𝑘 (line 16), TSearcher stores test case 𝑡𝑗 into 𝑇𝐶 (line 17) and triggers
the next search (line 18). Otherwise, TSearcher selects the top 𝑘 similar
est targets from 𝑀𝑆 according to the balanced distance as a new 𝑀𝑆

line 20), and further updates 𝑇𝐶 according to the new 𝑀𝑆 (line 21).
After the search, TSearcher outputs 𝑇𝐶 and recommends them to the
developer, and the algorithm finishes.

4. Evaluation

In this section, we conduct experiments to evaluate BDTCR and
compare it with existing TCR techniques. Since existing techniques did
not introduce the test case construction process, in this section, we only
compare the test case search process.

4.1. Research questions

To evaluate BDTCR comprehensively, we summarize critical prob-
lems into the following research questions and design experiments to
answer them respectively:

• RQ1: How does the effectiveness of BDTCR compare with state-
of-the-art techniques?

• RQ2: How does the granularity of query subjects impact the
robustness of BDTCR?

• RQ3: How do distances in different aspects affect the performance
of BDTCR?

• RQ4: How do developers perform aided by BDTCR?

.2. Datasets

The evaluation of the search effect of test cases requires two
atasets, one test case dataset used as a corpus to support retrieval,
nd one test target dataset used as query subjects used in retrieval.
9

Table 2
The statistics of test cases in 𝑇𝐶𝐶.

JUnit 4.x JUnit 5.x Total

# Projects 2,133 268 2,401
# Test Cases 8,083 4,984 13,067

4.2.1. Test case corpus
There is no ready-made test case corpus that can be used to support

retrieval. Existing studies [7,61] investigated the usage of the unit
testing in open source projects. Their investigated results showed that
although the unit testing coverage in most projects has not reached
100%, there are a large number of test cases in them. These test cases
are invaluable assets and play a major role in determining the success
or failure of a software system, which makes it possible to reuse or
recommend test cases. To build a test case corpus, we choose the Java
projects that have at least 20 stars from 2017 to 2018 in GitHub. After
filtering the projects without test cases, we collect 2,401 useful projects.
As shown in Table 2, TConstructer extracts more than 13,000 test cases
which constitute the test case corpus (𝑇𝐶𝐶).

4.2.2. Query subjects
For ease of evaluation, we simply refer to the test case recommen-

dation as a test case search process. In this case, we regard the new test
target as the search query used in the search process, and the search
result is the recommended test case. Thus, we carefully select several
representative queries to build a benchmark that satisfies the following
criteria: (1) The test target must have a method comment. The method
comment is beneficial for developers to understand what the method
wants to do. (2) The test target is not a duplicate of the previous test
targets. (3) The test target should be highly understandable, as we
need to judge whether the recommended test cases are really relevant.
Thus for the candidate targets (satisfying the first two criteria), two
volunteers with 5-year Java programming experience conduct three
rounds of manual inspection to identify whether the candidate targets
are understandable or not, according to the previous work [62]. Ac-
cordingly, we randomly select 50 test targets from open-source Java
projects to build a benchmark of queries 𝑄.

In practice, different developers have different programming styles.
No matter how rich 𝑇𝐶𝐶 is, it cannot guarantee that it contains a test
target that is the same as the new method under test. Thus, we aim
to evaluate the robustness of BDTCR with a new practical application
scenario, where for each query, there are no test targets in 𝑇𝐶𝐶 that
are the same as it. Specifically, we generate 50 new queries (𝑄′)
by making minor modifications to the benchmark queries mentioned
above, including replacing a verb in the method name with synonyms
and abbreviation expansion.

In summary, we prepare two sets of query subjects, 𝑄, and 𝑄′,
which contain a total of 100 test targets. We also employ postgraduates
to conduct a two-phase checking. Firstly, each query is independently
checked by two postgraduates to ensure the test targets are high
understandable. Then, all queries are labeled with different results that
are provided to the first author for final determination.

4.3. Comparison techniques

To evaluate BDTCR more accurately, we compare the following TCR
techniques.

Tech 1: Baseline. The recommendation approach is based on the
method signature exact matching. Specifically, if the method signatures
of the two test targets are identical, they can reuse each other’s test
cases. This approach is the easiest to implement, so we treat it as a
baseline technique.

Tech 2: TestTenderer. The traditional method signature can
uniquely represent a method in the same class but cannot uniquely
represent a method in different classes. The work Test Tenderer [29]
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Table 3
An example of the (extending) method signatures.

Method signature Extending method signature

Abstraction MN + PT CN + MN + PT + RT
Example integerRepresentation(String,int) ALU.integerRepresentation(String,int):String
proposed a TCR technique that combines an extending method sig-
nature matching with a relaxation strategy. As shown in Table 3, an
extending method signature is composed of the method signature (MN
+ PT), the class name (CN), and the return type (RT) of the test target.
The relaxation strategy is applied in the recursive call in the matching
algorithm, consists of four levels: (1) search for exact match of the
query; (2) add wildcards to the method names; (3) remove the methods
and search only for the class name; and (4) add wildcards to the class
name.

Tech 3: NiCad-based. The recommendation approach is based on
clone detection. Specifically, if two test targets are a clone pair, they
can reuse each other’s test cases. This approach has been adopted in
the work [6] where a mature clone detector NiCad was used.

Tech 4: BDTCR. The recommendation approach we proposed,
which measures the test target similarity based on the balanced dis-
tance, aims to improve the effectiveness and robustness of the recom-
mendation.

4.4. Experiment setup

The NiCad configuration file allows users to configure different
detection parameters, such as detection threshold (degree of dissimi-
larity for code fragments to be considered clones), and minimum and
maximum size of what constitutes a cloned fragment. In this paper, we
use the same configuration employed by the work [6] that configured
NiCad with function-level granularity, using a blind setting and 0.1
dissimilarity threshold, setting the minimum and the maximum number
of cloned lines to 5 and 2500, respectively.

We utilize the tool Difflib to measure the similarity of the literal text
of two code snippets. We follow the configuration (i.e., 𝑎𝑢𝑡𝑜𝑗𝑢𝑛𝑘 = 𝑡𝑟𝑢𝑒
and 𝑤ℎ𝑖𝑡𝑒𝑠𝑝𝑎𝑐𝑒 = 𝑡𝑟𝑢𝑒) suggested by the researchers who presented the
ptimal configuration of Difflib for method-level code similarity mea-
urement in [56]. When comparing lines as sequences of characters,
𝑢𝑡𝑜𝑗𝑢𝑛𝑘 = 𝑡𝑟𝑢𝑒 means enabling the automatic junk heuristic that treats
ertain sequence items as junks, and 𝑤ℎ𝑖𝑡𝑒𝑠𝑝𝑎𝑐𝑒 = 𝑡𝑟𝑢𝑒 means ignoring
hite space.

For BDTCR, we set the factors 𝛼 and 𝛽 that are used to adjust the
eight of distance on the literal text and control flows to 0.75 and 0.25,

espectively. The main reason for this setting is that, considering the
omplexity of unit test cases, to improve the understandability of the
ecommended test cases, we think that similarity in the literal text is
ore important than similarity in the control flow. The factor 𝛾 is set

o 0.5, which enhances the similarity of two test targets when their
omments are identical (i.e., 𝐷𝐶(𝑚𝑖, 𝑚𝑗 ) = 0). The factor 𝜔 is used to
alance two different distances to 1, which means we equally weigh
he two kinds of distances.

For each query 𝑞 ∈ 𝑄∪𝑄′, two developers manually inspect the top
0 recommended test cases returned by different TCR techniques and
abel their relevance to 𝑞. Then they discuss the inconsistent labels and
elabel them. The procedure repeats until a consensus is reached.

.5. Evaluation metrics

We use three common metrics to measure the effectiveness of TCR:
𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒@𝑘, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘, and Mean Reciprocal Rank (𝑀𝑅𝑅). They

are widely used metrics in code recommendation literature [26,63–65].
The 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒@𝑘 (also known as success percentage at 𝑘 [64])

easures the percentage of queries for which more than one correct
esult could exist in the top 𝑘 ranked results [64,66,67]. It is calcu-
10

ated by Eq. (10) where 𝑄 is a set of queries (i.e., test targets), 𝛿(⋅)
Table 4
Overall accuracy of four techniques in 𝑄.

Techniques 𝑅@1 𝑅@5 𝑅@10 𝑃@1 𝑃@5 𝑃@10 𝑀𝑅𝑅

Baseline 0.84 0.84 0.84 0.84 0.25 0.13 0.90
TestTenderer 1.00 1.00 1.00 1.00 0.46 0.26 1.00
NiCad-based 1.00 1.00 1.00 1.00 0.22 0.11 1.00

BDTCR 1.00 1.00 1.00 1.00 0.51 0.35 1.00

is a function which returns 1 if the input is true and 0 otherwise.
𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒@𝑘 is important because a better TCR technique should
allow developers to discover the needed test cases by inspecting fewer
returned results. The higher the metric value, the better the test case
search performance [26].

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒@𝑘 = 1
|𝑄|

|𝑄|

∑

𝑞=1
𝛿(𝐹𝑅𝑎𝑛𝑘𝑞 ≤ 𝑘) (10)

where 𝐹𝑅𝑎𝑛𝑘 is the rank of the first hit result in the search result
list [63,64].

The 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 [65,68] measures the percentage of relevant re-
sults in the top 𝑘 returned results for each query. It is calculated
by Eq. (11), where |𝑅𝑇𝐶| is the number of related test cases (𝑅𝑇𝐶)
in the top 𝑘 test cases. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 is important because developers
often inspect multiple results of different usages to learn from [63].
A better test case search engine should allow developers to inspect less
noisy results. The higher the metric value, the better the test case search
performance. We evaluate 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒@𝑘 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 when 𝑘’s
value is 1, 5, and 10. These values reflect the typical sizes of results
that users would inspect [26,64].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
|𝑅𝑇𝐶|

𝑘
(11)

𝑀𝑅𝑅 = 1
|𝑄|

|𝑄|

∑

𝑞=1

1
𝐹𝑅𝑎𝑛𝑘𝑞

(12)

The 𝑀𝑅𝑅 [26,65] is the average of the reciprocal ranks of results
of a set of queries 𝑄. It is calculated by Eq. (12). The reciprocal rank of
a query is the inverse of the rank of the first hit result [69]. The higher
the 𝑀𝑅𝑅 value, the better the test case search performance.

4.6. Results

4.6.1. Effectiveness of BDTCR
Table 4 shows the overall performance of the four techniques in

𝑄, measured in terms of 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒@𝑘, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 and 𝑀𝑅𝑅. The
columns 𝑅@1, 𝑅@5 and 𝑅@10 show the results of 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒@𝑘
when 𝑘 is 1, 5 and 10, respectively. The columns 𝑃@1, 𝑃@5 and 𝑃@10
show the results of the average 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 over all queries when 𝑘 is
1, 5 and 10, respectively. The column 𝑀𝑅𝑅 shows the 𝑀𝑅𝑅 values of
the four techniques.

Based on the results in Table 4, we can have the following observa-
tions. First of all, compared to Baseline, the other three techniques can
find accurate results (test cases) for each query (new test target) and
rank the results friendly in the top 1. Besides, the results show that
BDTCR returns more relevant test cases than Baseline, TestTenderer,
and NiCad-based. For example, the 𝑅@5 value is 1.00, which means
that for 100% of the queries, the relevant test cases can be found within
the top 5 return results. The 𝑃@5 value is 0.51, which means that

51% of the top 5 results are deemed accurate. For the 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒@5
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Fig. 5. The statistical comparison of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 for four techniques.

Table 5
Overall accuracy of four techniques in 𝑄′.

Techniques 𝑅@1 𝑅@5 𝑅@10 𝑃@1 𝑃@5 𝑃@10 𝑀𝑅𝑅

Baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.09
TestTenderer 0.98 1.00 1.00 0.98 0.42 0.25 0.99
NiCad-based 1.00 1.00 1.00 1.00 0.22 0.11 1.00

BDTCR 1.00 1.00 1.00 1.00 0.51 0.35 1.00

and 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒@10, the improvements to TestTenderer are 11% and
35%, respectively. Fig. 5 shows the statistics of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 for the
three approaches when 𝑘 is 1, 5 and 10, respectively. The symbol ‘+’
indicates the average 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 value achieved by each technique.
We observe that BDTCR achieves better overall precision values than
the other three techniques.

4.6.2. Robustness of BDTCR
Table 5 shows the overall performance of the four techniques in

𝑄′. Each query in 𝑄′ is derived by making minor modifications to the
literal text of each query in 𝑄 while maintaining the same semantic
functionality). From the results in Table 5, we can observe that, in
he new actual scenario, the performance of the four techniques has
eclined to varying degrees, among which Baseline has the most severe
ecline, almost completely failed; NiCad-based and BDTCR have the
east decline.

.6.3. Influence of subdivided distances on BDTCR
The balanced distance used by BDTCR consists of three subdivided

istances, including the distance between literal text (DL), the distance
etween control flow graphs (DG), and the distance between comments
DC). Therefore, we carry out ablation experiments to understand the
ffects of these subdivided distances on the performance of BDTCR. The
xperimental results are shown in Table 6. In the table, BDTCR-DC and
DTCR-DC-DG are two variants of BDTCR, which represent remove the
istance DC and both DC and DG from BDTCR, respectively.

From the table, we can observe that when the distances on com-
ents and CFGs are removed, (1) the performance of BDTCR in terms of
@5 and 𝑃@10 degrades significantly; (2) the performance of BDTCR

n terms of 𝑅@𝑘 and 𝑀𝑅𝑅 remains stable. In the case of removing
both DC and DG (i.e., BDTCR-DC-DG), we are still able to get stable
𝑅@𝑘 and 𝑀𝑅𝑅, which is attributed to the fact that we give more
weight to the distance on the literal text. Based on the above results and
observations, we can draw the conclusion that all the three subdivided
distances (i.e., DL, DG, and DC), which promote each other, improve
the performance of BDTCR jointly.
11
Table 6
Influence of different distances on BDTCR.

Techniques 𝑅@1 𝑅@5 𝑅@10 𝑃@1 𝑃@5 𝑃@10 𝑀𝑅𝑅

BDTCR-DC 1.00 1.00 1.00 1.00 0.47 0.29 1.00
BDTCR-DC-DG 1.00 1.00 1.00 1.00 0.37 0.21 1.00

BDTCR 1.00 1.00 1.00 1.00 0.51 0.35 1.00

Fig. 6. A concrete example of test case recommendation.

4.6.4. Usefulness of BDTCR
Besides, to evaluate the usefulness of BDTCR in practice, we invite

40 students to perform unit test generation tasks and collect feed-
back. All the students are majoring in software engineering with rich
experience to solve test problems by using BDTCR.

The statistics of feedback results demonstrate that 86.21% of them
think, on the basis of meeting the test coverage goals, the number of
test cases recommended by BDTCR is appropriate. 96.55% of them say
that BDTCR is very helpful in improving the efficiency of test writing,
which indicates that BDTCR obtains high user satisfaction.

The experiment also finds that most developers can complete the
problem in 10–30 min and reach coverage requirements after using
BDTCR, while it takes 1–2 h to achieve similar results without us-
ing BDTCR according to the former exam results of software testing
courses. To sum up, BDTCR can recommend useful test cases, which
brings great help to test writing.

5. Discussion

5.1. A case study of BDTCR

We now provide a concrete example of test case recommendation to
demonstrate the advantages of BDTCR. Fig. 6(a) shows a new test target
parseCommaEnvoToList() that is treated as a query and fed to BDTCR,
and the searching result returned by BDTCR is a recommended test case
as shown in Fig. 6(c). The test target in the test case testSplitComma()
is the method splitComma() that shares a low similarity in the literal
text with the new test target (𝐷𝐿 = 0.59) although they implement
the similar functionality. Both of Baseline and TestTenderer failed to
search for the test case because the (extending) method signatures of
two test targets are not matched. NiCad-based also failed to search for
the test case because it thinks two test targets are not a clone pair.
BDTCR successfully found this test case by measuring the similarity of
two test targets more accurately based on the balanced distance. For

example, two test targets in Fig. 6 show a high similarity in control
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flows (𝐷𝐺 = 0.12). Further, we can reuse the recommended test case
testSplitComma() by simply modifying it and making it adapted to the
ew test target. For example, as shown in Fig. 6(d), the adjusted test
ase testParseCommaEnvToList() can be used to test the new test target
parseCommaEnvoToList().

5.2. The quality of test cases from BDTCR

During the evaluation, each recommended test case is scored −1, 0,
and 1. Among them, 0 indicates that the test target of the recommended
result is textually identical to the test target of the query. In other
words, these test cases can be used directly without modification. Note
that we default each recommended test case to be of high quality
relative to its test target. Therefore, the quality of such recommended
test cases is the highest. Recommended test cases with a score of −1
are considered irrelevant to the query, that is, of the worst quality.
Recommended test cases with a score of 1 are considered relevant to
the query but need to be modified appropriately to apply to the query.
Modification usually consists of three parts: initialization, invocation,
and assertion. To reduce the efforts in modifying them to adapt to the
new test targets, the test cases we recommend to developers contain
contexts to improve their understandability and reusability.

5.3. The advance of BDTCR

We have identified three advantages of BDTCR that may explain its
effectiveness and robustness in test case recommendation:

Accurate measurement of test target similarity. The literal text,
control flows, and comments contain valuable information that can
reflect the functionality of the test target. By combining them to mea-
sure the similarity of the test target, BDTCR can effectively resist the
negative effects caused by a deficiency in a single view (e.g., signature
matching), thereby making the measurement more accurate.

Test-oriented criteria selection. We select the distance on control
flows as one of the criteria instead of other structures (e.g., data flows),
which helps developers to understand the branch distribution in the
test target and improve the efficiency of branch coverage [35]. If the
control flows of the two test targets are similar, it means that their
branch distributions are similar.

High understandability test case recommendation. The test
cases that we recommend to developers contain contexts that aim at
improving their understandability and reusability. It helps to reduce
the efforts in modifying them to adapt to the new test targets.

6. Threats to validity

In our experiments, the relevancy of returned results was manually
graded and could suffer from subjectivity bias. To mitigate this threat,
we employed postgraduates to conduct a two-phase checking, (i) the
manual checking was performed independently by two developers; (ii)
the developers performed an open discussion to resolve conflict grades
for the 100 queries. We will further mitigate this threat by inviting
more developers for the grading in the future. Besides, we refer to
the work [26] and consider only the top 10 recommended test cases.
Queries that fail are identically assigned with an 𝐹𝑅𝑎𝑛𝑘 of 11 and
could be biased from the real relevancy of test cases. We believe that
the setting is reasonable. In real-world code search, developers usually
inspect the top 𝑘 results and ignore the remaining. That means it does
not make much difference if a test case appears at rank 11 or 20 if 𝑘 is
10.

The test case recommendation techniques we compared do not
provide publicly available tools or source code. Thus we implemented
the corresponding tool prototypes according to the recommendation
strategies described in their papers. There may be deficiencies in the
implementation. To mitigate this threat, we show the specific configu-
ration of each argument in Section 4.4 consistent with their papers.
We make all the implementation code public available for further
12

inspection.
7. Related work

7.1. Code similarity measurement

Test target similarity analysis is essentially the task of code simi-
larity measurement. Code similarity measurement is a traditional and
mature research field [56,70] and has many application scenarios, such
as code search or recommendation [71,72], code clone detection [73–
75], and code plagiarism detection [42,70,76]. A large number of
code similarity measurement methods have been proposed one after
another [56,70,73]. These methods mainly measure code similarity
from two levels of text and structure. The textual-level methods include
string-based [77,78] and token-based [79–81] methods. The structural-
level methods include tree-based [82–84] and graph-based [85–87]
methods. All of these methods have advantages and disadvantages.
Overall, their performance (i.e., accuracy) has improved over time, but
their complexity (including time cost) has also increased. In this paper,
we mainly focus on applying code similarity measurement in test case
recommendation scenarios. NiCad-based [6] utilizes a clone detector
to measure test target similarity. TestTenderer [29] uses signature
matching to represent test target similarity. Both NiCad-based and Test-
Tenderer are textual-level methods. Different from them, BDTCR takes
into account both textual and structural similarities to more accurately
measure the test target similarity. At the textual level, considering the
understandability of the recommended test cases, BDTCR focuses on
the raw sequences of the code rather than the abstract tokens. At the
structural level, BDTCR focuses on control flow because it is closely
related to unit test coverage. In addition to the code part, BDTCR also
considers comments, which provide a highly readable explanation of
the functionality implemented by the test target [88].

7.2. Test case recommendation

Along with software testing development, test case search or rec-
ommendation [6,27,29,30] gets more and more attention. Test Recom-
mender [30] and TeSRS [27] recommend test cases within the project
itself to newcomers of the project, aiming at facilitating learning and
test writing. But both of them require the project that newcomers join
is rich in test cases. Thus, for a new project, it does not work. NiCad-
based [6] recommends test cases mined from software repositories
to developers with the help of clone detection techniques, aiming at
supporting developers in creating new test cases. Compared with the
works Test Recommender and TeSRS, NiCad-based can achieve cross-
project test case recommendation. But NiCad-based only was evaluated
on a few projects and did not compare with others’ techniques. Werner
et al. [29] first built a test case search engine SENTRE which contains
a lot of test cases collected from the open web. Based on SENTRE,
they developed a tool, namely TestTenderer, used to recommend test
cases to developers. TestTenderer searches for test cases in SENTRE
using method signatures matching and relaxation algorithm. TestTen-
derer can also be used for the cross-project test case recommendation.
Unfortunately, we did not find either SENTRE or TestTenderer. In this
paper, we build a large-scale test case corpus. Based on this corpus, we
evaluate NiCad-based, TestTenderer, and our BDTCR in cross-project
test case recommendation scenarios.

8. Conclusion

In this paper, we propose a test case recommendation technique
named BDTCR. BDTCR measures test target similarity effectively based
on the balanced distance that combines distances on the literal text,
control flows, and comments. In addition, we implement the tool
TConstructer that can be used to automatically extract test cases from
complex source code. We build a test case corpus containing more than
13,000 test cases using TConstructer. Based on it, we conduct compre-
hensive experiments to evaluate BDTCR. The experimental results show
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that BDTCR is effective and robust and is superior to the state-of-the-art
techniques.

In the future, we plan to use some advanced techniques to mea-
sure the test target similarity, such as deep learning-based embedding
techniques [24,74,84,87,89]. And further, it would be interesting to in-
vestigate how BDTCR performs when deployed in the regular workflow
(e.g., IDE plugins) and collect feedback from developers to improve the
practicality.
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