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a b s t r a c t

Test case prioritization (TCP) aims to reorder the regression test suite with a goal of increasing the fault
detection rate. Various TCP techniques have been proposed based on different prioritization strategies.
Among them, the greedy-based techniques are the most widely-used TCP techniques. However, existing
greedy-based techniques usually reorder all candidate test cases in prioritization iterations, resulting
in both efficiency and effectiveness problems. In this paper, we propose a generic partial attention
mechanism, which adopts the previous priority values (i.e., the number of additionally-covered code
units) to avoid considering all candidate test cases. Incorporating the mechanism with the additional-
greedy strategy, we implement a novel coverage-based TCP technique based on partition ordering (OCP).
OCP first groups the candidate test cases into different partitions and updates the partitions on the
descending order. We conduct a comprehensive experiment on 19 versions of Java programs and
30 versions of C programs to compare the effectiveness and efficiency of OCP with six state-of-the-
art TCP techniques: total-greedy, additional-greedy, lexicographical-greedy, unify-greedy, art-based, and
search-based. The experimental results show that OCP achieves a better fault detection rate than the
state-of-the-arts. Moreover, the time costs of OCP are found to achieve 85%–99% improvement than
most state-of-the-arts.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

During software maintenance and evolution, software engi-
eers usually perform code modification due to the fixing of
etected bugs, the adding of new functionalities, or the refac-
oring of system architecture (Elsner et al., 2021; Lam et al.,
020). Regression testing is conducted to ensure that the code
odification does not introduce new bugs. However, regression

esting can be very time-consuming because of a large number
f reused test cases (Wong et al., 1997; Gligoric et al., 2015a;
hang, 2018; Cruciani et al., 2019). For example, Rothermel et al.
1999) report that it takes seven weeks to run the entire test
uite for an industrial project. Besides, with the practices of rapid
elease (Mäntylä et al., 2015) and continuous integration (Elbaum
t al., 2014), the available time for test execution recently keeps
ecreasing. For example, Memon et al. (2017) report that Google
erforms an amount of 800K builds and 150M test runs on
ore than 13K projects every day, consuming a lot of computing

esources.
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To address the overhead issues of regression testing, test
case prioritization (TCP) has become one of the most exten-
sively investigated techniques (Sadri-Moshkenani et al., 2022;
do Prado Lima and Vergilio, 2022). Generally speaking, TCP
reschedules the execution sequence of test cases in the entire test
suite with the goal of detecting faults as early as possible. Tradi-
tional TCP techniques (Wong et al., 1998; Khatibsyarbini et al.,
2018; Yoo and Harman, 2012) usually involve an elementary
topic, prioritization strategies, which incorporate test adequacy
criteria (e.g., code coverage) to represent different behaviors
of test cases. In previous work, the most widely-investigated
prioritization strategies are greedy-based strategies (Rothermel
et al., 1999) (i.e., the total-greedy and additional-greedy strategies),
which are generic for different coverage criteria. Given a coverage
criterion (e.g., statement or method coverage), the total-greedy
strategy selects the next test case yielding the highest cover-
age, whereas the additional-greedy strategy selects the next test
case covering the maximum code units not covered in previous
iterations. The recent empirical results show that although con-
ceptually simple, the additional-greedy technique has been widely
recognized as one of the most effective TCP techniques on average
in terms of fault detection rate (Luo et al., 2016; Lu et al., 2016;
Luo et al., 2018; Chi et al., 2018; Chen et al., 2018; Cheng et al.,
2021).

Compared with the total-greedy strategy, the additional-greedy
strategy empirically performs outstandingly due to its feedback
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echanism, where the next test case selection takes into account
he effect of already prioritized test cases (Zhang et al., 2013a;
ghbali and Tahvildari, 2016). However, there also exists a short-
oming in the additional-greedy strategy. Given a regression test
uite T with n test cases, when selecting the ith test case, the
emaining n − i + 1 candidate test cases need to be updated.
Specifically, for each candidate test case, all not-yet-covered code
units are examined, of which those covered by the candidate test
case are identified. The priority values of candidate test cases
need to be measured based on the feedback binary states of each
statement (i.e., covered or not covered). As a result, the priority
values of the candidate test cases in the previous iterations are
lost and need to be recalculated in current iteration.

However, due to considering all candidate test cases in each
iteration, the additional-greedy strategy may suffer from the ef-
ficiency problem. For example, consider 3 candidate test cases,
expressed as t1, t2 and t3, in a certain iteration, covering 4, 3
and 2 additional statements, respectively. After the test case t1 is
selected, t2 and t3 need to be updated in the next iteration. Ideally,
the remaining test cases can cover a maximum of 3 additional
statements in the next iteration, and only test case t2 potentially
satisfies the hypothesis. If not, a further hypothesis that both
test cases t2 and t3 have a maximum of 2 additionally-covered
statements is considered, and so on. As a result, the test cases that
cover more statements in the previous iteration are more likely
to maintain the advantage in the next iteration, as the test cases
cannot cover more statements in the next iteration than in the
previous iteration. For example, updating the test cases covering
no code units in previous iterations is unnecessary until the pri-
oritization process repeats. Thus, the additional-greedy strategy,
which considers all candidate test cases at once in each iteration,
may bring redundant calculation in efficiency.

Besides, there is a high possibility of tie-occurring when con-
sidering all candidate test cases, may lead to a decrease per-
formance in the effectiveness. In the above example, a tie may
occur if both t2 and t3 are considered at once (i.e., t2 and t3
has the highest coverage of statements not yet covered). When
facing a tie, the additional-greedy strategy implicitly assumes
that all remaining candidates are equally important, and selects
one randomly. However, previous empirical studies (Eghbali and
Tahvildari, 2016) have shown that the probability of ties is rel-
atively high in the additional-greedy strategy, and the random
tie-breaking strategy can be ineffective. It can be observed that
due to considering all candidate test cases in each iteration, the
additional-greedy strategy suffers from the both efficiency and
effectiveness problems.

In this paper, to address the issues mentioned above, we
propose a generic concept, partial attention mechanism, to avoid
considering all candidate test cases with previous priority values
(i.e., the number of additionally-covered code units) . We also ap-
ply the concept to the additional-greedy strategy and implement a
novel coverage-based TCP technique based on the notion of par-
tition ordering (OCP). Our technique pays attention to the partial
test cases instead of the whole candidate test set with the help of
priority values calculated in the previous prioritization iteration.
The key idea of our technique is as follows: the priority values of
the candidate test cases in the previous iteration can be regarded
as a reference in the next iteration, so as to avoid considering all
candidates at the same time. To implement this idea, all candidate
test cases are classified into different partitions based on their
previous priority values. Then among the candidates that have
the highest priority value in the previous iteration, the one with
the unchanged coverage of not-yet-covered code units is selected.
Likewise, if no test case meets the selection criterion, test cases
with the second highest priority values are considered, and so on.

We perform an empirical study to compare OCP with six
state-of-the-art TCP techniques in terms of testing effectiveness
2

and efficiency on 19 versions of four Java programs, and 30
versions of five real-world Unix utility programs. The empirical
results demonstrate that OCP can outperform state-of-the-arts in
terms of fault detection rate. OCP is also observed to have much
less prioritization time than most state-of-the-arts (except the
total-greedy strategy, a low bound control TCP technique) and
the improvement can reach 85%–99% on average. We view our
proposed technique as an initial framework to control the balance
of full prioritization and partial prioritization during TCP, and
believe more techniques can be derived based on our technique.

In particular, the contributions of this paper are as follows:

• We propose the first notion of the partial attention mecha-
nism that uses previous priority values to avoid considering
all candidate test cases in TCP.
• We apply the partial attention mechanism to the additional-

greedy strategy, leading a novel coverage-based TCP tech-
nique based on partition ordering (OCP).
• We conduct an empirical study to investigate the effective-

ness and efficiency of the proposed technique compared to
six state-of-the-art TCP techniques.
• We release the relevant materials (including source code,

subject programs, test suites and mutants) used in the ex-
periments for replication and future research (Anon., 0000a).

The rest of this paper is organized as follows. Section 2 re-
iews some background information and presents a motivation
xample. Section 3 introduces the proposed approach. Section 4
resents the research questions, and explains details of the em-
irical study. Section 5 provides the detailed results of the study
nd answers the research questions. Section 6 discusses some
elated work, and Section 7 discusses the threats to validity of
ur experiments. Section 8 presents the conclusions and discusses
uture work.

. Background & motivation

In this section, we provide some background information
bout test case prioritization and a motivating example.

.1. Test case prioritization

Test case prioritization (TCP) (Rothermel et al., 1999) aims
o reorder the test cases to maximize the value of an objective
unction (e.g., exposing faults earlier, Elbaum et al., 2000; or
educing the execution time cost, Zhang et al., 2009; Mei et al.,
012). TCP problem is formally defined as follows:

efinition 1 (Test Case Prioritization). Given a test suite T , PT
is the set of its all possible permutations, and f is an object
function defined to map PT to real numbers R. The problem of
TCP (Rothermel et al., 1999) is to find P ′ ∈ PT , such that ∀P ′′, P ′′ ∈
PT (P ′′ ̸= P ′), f (P ′) ≥ f (P ′′).

However, it is infeasible to obtain the fault detection capability
of test cases before test execution. Therefore, some alternative
metrics (e.g., structural coverage), which are in some way cor-
related with the fault detection rate, are adopted to guide the
prioritization process instead (Rothermel et al., 1999; Wang et al.,
2017). Among all metrics, code coverage is the most widely used
one (Luo et al., 2016; Lou et al., 2019). Intuitively, once a criterion
is chosen, a specific prioritization strategy is used to order the test
cases according to the chosen criterion, such as the greedy-based
strategies (Elbaum et al., 2000), search-based strategies (Li et al.,
2007), and art-based strategies (Jiang et al., 2009).



Q. Zhang, C. Fang, W. Sun et al. The Journal of Systems & Software 192 (2022) 111419

2

o
t
c
r
i
i

t
c
t
s
c
e
s
a
c
i
w
a
s
s
a
t
u
o
w
d
c
r
F
r

t
i
r
f
m
o
b
m
u
s
0
l
s
a
a

e
i
t

3

t

3

o
i
a
i
I
c
i
o
o
v
a
o
c

c
m
i
c
a
a
t
d
s
m
o
o
s

c
a
s
s
i
s
c
i
s
s
a
s
t
d
f

c
t
t
c
o
O

Fig. 1. A motivating example.

.2. A motivating example

To better illustrate the details of OCP, Fig. 1 shows a piece
f code with a fault in line s5, which can be detected by the
est case t4. The code is a method that computes the greatest
ommon divisor using the subtract-based version of Euclid’s algo-
ithm (Weimer et al., 2009; Gazzola et al., 2017). The source code
s on the left and four test cases with their statement coverage
nformation are on the right.

Before explaining the details of OCP, we first review the steps
hat the additional-greedy strategy takes to prioritize the four test
ases. In the first iteration, the additional-greedy strategy chooses
he test case t2 with the maximum coverage. To continue, in the
econd iteration, the additional-greedy strategy selects the test
ase with the maximum coverage of not-yet-covered statements,
.g., s2 and s5. The additional-greedy strategy updates the coverage
tates for all remaining test cases and faces a tie where both t3
nd t4 cover one of the not-yet-covered statements. In such a
ase, a random one (e.g., t3 or t4) will be selected. In the third
teration, the additional-greedy strategy searches for the test case,
hich yields the maximum coverage of statements that the first
nd the second test case have not covered, and t4 or t3 will be
elected. In other words, in each iteration, the additional-greedy
trategy selects the test case that provides the maximum cover-
ge for the not-yet-covered statements. In the fourth iteration,
he last test case t1 is selected and this procedure continues
ntil the ordering is complete. As a result, the test sequence
f the additional-greedy strategy is ⟨t2, t3, t4, t1⟩ or ⟨t2, t4, t3, t1⟩
ith the APFD values ranging from 0.375 to 0.625. However, as
iscussed in Section 1 the additional-greedy strategy needs to
onsider all candidate test cases at each iteration, which may
esult in suboptimal performance in effectiveness and efficiency.
or example, in the second iteration, we need to update all the
emaining test cases and also perform a random tie-breaking.

If OCP is applied to the example, the first selected test case is
2, which is the same as the additional-greedy strategy. However,
n the second iteration, when facing a tie, OCP prefers the fault-
evealing test case t4 as it covers more statements than t3 in the
irst iteration. In the third iteration, t3 is updated first as it covers
ore statements than t1 in the last iteration and found to cover
ne not-yet-covered statement s2. As no statement is covered
y t1 in the second iteration, we can observe t1 cannot cover
ore statements in the next iteration. Thus, t3 is selected without
pdating t1, which leads to fewer calculations. As a result, the test
equence of OCP is ⟨t2, t4, t3, t1⟩ with the APFD value reaching
.625, which may result in a higher fault detection rate with
ower prioritization time. In recent years, the sizes of the regres-
ion test suites of modern industrial systems grow at a fast pace,
nd existing TCP techniques (e.g., the additional-greedy strategy
nd its follow-ups) have become inadequate in efficiency (Luo
3

t al., 2016; Zhou et al., 2022). However, there exist little work to
mprove the additional-greedy strategy efficiency while preserving
he high effectiveness.

. Approach

In this section, we introduce the details of test case prioritiza-
ion by the partial attention mechanism.

.1. Partial attention mechanism

Although the additional-greedy strategy empirically performs
utstandingly in terms of fault detection rate, there is a weakness
n the feedback mechanism. As discussed in Section 1, considering
ll candidate test cases in each prioritization iteration may result
n redundant calculations and a high probability of tie-occurring.
n fact, only the binary states of the code units (i.e., covered or not
overed) are fed back to the next iteration, and some valuable
nformation (e.g., the previous priority values) is discarded. In
ther words, the candidate test cases are independent of each
ther before each iteration, and the loss of previous priority
alues may lead to a decrease performance in the effectiveness
nd efficiency of TCP techniques. As a result, the priority values
f all candidate test cases need to be updated based on huge
alculations.
Thus, to address the problem of considering all candidate test

ases in each iteration, we attempt to adopt the feedback infor-
ation from another perspective. Specifically, the priority values

n previous iterations are adopted to pay attention to partial
andidate test cases. The critical insight is that the number of
dditionally-covered code units is non-monotonically decreasing,
s it cannot cover more code units in the next iteration. Then,
he priority values of candidate test cases can be stored in a well-
esigned structure (i.e., partition in Section 3.2). Meanwhile, the
tructure can be maintained in the next iteration, such that the
ore important test cases can be given more attention with-
ut additional calculations. As a result, we propose a concept
f the partial attention mechanism and apply the concept to
tate-of-the-art, the additional-greedy strategy.
Suppose that test case ti and tj covers sik and sjk not-yet-

overed statements (sik > sjk) at kth iteration, respectively. Thus,
t the next iteration, ti is first updated and is found to cover si(k+1)
tatements. There may exist two possible situations: (1) si(k+1) ≤
jk: tj needs to be updated and the number of covered statements
s sj(k+1). If si(k+1) equals sj(k+1), ti is preferred as it covers more
tatements than tj in the ith iteration. Otherwise, the test case
overing more statements in jth iteration is selected, which is
dentical to the additional-greedy strategy. (2) si(k+1) > sjk: ti is
elected without updating tj. Suppose the covered statements of
elected test case at kth iteration and ti are S = {s1, s2, . . . , sn}
nd S ′ = {s′1, s

′

2, . . . , s
′
m}. If S∪S

′
= ∅, we have sjk = sjk, otherwise

jk > sjk. Thus, we observe that as the selection steps iterate,
he number of covered statements should be non-monotonically
ecreasing (sjk ≥ sjl). In such case, we can conform si(k+1) > sj(k+1)
rom si(k+1) > sjk and sjk ≥ sjl without updating tj.

In conclusion, before covering all code units, if test case ti
overs more code units than another test case tj, ti is more likely
o have a higher priority value. Thus, instead of considering both
i and tj, the more important one ti should be updated first. If ti
overs more code units than the theoretical best priority value
f tj (i.e, the priority value at last iteration), ti will be selected.
therwise, the remaining t is updated and compared with t .
j i
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Algorithm 1 Pseudocode of OCP
Input: T : {t1, t2, · · · , tn} is a set of unordered test cases with size n; U:
{u1, u2, · · · , um} is a set of code units with size m in the program P

utput: S: a set of prioritized test cases
1: S ← ∅
2: Candidates← ∅
3: priority← m ▷ the highest priority value
4: for each j (1 ≤ j ≤ m) do
5: UnitCover[j] ← false
6: end for
7: for each i (1 ≤ i ≤ n) do
8: Candidates← Candidates ≻ ⟨ti, priority⟩
9: end for
0: while |Candidates| > 0 do
1: maximum←−1
2: for each ⟨ti, temp_priority⟩ ϵ Candidates do
3: if temp_priority == priority then
4: temp_num← 0
5: for each j (1 ≤ j ≤ m) do
6: if Cover[i, j] and not UnitCover[j] then
7: temp_num← temp_num+ 1
8: end if
9: end for
0: end if
1: if temp_num = priority then
2: temp_Candidates ≻ ⟨ti, priority⟩
3: end if
4: end for
5: if priority > 0 then
6: if |temp_Candidates| > 0 then
7: ⟨tk, priority⟩ ← TieSelect(temp_Candidates)
8: S ← S ≻ ⟨tk⟩
9: Candidates← S \ ⟨tk, priori⟩
0: for each j (1 ≤ j ≤ m) do
1: if Cover[i, j] and not UnitCover[j] then
2: UnitCover[j] ← false
3: end if
4: end for
5: else
6: priority← priority− 1
7: end if
8: else
9: for each j (1 ≤ j ≤ m) do
0: UnitCover[j] ← false
1: end for
2: end if
3: end while
4: return S

3.2. Partition ordering based prioritization

In our work, we view the partial attention mechanism as a
eneral concept that can be applied to different prioritization
trategies using different coverage criteria. For example, in the
exicographical-greedy strategy, the test cases covering the code
nits fewer covered in the previous iteration should be preferred,
s they have a higher probability to cover these code units in the
ext iteration. As greedy-based strategies are the most widely-
dopted prioritization strategies (Rothermel et al., 1999; Zhang
t al., 2013a), and the additional-greedy strategy is considered to
e one of the most effective TCP techniques in terms of fault
etection capacity (Luo et al., 2016; Lu et al., 2016; Cheng et al.,
021; Luo et al., 2019; Li et al., 2021). We apply the partial atten-
ion mechanism to the additional-greedy strategy and implement
simple greedy strategy to instantiate the function based on
artition ordering. Generally speaking, all candidate test cases are
rouped into different partitions based on their previous priority
alues and higher partitions are updated preferentially.
Given a program under test U = {u1, u2, . . . , um} containing
code units, and a test suite T = {t1, t2, . . . , tn} containing n

est cases, Algorithm 1 describes the pseudocode of our proposed
ethod. At each iteration, all the candidate test cases are sorted
ased on the priority values (i.e., the number of additionally-
overed code units) and the ones with the same priority value
re adjacent to each other. We then group the candidate test
4

cases according to their priority values into p partitions, indexed
from left to right by 1, 2, . . . , p, such that all the candidate test
cases within a partition have the same priority value. Based on
these partitions, we form the vector v = [v1, v2, . . . , vp] where
vi indicates priority value in the ith partition. In the next iteration,
we then update the candidate test cases in partition p and group
them into new partitions according to their updated priority
values (i.e., the number of additionally-covered code units in the
next iteration). If there exists a test case from the partition p that
alls into a new partition j (vj > vp−1), the test case is selected.
Because the test cases from the partition i (i ≤ p − 1) cannot
e updated into a partition with a higher index j (vj > vp−1).
therwise, we update the partition from right to left according
o the value vi until a test case is selected. In the worst case, we
ay update all the partitions if no test case is selected, which is

dentical to the additional-greedy strategy.
Specifically, we use a Boolean array Cover[i, j] (1 ≤ i ≤ n, 1 ≤
≤ m) to identify whether the test case ti covers the code

nit uj or not. We use another Boolean array UnitCover[j] (1 ≤
≤ m) to denote whether the code unit uj has been covered
y the already selected test cases or not. We set the value of
nitCover[j] (1 ≤ j ≤ m) to be false. Similarly, we use a variable
riority to denote the largest priority value for all candidate test
ases. Meanwhile, we set the value of priority to be m. Besides,
e use a set Candidates to denote all remaining test cases and
heir corresponding priority values. Initially, we add the whole
est suite to Candidates with the default priority value m (i.e., the
umber of code units).
In Algorithm 1, lines 1–9 perform initialization, and lines 10–

3 prioritize the test cases. In the main loop from line 10 to
ine 43, each iteration attempts to find a test case with the
iven priority value and add it to the prioritized test set S. In
articular, lines 12–24 calculate the sum of units covered by
he test cases with the highest previous priority value and add
he ones that maintain the advantage into the candidate test set
emp_Candidates. Before choosing the next test case, our approach
xamines whether or not there are any code units that are not
overed by the test cases in S. If all code units have been covered,
he remaining candidate test cases are prioritized by restarting
he previous process (lines 39–41). Otherwise, we select the test
ase in temp_Candidate with highest previous priority values as
he next one and update the cover status of all code units (lines
6–37). If no test case is selected, we further update the second
artition, and so on (line 36). This process is repeated until all
est cases in Candidates have been added to S. It is worth noting
hat although a partial attention mechanism is adopted in our ap-
roach, there is also a small possibility that a tie occurs, e.g., more
han one test case in temp_Candidate with highest previous prior-
ty values. In such a case, similar to the additional-greedy strategy,
ur approach performs a random tie-breaking.

. Experiment

In this section, we present our empirical study in detail, in-
luding the research questions, some variables, subject programs
nd the experimental setup.

.1. Research questions

The empirical study is conducted to answer the following
esearch questions.

Q1 How does the effectiveness of OCP compare with state-of-
the-art techniques, in terms of fault detection rate?

Q2 How does the granularity of code coverage impact the com-

parative effectiveness of OCP?
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Table 1
Studied TCP techniques.
Mnemonic Description Category Reference

TCP tot total-greedy test prioritization Greedy-based Rothermel et al. (1999)
TCPadd additional-greedy test prioritization Greedy-based Rothermel et al. (1999)
TCPunif unified-greedy test prioritization Greedy-based Zhang et al. (2013a), Hao et al. (2014)
TCP lexi lexicographical-greedy test prioritization Greedy-based Eghbali and Tahvildari (2016)
TCPart art-based test prioritization Similarity-based Jiang et al. (2009)
TCP search search-based test prioritization Search-based Li et al. (2007)
TCPocp our proposed technique OCP Greedy-based This study
RQ3 How does the granularity of test cases impact the compar-
ative effectiveness of OCP?

Q4 How does the efficiency of OCP compare with state-of-the-
art techniques, in terms of execution time?

.2. Independent variables

.2.1. Prioritization techniques
Although the proposed generic strategies can work with any

overage criteria, we implement OCP based on basic structural
overage criteria due to their popularity (Lu et al., 2016; Zhang
t al., 2013a; Lou et al., 2019; Jiang et al., 2009; Luo et al., 2019).
e select the six state-of-the-art coverage-based TCP techniques

hat have been widely used in previous TCP studies (Luo et al.,
016; Lu et al., 2016; Luo et al., 2019): total-greedy (Rothermel

et al., 1999), additional-greedy (Rothermel et al., 1999), unified-
greedy (Zhang et al., 2013a; Hao et al., 2014), lexicographical-
greedy (Eghbali and Tahvildari, 2016), art-based (Jiang et al.,
2009), and search-based (Li et al., 2007).

The total-greedy technique prioritizes test cases based on the
descending number of code units covered by those test cases.
The additional-greedy technique chooses each test case from the
candidate test set such that it covers the largest number of
code units not yet covered by the previously selected test cases.
Similarly, the unified-greedy technique selects the test case with
the highest sum of the probabilities that units covered by the test
case contain undetected faults, while the lexicographical-greedy
technique selects the test case with the maximum coverage of
one-time-covered code units. Likewise, if a tie occurs, code units
that are covered twice are considered, and so on. The art-based
technique selects each test case from a random candidate test set
such that it has the greatest maximum distance from the already
selected test cases. Finally, the search-based technique considers
all permutations as candidate solutions, and uses a meta-heuristic
search algorithm to guide the search for a better test execution
order (Li et al., 2007). Depending on prioritization strategies,
these TCP techniques are grouped into three categories and the
details are presented in Table 1.

For the total-greedy, additional-greedy, art-based and search-
based techniques, we directly use the source code released by
existing work (Chen et al., 2018; Huang et al., 2020). Meanwhile,
the implementation of the unified-greedy technique is not publicly
available and the lexicographical-greedy technique is implemented
in other language (i.e., Matlab). Thus, we implement the unified-
greedy and lexicographical-greedy techniques according to their
paper carefully. For the unified-greedy technique, we select the
basic model (i.e., Algorithm 1 in Zhang et al., 2013a) in our work,
as the extended model requires multiple coverage of code units
by given test cases, which is beyond the scope of our work. We
also select the default configuration (i.e., Algorithm 2 in Eghbali
and Tahvildari, 2016) for the lexicographical-greedy technique,
as it achieve a great balance between fault detection rate and

prioritization time.

5

4.2.2. Code coverage granularity
In traditional TCP studies (Luo et al., 2016; Zhang et al., 2013a),

the coverage granularity is generally considered to be a con-
stituent part of the prioritization techniques. To enable suffi-
cient evaluations, we attempt to investigate generic prioritiza-
tion strategies with various structural coverage criteria (i.e., the
statement, branch, and method coverage granularities).

4.2.3. Test case granularity
For the subject programs written in Java, we consider the

test case granularity as an additional factor in the prioritization
techniques. Test case granularity is at either the test-class or
the test-method granularity. Specifically, given a Java program,
a JUnit test class file refers to a test case at test-class granularity,
while each test method in the file refers to a test case at test-
method granularity. In other words, a test case at the test-class
granularity generally involves a number of test cases at the test-
method granularity. For C subject programs, the actual program
inputs are the test cases.

4.3. Dependent variables

To evaluate the effectiveness of different TCP techniques, we
adopt the widely-used APFD (average percentage faults detected)
as the evaluation metric for fault detection rate (Rothermel et al.,
1999). Given a test suite T , with n test cases, P ′ is a permutation of
T . Then the APFD value for P ′ is defined by the following formula:

APFD = 1−
∑m

i=1 TFi
n ∗m

+
1
2n

(1)

where, m denotes the total number of detected faults and TFi
denotes the position of first test case that reveals the fault i.

4.4. Subject programs, test suites and faults

To enable sufficient evaluations, we conduct our study on 19
versions of four Java programs (i.e., eight versions of ant, five
versions of jmeter, three versions of jtopas, and three versions of
xmlsec), which are obtained from the Software-artifact Infrastruc-
ture Repository (SIR) (Do et al., 2005; Anon., 0000b). Meanwhile,
30 versions of five real-life Unix utility programs written in C
language (six versions of flex, grep, gzip, make and sed) are also
adopted, which are downloaded from the GNU FTP server (Anon.,
0000c). Both the Java and C programs have been widely utilized
as benchmarks to evaluate TCP techniques (Zhang et al., 2013a;
Eghbali and Tahvildari, 2016; Jiang et al., 2009; Henard et al.,
2016).

Table 3 lists all the subject programs and the detailed sta-
tistical information. In Table 3, for each program, columns 3 to
6 summarize the version, size, number of branches, number of
methods, respectively.

Each version of the Java programs has a JUnit test suite that is
developed during the program’s development. These test suites
have two levels of test-case granularity: the test-class and the
test-method. The numbers of JUnit test cases are shown in the
#Test column: The data is presented as x (y), where x is the
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Table 2
Statistics on Mutation Operators.
Language Operators Descriptions

Java

CB Conditionals boundary
IC Increments
IN Invert negatives
MA Math
NC Negate conditionals
VM Void method calls
ER Empty returns
FR False returns
TR True returns
NR Null returns
PR Primitive returns

C

SD Statement deletion
UI Unary insertion
CR Constant replacement
AR Arithmetic operator replacement
LR Logical operator replacement
BR Bitwise logical operator replacement
RR Relational operator replacement

number of test cases at test-method granularity, and y is the
umber of test cases at test-class granularity. The test suites for
he C programs are collected from the SIR (Do et al., 2005; Anon.,
000b). The number of tests cases in each suite is also shown in
he #Test column of Table 3.

The faults contained in each version of the programs are pro-
uced based on mutation analysis (Papadakis et al., 2019; Zhang
t al., 2019). Although some seeded faults of programs are avail-
ble from SIR, previous research has confirmed that the seeded
nes are easily detected and small in size. Meanwhile, mutation
aults have previously been identified as suitable for simulating
eal program faults (Andrews et al., 2005; Belli et al., 2006; Do
nd Rothermel, 2005; Just et al., 2014; Belli et al., 2016) and have
een widely applied to various TCP evaluations (Rothermel et al.,
999; Luo et al., 2016; Lu et al., 2016; Zhang et al., 2013a; Elbaum
t al., 2000; Luo et al., 2019; Henard et al., 2016). Thus, for both
and Java programs, mutation faults are introduced to evaluate

he performance of the different techniques. The details of these
perators are presented in Table 2. For C programs, we obtain the
utants from previous TCP studies (Henard et al., 2016; Andrews
t al., 2006), which are produced using seven mutation operators.
or Java programs, we use eleven mutation operators from the
‘NEW_DEFAULTS’’ group of the PIT mutation tool (Coles et al.,
016) to generate mutants. Specifically, we generate mutants
i.e., faulty versions) by seeding all mutation operators into the
ubject programs automatically. Then we run the available test
uite against each mutant. The mutant is killed if there exist
ny test that produces inconsistent test outcomes between the
riginal and faulty version, otherwise the mutant is lived. We
elect all killed mutants to evaluate the fault detection rate of TCP
echniques.

Meanwhile, according to existing studies (Huang et al., 2020;
enard et al., 2016), the subsuming mutants identification (SMI)
echnique (Papadakis et al., 2016) is adopted to remove the dupli-
ate and subsuming mutants from all killed mutants. The number
f subsuming mutants used in our experiment is presented in
he #Subsuming_Mutant column. It is worth noting that the
subsuming faults are classified as test-class level and test-method
level for the Java programs.

4.5. Framework

Fig. 2 presents the overall experimental framework of the
proposed technique. (1) We collect the coverage information for

the Java program using the FaultTracer tool (Zhang et al., 2012,

6

2013b), which uses on-the-fly bytecode instrumentation without
any modification of the target program based on the ASM byte-
code manipulation and analysis framework (Anon., 0000d). For C
program, there are six versions of each program P: PV0, PV1, PV2,
V3, PV4, and PV5. Version PV0 is compiled using gcc 5.4.0 (Anon.,
000e), and then the coverage information is obtained using the
cov tool (Anon., 0000f). (2) After collecting the code coverage
nformation, we implement all TCP techniques in Java, and apply
hem to each program version under study. Specifically, OCP first
ivides test cases into different partitions and updates test cases
n the highest partition. If there exist an updated test case satisfies
he selection criteria, the test case will be added to the prioritized
est sequence. Because the approaches contain randomness, each
xecution is repeated 1000 times independently. This results in,
or each testing scenario, 1000 test sequences for each TCP tech-
ique. (3) To evaluate the fault detection rate, we construct the
aulty programs by mutation faults. Specifically, we generate mu-
ants by seeding all mutation operators (presented in Table 2) and
onsider each mutant as a faulty program with only one mutation
ault. We then execute all test cases against each faulty program
nd remove the mutants that any test case cannot kill. (4) Besides,
e calculate the APFD values and prioritization time for all test
equences based on the record information (e.g., the mutation
etected results and time cost of each TCP technique) (5) To
urther test whether there is a statistically significant difference
etween OCP and other TCP techniques, we perform the unpaired
wo-tailed Wilcoxon–Mann–Whitney test, at a significance level
f 5%, following previously reported guidelines for inferential
tatistical analysis involving randomized algorithms (Arcuri and
riand, 2014; Gligoric et al., 2015b). To identify which technique
s better, we also calculate the effect size, measured by the non-
arametric Vargha and Delaney effect size measure (Vargha and
elaney, 2000), Â12, where Â12(X, Y ) gives probability that the

technique X is better than technique Y . The statistical analyses
are performed using R language (Anon., 0000g).

4.6. Experimental setup

The experiments are conducted on a Linux 5.15.0-25-generic
cloud server with eight virtual cores of Intel(R) Xeon(R) Silver
4116 CPU (2.10 GHz) and 32 GBs of virtual RAM.

5. Results and analysis

This section presents the experimental results to answer the
research questions. We investigate the effectiveness of OCP to
answer RQ1, and perform impact analysis to investigate the in-
fluences caused by the code coverage granularity to answer RQ2.
Besides, we also perform analysis to investigate the influences
caused by and test case granularity on OCP to answer RQ3. Finally,
we analyze the time cost of OCP to answer RQ4.

To answer RQ1 to RQ3, Figs. 3 to 6 present box plots of the
distribution of the APFD values achieved over 1000 independent
runs. Each box plot shows the mean (square in the box), me-
dian (line in the box), and upper and lower quartiles (25th and
75th percentile) of the APFD values for all the TCP techniques.
Statistical analyses are also provided in Tables 4 to 5 for each
pairwise APFD comparison between OCP and the other TCP tech-
niques. For ease of illustration, we denote the mentioned TCP
techniques as TCPtot , TCPadd, TCPlexi, TCPunif , TCPart , TCPsearch and
TCPocp, respectively. For example, for a comparison between two
methods TCPocp and M , where M ∈ {TCPtot , TCPadd, TCPlexi, TCPunif ,
TCPart , TCPsearch}, the symbol ✔ means that TCPocp is better (p-
value is less than 0.05, and the effect size Â12(TCPocp,M) is greater
than 0.50); the symbol ✖ means that M is better (the p-value

ˆ
is less than 0.05, and A12(TCPocp,M) is less than 0.50); and the
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Table 3
Subject program details.

Language Program Version KLoC #Branch #Method #Class #Test_Case #Mutant #Subsuming_Mutant

#T_Class #T_Method #All #Detected #SM_Class #SM_Method

Java

ant_v1 v1_9 25.80 5240 2511 228 34 (34) 137 (135) 6498 1332 59 32
ant_v2 1.4 39.70 8797 3836 342 52 (52) 219 (214) 11,027 2677 90 47
ant_v3 1.4.1 39.80 8831 3845 342 52 (52) 219 (213) 11,142 2661 92 47
ant_v4 1.5 61.90 11,743 5684 532 102 (100) 521 (503) 14,834 6585 192 88
ant_v5 1.5.2 63.50 141,76 5802 536 105 (103) 557 (543) 17,826 6230 211 91
ant_v6 1.5.3 63.60 141,68 5808 536 105 (102) 559 (537) 17,808 6255 92 91
ant_v7 1.6 beta 80.40 17,164 7520 649 149 (149) 877 (866) 22,171 9094 284 119
ant_v8 1.6 beta2 80.40 17,746 7524 650 149 (149) 879 (867) 22,138 9068 226 119

jmeter_v1 v1_7_3 33.70 3815 2919 334 26 (21) 78 (61) 8850 573 38 20
jmeter_v2 v1_8 33.10 3799 2838 319 29 (24) 80 (74) 8777 867 37 22
jmeter_v3 v1_8_1 37.30 4351 3445 373 33 (27) 78 (77) 9730 1667 47 25
jmeter_v4 v1_9_RC1 38.40 4484 3536 380 33 (27) 78 (77) 10,187 1703 47 25
jmeter_v5 v1_9_RC2 41.10 4888 3613 389 37 (30) 97 (83) 10,459 1651 53 29

jtopas_v1 0.4 1.89 519 284 19 10 (10) 126 (126) 704 399 29 9
jtopas_v2 0.5.1 2.03 583 302 21 11 (11) 128 (128) 774 446 34 10
jtopas_v3 0.6 5.36 1491 748 50 18 (16) 209 (207) 1906 1024 57 16

xmlsec_v1 v1_0_4 18.30 3534 1627 179 15 (15) 92 (91) 5501 1198 32 12
xmlsec_v2 v1_0_5D2 19.00 3789 1629 180 15 (15) 94 (94) 5725 1204 33 12
xmlsec_v3 v1_0_71 16.90 3156 1398 145 13 (13) 84 (84) 3833 1070 27 10

C

flex_v0 2.4.3 8.96 2005 138 – 500 – – –
flex_v1 2.4.7 9.47 2011 147 – 500 13,873 6177 32
flex_v2 2.5.1 12.23 2656 162 – 500 14,822 6396 32
flex_v3 2.5.2 12.25 2666 162 – 500 775 420 20
flex_v4 2.5.3 12.38 2678 162 – 500 14,906 6417 33
flex_v5 2.5.4 12.37 2680 162 – 500 14,922 6418 32

grep_v0 2.0 8.16 3420 119 – 144 – – –
grep_v1 2.2 11.99 3511 104 – 144 23,896 3229 56
grep_v2 2.3 12.72 3631 109 – 144 24,518 3319 58
grep_v3 2.4 12.83 3709 113 – 144 17,656 3156 54
grep_v4 2.5 20.84 2531 102 – 144 17,738 3445 58
grep_v5 2.7 58.34 2980 109 – 144 17,108 3492 59

gzip_v0 1.0.7 4.32 1468 81 – 156 – – –
gzip_v1 1.1.2 4.52 1490 81 – 156 7429 639 8
gzip_v2 1.2.2 5.05 1752 98 – 156 7599 659 8
gzip_v3 1.2.3 5.06 1610 93 – 156 7678 547 7
gzip_v4 1.2.4 5.18 1663 93 – 156 7838 548 7
gzip_v5 1.3 5.68 1733 97 – 156 8809 210 7

make_v0 3.75 17.46 4397 181 – 111 – – –
make_v1 3.76.1 18.57 4585 181 – 111 36,262 5800 37
make_v2 3.77 19.66 4784 190 – 111 38,183 5965 29
make_v3 3.78.1 20.46 4845 216 – 111 42,281 6244 28
make_v4 3.79 23.13 5413 239 – 111 48,546 6958 29
make_v5 3.80 23.40 5032 268 – 111 47,310 7049 28

sed_v0 3.01 7.79 676 66 – 324 – – –
sed_v1 3.02 7.79 712 65 – 324 2506 1009 16
sed_v2 4.0.6 18.55 1011 65 – 324 5947 1048 18
sed_v3 4.0.8 18.69 1017 66 – 324 5970 450 18
sed_v4 4.1.1 21.74 1141 70 – 324 6578 470 19
sed_v5 4.2 26.47 1412 98 – 324 7761 628 22
p
T
e
w
m
a

symbol ❍ means that there is no statistically significant difference
between them (i.e., the p-value is greater than 0.05).

To answer RQ4, Table 6 provides comparisons of the execution
imes for the different TCP techniques.

.1. RQ1: Effectiveness of OCP

In this section, we evaluate the effectiveness of different TCP
echniques by fault detection rate. We provide the APFD re-
ults for OCP with different code coverage criteria and test case
ranularities. Figs. 3 to 5 show the APFD results for the C pro-
rams, the Java programs at the test-method granularity and the
est-method granularity, respectively. Each sub-figure in these
igures has the seven TCP techniques across the x-axis, and cor-
responding to the APFD values on the y-axis. Table 4 presents
the corresponding statistical comparisons. Each row denotes the
statistical results for the corresponding program under differ-
ent coverage criteria. Column ‘‘C Programs’’, ‘‘Java-M Programs’’,
7

‘‘Java-C Programs’’ and‘‘All Programs’’ are calculated based on all
APFD values for C programs, Java programs at the test-method
granularity, Java programs at the test-class granularity and all
programs.

5.1.1. C subject programs
Based the results on Fig. 3 and Table 4, we make the following

observations:
When comparing TCPocp with the greedy-based strategies, our

roposed TCPocp approach has much better performance than
CPtot , TCPadd, TCPunify and TCPlexi for all programs and code cov-
rage granularities, except for make with branch coverage (for
hich TCPocp has very similar, or better performance). The maxi-
um difference in mean and median APFD values between TCPocp
nd TCPtot is more than 40%, while between TCPocp and TCPadd, it

is about 10%.
Our proposed technique TCPocp has similar or better APFD

performance than TCP and TCP for some subject programs
art search
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Fig. 2. OCP’s framework.

Fig. 3. APFD results for C programs.

Fig. 4. APFD results for Java programs at test-method granularity.

Fig. 5. APFD results for Java programs at test-class granularity.

8



Q. Zhang, C. Fang, W. Sun et al. The Journal of Systems & Software 192 (2022) 111419

(
h
s
b

e.g., flex and gzip), with all code coverage granularities, but
as slightly worse performance for some others (e.g., make and
ed). However, the difference in mean and median APFD values
etween TCPocp and TCPart or TCPsearch is less than 5%.
Furthermore, the statistical results support the box plot ob-

servations. All p-values for the comparisons between TCPocp and
the greedy-based strategies (i.e., TCPtot or TCPadd) are less than
0.05 (except for make with branch coverage), indicating that their
APFD scores are significantly different. The Â12 values are also
much greater than 0.50, ranging from 0.51 to 1.00. However,
although all p-values between TCPocp and TCPart or TCP search are
also less than 0.05, their Â12 values are much greater than 0.50 in
some cases, but much less than 0.50 in others. Nevertheless, con-
sidering all the C programs, not only does TCPocp have significantly
different APFD values to the other six TCP techniques, but it also
has better performances overall (except for TCPart and TCPsearch).

5.1.2. Java programs at test-method granularity
Based on Fig. 5 and Table 4, we have the following observa-

tions:
Compared with the greedy-based strategies, TCPocp performs

much better than TCPtot , regardless of subject program and code
coverage granularity, with the maximum mean and median APFD
differences reaching about 12%. TCPocp also has very similar per-
formance to TCPadd, with the mean and median APFD differences
approximately equal to 1%. However, none of the other two
techniques (TCPlexi and TCPunify) is either always better or always
worse than TCPocp, with TCPocp sometimes performing better for
some programs, and sometimes worse.

TCPocp also performs better than TCPart and TCP search at most
cases (except jtopas at statement and branch coverage) There is
a statistically significant difference between TCPocp and TCPart ,
which supports the above observations.

Furthermore, the statistical results support the box plot ob-
servations. Considering all Java programs, TCPocp performs better
than TCPtot , TCPart and TCPsearch, as most p-values are less than
0.05, and the relevant effect size Â12 ranges from 0.58 to 0.98.
However, OCP has very a similar (or slightly worse) performance
to TCPadd, with Â12 values of either 0.48 or 0.50.

5.1.3. Java programs at test-class granularity
Based on Fig. 4 and Table 4, we have the following observa-

tions:
OCP achieves higher mean and median APFD values than TCPtot

for most cases, except jmeter . OCP has a very similar performance
to TCPadd, with their mean and median APFD differences at around
1%. OCP has a competitive performance with TCPunify and TCPlexi
for all programs with different code coverage granularities. OCP
achieves much higher mean and median APFD values than TCPart
for most cases, for all programs with all code coverage granulari-
ties, with the maximum differences reaching approximately 10%.
Other than for a few cases (e.g., jtopas), OCP usually has better
performance than TCPsearch.

Furthermore, the statistical analysis supports the above box
plots observations. Considering all Java programs together, OCP
performs better than TCPtot , TCPunify, TCPsearch, TCPart , and TCPsearch
on the whole. Most p-values are less than 0.05, indicating that
their differences are significant; and the effect size Â12 values
range up to 1.00, which means that TCPocp is better than the other
five TCP techniques. Finally, while the p-values for comparisons
between TCP and TCP are less than 0.05 (which means that
ocp add

9

Fig. 6. Effectiveness: APFD results with different code coverage and test case
granularities for all programs.

the differences are insignificant), the Â12 values range from 0.49
to 0.51, indicating that they are very similar.

Answer to RQ1: Overall, our analysis on the fault detection
effectiveness that (1) For C programs, OCP has significantly
better performance than all greedy-based strategies and main-
taining the comparable performance with TCPart and TCPsea. (2)
For Java programs at test-method granularity, OCP has better
performance than TCPtot , TCPart and TCPsea, while has simi-
lar performance with TCPadd, TCPunify and TCPlexi. (3) For Java
programs at test-class granularity, OCP has better or similar
performance with TCPadd, TCPart and TCPsea for all programs,
while has comparable performance with TCPtot , TCPunify and
TCPlexi.

5.2. RQ2: Impact of code coverage granularity

In our study, three basic structural coverage criteria (i.e., state-
ment, branch and method) are adopted to evaluate the perfor-
mance of proposed TCP techniques. Previous empirical studies
have demonstrated that different code coverage granularities may
affect the APFD results (Luo et al., 2016; Huang et al., 2020). Thus,
in this section, we examine how the selection of code coverage
granularity influences the effectiveness of OCP.

Fig. 6 presents the APFD results of OCP for the three types
of code coverage, according to the subject programs’ language
or test case granularity. The language or test case granularity is
shown on the x-axis and the APFD scores on the left y-axis. It can
be observed that for C programs, statement and branch coverage
are very considerable, and are more effective than method cover-
age. However, for Java programs, they have similar performance.

Table 5 presents a comparison of the mean and median APFD
values, and also shows the p-values/effect size Â12 for the dif-
ferent code coverage granularity comparisons. Column ‘‘C’’, ‘‘Java
(test-method)’’, ‘‘Java (test -class)’’ and ‘‘All’’ is calculated based
on all APFD values for C programs, Java programs at the test-
method granularity, Java programs at the test-class granularity
and all programs. It can be observed that the APFD values are
similar, with the maximum mean and median value differences
being less than 3%, and less than 8%, respectively. According to the
statistical comparisons, there is no single best code coverage type
for OCP, with each type sometimes achieving the best results.
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Table 4
Statistical effectiveness comparisons of APFD for all programs.

Program name Statement coverage Branch coverage Method coverage

TCP tot TCPadd TCPunify TCP lexi TCPart TCP search TCP tot TCPadd TCPunify TCP lexi TCPart TCP search TCP tot TCPadd TCPunify TCP lexi TCPart TCP search

gnu_flex

–

✔ (1.00) ✔ (0.52) ✔ (0.70) ✔ (0.87) ✔ (0.86) ✔ (0.73) ✔ (1.00) ✔ (0.66) ✖ (0.22) ✔ (0.90) ✔ (0.72) ✔ (0.57) ✔ (1.00) ✔ (0.70) ✔ (0.71) ✔ (0.85) ✖ (0.28) ✖ (0.47)
gnu_make ✔ (0.85) ✔ (0.61) ✔ (0.62) ✔ (0.82) ✖ (0.30) ✖ (0.29) ✔ (1.00) ❍ (0.51) ✔ (0.77) ✔ (0.87) ✖ (0.28) ✖ (0.42) ✔ (0.58) ✔ (0.68) ✔ (0.68) ✔ (0.58) ✖ (0.22) ✖ (0.24)
gnu_grep ✔ (1.00) ✔ (0.57) ✔ (0.79) ✔ (1.00) ✖ (0.48) ✔ (0.64) ✔ (1.00) ✔ (0.54) ✔ (0.67) ✔ (1.00) ❍ (0.50) ✔ (0.66) ✔ (1.00) ✔ (0.71) ✔ (0.99) ✔ (1.00) ✖ (0.21) ✖ (0.25)
gnu_gzip ✔ (0.80) ✔ (0.66) ✔ (0.78) ✔ (0.58) ✖ (0.43) ✖ (0.36) ✔ (0.84) ✔ (0.70) ✔ (0.83) ❍ (0.49) ✖ (0.37) ✖ (0.32) ✔ (0.54) ✔ (0.53) ✔ (0.54) ✔ (0.53) ✖ (0.47) ✖ (0.47)
gnu_sed ✔ (1.00) ✔ (0.54) ✔ (0.64) ✔ (1.00) ✖ (0.15) ✖ (0.37) ✔ (1.00) ✔ (0.55) ✔ (0.64) ✔ (1.00) ✖ (0.14) ✖ (0.37) ✔ (1.00) ✔ (0.90) ✔ (0.97) ✔ (0.97) ✖ (0.22) ✖ (0.29)

C Programs ✔ (0.91) ✔ (0.54) ✔ (0.60) ✔ (0.74) ✖ (0.44) ✖ (0.47) ✔ (0.93) ✔ (0.55) ✔ (0.60) ✔ (0.77) ✖ (0.43) ✖ (0.47) ✔ (0.81) ✔ (0.61) ✔ (0.66) ✔ (0.74) ✖ (0.37) ✖ (0.41)

ant

method

✔ (1.00) ❍ (0.50) ✖ (0.42) ✔ (1.00) ✔ (1.00) ✔ (1.00) ✔ (1.00) ❍ (0.50) ✖ (0.40) ✔ (1.00) ✔ (1.00) ✔ (1.00) ✔ (1.00) ❍ (0.50) ✖ (0.22) ✔ (0.98) ✔ (0.96) ✔ (0.95)
jtopas ✔ (1.00) ❍ (0.50) ✖ (0.36) ✖ (0.39) ✖ (0.00) ✖ (0.44) ✔ (1.00) ❍ (0.50) ✖ (0.38) ✔ (1.00) ✖ (0.00) ✖ (0.44) ✔ (1.00) ❍ (0.50) ✖ (0.03) ✔ (0.66) ✔ (0.56) ❍ (0.50)
jmeter ✔ (1.00) ❍ (0.50) ❍ (0.50) ✖ (0.38) ✔ (1.00) ✔ (0.62) ✔ (1.00) ✖ (0.48) ✔ (0.61) ❍ (0.51) ✔ (1.00) ✔ (0.69) ✔ (0.86) ❍ (0.50) ✖ (0.47) ✖ (0.45) ✔ (0.98) ✔ (0.58)
xmlsec ✔ (1.00) ❍ (0.50) ✖ (0.39) ✔ (1.00) ✔ (1.00) ❍ (0.49) ✔ (1.00) ❍ (0.49) ✖ (0.13) ✔ (1.00) ✔ (1.00) ✔ (0.77) ✔ (1.00) ❍ (0.50) ✖ (0.36) ✔ (0.99) ✔ (1.00) ✔ (0.55)

Java-M Programs ✔ (0.98) ❍ (0.50) ✖ (0.48) ✔ (0.67) ✔ (0.70) ✔ (0.65) ✔ (0.94) ❍ (0.50) ✖ (0.45) ✔ (0.70) ✔ (0.64) ✔ (0.66) ✔ (0.98) ❍ (0.50) ✖ (0.39) ✔ (0.71) ✔ (0.77) ✔ (0.64)

ant

class

✔ (0.83) ❍ (0.50) ✔ (0.52) ✔ (0.70) ✔ (0.99) ✔ (0.60) ✔ (0.89) ❍ (0.50) ✔ (0.51) ✔ (0.69) ✔ (1.00) ✔ (0.54) ✔ (0.94) ❍ (0.50) ✖ (0.48) ✔ (0.71) ✔ (1.00) ✔ (0.57)
jtopas ❍ (0.50) ❍ (0.50) ❍ (0.50) ❍ (0.50) ✔ (0.93) ❍ (0.50) ❍ (0.50) ❍ (0.50) ❍ (0.50) ❍ (0.50) ✔ (0.91) ❍ (0.50) ✖ (0.33) ❍ (0.50) ❍ (0.50) ✖ (0.33) ✔ (0.94) ❍ (0.50)
jmeter ✖ (0.36) ❍ (0.50) ✖ (0.46) ✖ (0.36) ✔ (1.00) ❍ (0.50) ✖ (0.40) ✖ (0.47) ✔ (0.52) ✖ (0.40) ✔ (1.00) ✔ (0.52) ✖ (0.31) ❍ (0.50) ✖ (0.48) ✖ (0.32) ✔ (1.00) ❍ (0.49)
xmlsec ✔ (1.00) ❍ (0.50) ❍ (0.50) ✔ (1.00) ✔ (1.00) ❍ (0.50) ✔ (0.97) ✖ (0.48) ✖ (0.40) ✔ (0.96) ✔ (1.00) ❍ (0.50) ✔ (1.00) ❍ (0.51) ✔ (0.60) ✔ (1.00) ✔ (1.00) ✔ (0.58)

Java-C Programs ✔ (0.63) ❍ (0.50) ❍ (0.50) ✔ (0.55) ✔ (0.98) ✔ (0.53) ✔ (0.65) ❍ (0.50) ❍ (0.50) ✔ (0.56) ✔ (0.97) ✔ (0.51) ✔ (0.67) ❍ (0.50) ❍ (0.50) ✔ (0.58) ✔ (0.98) ✔ (0.52)

All Programs ✔ (0.71) ✔ (0.51) ✔ (0.51) ✔ (0.56) ✔ (0.57) ✔ (0.51) ✔ (0.73) ✔ (0.51) ✔ (0.51) ✔ (0.57) ✔ (0.55) ✔ (0.51) ✔ (0.69) ✔ (0.52) ✔ (0.51) ✔ (0.57) ✔ (0.57) ❍ (0.50)

10
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Table 5
Statistical effectiveness comparisons of APFD between different coverage granularities for OCP.

Metric Language Mean Median Comparison

Statement Branch Method Statement Branch Method Statement vs Branch Statement vs Method Branch vs Method

APFD

C 0.89 0.90 0.87 0.88 0.89 0.87 1.65E−15/0.48 0/0.62 0/0.65
Java (test-method) 0.68 0.69 0.68 0.69 0.73 0.69 7.13E−97/0.43 2.04E−3/0.51 1.39E−137/0.58
Java (test-class) 0.54 0.55 0.54 0.54 0.54 0.54 4.34E−6/0.43 4.34E−06/0.49 1.67E−94/0.56
All 0.72 0.73 0.71 0.72 0.75 0.70 1.8E−24/0.48 6.71E−34/0.52 2.2E−113/0.54
Nevertheless, branch coverage appears slightly more effective
than statement and method coverage for OCP.

Answer to RQ2: Overall, our analysis on the code coverage
granularity reveals that the code coverage granularity may
only provide a small impact on OCP testing effectiveness, with
branch coverage possibly slightly outperforming statement and
method coverage.

5.3. RQ3: Impact of test case granularity

In our study, the Java programs have two granularities of test
ases (i.e., the test-class and test-method). Following to previous
tudies (Zhang et al., 2013a; Huang et al., 2020), we also consider
he test case granularity as a factor in the evaluation. Thus, in
his section, we also investigate how the test case granularity
nfluence the effectiveness of OCP.

The comparisons are presented in Fig. 6. OCP usually has
ignificantly lower average APFD values for prioritizing test cases
t the test-class granularity than at the test-method granularity.
Table 5 presents the statistical effectiveness comparisons of

PFD between different granularities for OCP. Each cell in the
ean, Median, and Comparison columns represents the mean
PFD value, the median value, and the p-values/effect size Â12 for

the different code coverage granularity comparisons, respectively.
Considering all the Java programs, as can be seen in Table 5, the
mean and median APFD values at the test-method granularity
are much higher than at the test-class granularity with all code
coverage granularities. In fact, the test case at the test-class
granularity consists of a number of test cases at the test-method
granularity. For example, there exist 1000 test cases at the test-
class granularity and more than 5000 test cases at test-method
granularity for Java programs at Table 3, resulting in a much
larger number of test cases at the test-method granularity. Thus,
the permutation space of candidate test cases at the test-method
granularity may be greater, which leads to a better fault detection
rate (Zhang et al., 2013a).

Answer to RQ3: Overall, our analysis on the test case granular-
ity reveals that OCP has better effectiveness performance when
prioritizing test cases at the test-method granularity than at the
test-class granularity in terms of fault detection rate.

5.4. RQ4: Efficiency of OCP

In this section, to evaluate the efficiency of OCP, we calculate
he execution time for all TCP techniques.

Table 6 presents the statistics about time costs (i.e., the pre-
rocessing time and prioritization time) for all subject programs
nd studied TCP techniques.
Specifically, the preprocessing time contains the compilation

ime for executing the program and the instrumentation time for
ollecting the coverage information. Thus the preprocessing time
11
of the subject programs is the same for different TCP techniques
and is not presented. Apart from the first two columns that dis-
play the program name and the programming language it belongs
to, each cell in the table shows the mean prioritization time over
the 1000 independent runs using each TCP technique.

As discussed in Section 4, the Java programs have each version
individually adapted to collect the code coverage information,
with different versions using different test cases. Thus, the pri-
oritization time is collected for each Java program version. In
contrast, each PV0 version of the C programs is compiled and
instrumented to collect the code coverage information for each
test case, and all program versions use the same test cases.
Thus, each C program version has the same prioritization time.
As a result, we present the time costs for each Java program
version and C Program. Furthermore, because all the studied TCP
techniques prioritize test cases after the coverage information is
collected, they are all deemed to have the preprocessing time.

Based on the time costs, we have the following observations:
(1) As expected, the time costs for all TCP techniques (including
OCP) are lowest with method coverage, followed by branch, and
then statement coverage for all programs. As shown in Table 3,
the number of methods is much smaller than the number of
branches, which in turn is smaller than the number of statements.
Thus, the coverage information representing the related test cases
is smaller, requiring less time to compute the priority value. (2)
It is also expected that (for the Java programs) prioritization at
the test-method granularity would take longer than at the test-
class granularity, regardless of code coverage granularities. As
shown in Table 3, the number of test cases to be prioritized at
the test-method granularity is large than those at the test-class
granularity, which requires more prioritization iterations.

(3) OCP requires much less time to prioritize test cases than
most studied TCP techniques (e.g., TCPadd, TCPlexi, TCPuni, TCPart and
TCPsearch) irrespective of subject program, and code coverage and
test case granularities. Meanwhile, OCP can improve the costs of
TCPadd by 85% on average. Considering that TCPadd remains state-
of-the-art, the decreases in costs can achieve slightly better or
comparable fault detection effectiveness and thus are valuable
actually. It should be noted that TCPtot has a much faster prior-
itization rate than TCPocp, as it does not use feedback information
during the prioritization process. However, TCPtot performs worst
among all TCP techniques and is usually considered as a low
bound control TCP technique (Zhang et al., 2013a).

Answer to RQ4: Overall, our analysis on the efficiency reveals
that except TCPtot , the APFD values of which is much lower
than OCP, TCPocp has much less time to prioritize test cases than
TCPadd, TCPlexi, TCPuni, TCPart and TCPsearch.

6. Related work

A considerable amount of research has been conducted to
improve regression testing performance on various issues (Lou
et al., 2019; Pan et al., 2022; Yu et al., 2021; ai Sun et al.,
2022; Mondal and Nasre, 2021; Fang et al., 2014; Haghighatkhah
et al., 2018). We focus on the coverage-based TCP techniques and
summarize the existing work from the following categories.
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Table 6
Efficiency: Comparisons of execution costs in milliseconds for different TCP techniques.

Language Program Statement coverage Branch coverage Method coverage

TCPtot TCPadd TCPlex TCPuni TCPart TCPsearch TCPocp TCPtot TCPadd TCPlex TCPuni TCPart TCPsearch TCPocp TCPtot TCPadd TCPlex TCPuni TCPart TCPsearch TCPocp

C

gnu_flex 4.31 368.5 1028.03 687.98 7937.7 4189.23 138.69 2.66 274.83 565.48 365.06 7476.21 3846.69 79.3 0.60 60.31 45.87 31.26 353.5 3001.22 12.78
gnu_grep 2.5 164.06 469.2 312.44 3879.79 2834.07 48.18 2.02 161.33 399.76 236.09 5442.39 2979.37 41.39 0.45 38.94 27.27 17.54 213.55 2424.7 12.73
gnu_gzip 0.49 8.29 19.68 22.1 63.49 438.9 8.34 0.26 5.71 14.38 13.76 46.42 406.68 4.93 0.06 2.71 1.81 1.85 6.72 349.84 2.00
gnu_make 0.82 13.07 40.78 40.36 101.77 556.23 13.25 0.75 8.91 27.91 25.95 106.16 442.69 6.9 0.06 1.25 2.34 2.25 5.7 205.53 1.66
gnu_sed 0.75 46.54 117.93 76.77 975.4 1952.64 12.78 0.49 37.0 71.59 38.71 859.63 1949.83 7.9 0.16 15.19 12.79 7.25 84.42 1766.16 4.01

Java(test-
method)

ant_v1 1.75 40.04 158.52 57.01 6185.81 29490.59 6.85 0.49 9.17 42.45 12.09 565.6 8852.76 2.36 0.29 7.12 28.49 8.69 1124.89 9018.78 2.22
ant_v2 4.9 179.95 618.03 220.52 37120.98 35375.86 22.17 1.34 44.05 164.34 51.6 1645.86 26382.14 6.77 0.78 32.07 103.95 32.92 6315.33 21068.79 8.24
ant_v3 4.98 181.64 616.08 217.66 36575.56 35217.32 22.03 1.21 45.43 164.08 50.47 1618.44 20623.5 6.85 0.84 32.36 104.01 32.83 6281.18 15832.8 8.41
ant_v4 30.26 1937.49 6928.77 2470.94 531511.88 403666.85 177.07 7.79 533.67 1946.62 666.16 19113.81 104579.16 61.56 4.41 352.97 1118.36 411.38 111594.23 65434.09 101.87
ant_v5 33.51 2339.8 8259.94 2980.85 701415.88 462601.72 210.64 8.58 648.16 2316.6 795.81 22050.04 115193.82 71.31 5.11 424.71 1329.35 500.8 136199.85 75283.14 128.75
ant_v6 32.98 2261.22 8056.38 2899.7 675083.49 462799.01 204.27 9.04 635.54 2271.12 779.82 18858.47 102967.53 70.19 4.98 417.81 1294.7 488.7 127806.2 73827.57 125.04
ant_v7 75.39 6447.83 28863.39 10719.12 3582724.65 1243589.12 608.8 21.54 2449.7 8276.29 3030.26 103270.76 302281.19 222.36 12.84 1577.69 4793.59 1913.45 697296.49 135253.39 486.84
ant_v8 71.15 6576.87 29071.21 10645.15 3588748.59 1225224.6 637.39 20.11 1985.4 8372.64 3052.9 104345.4 256010.28 225.68 12.13 1637.23 4832.87 1911.08 701421.34 175257.75 579.66
jtopas_v1 2.05 37.08 157.98 52.08 5590.25 49553.33 10.79 0.66 13.76 56.64 18.1 2054.62 22940.51 3.86 0.14 3.34 12.28 3.4 528.61 3118.26 1.98
jtopas_v2 1.97 39.16 164.99 55.08 6068.39 59249.46 11.3 0.67 15.49 59.5 19.12 2170.79 47675.36 3.91 0.16 3.74 13.44 3.9 576.68 8540.78 2.54
jtopas_v3 6.98 166.64 714.39 228.32 57582.22 65410.86 36.91 2.34 59.67 257.85 78.34 14679.05 60761.66 14.23 0.43 16.93 54.2 16.77 3955.14 32994.5 6.76
jmeter_v1 0.44 4.94 27.79 6.18 346.59 31128.38 1.58 0.18 1.02 6.16 1.23 25.68 5259.7 0.44 0.14 0.89 4.88 1.01 68.12 5013.62 0.44
jmeter_v2 1.12 10.99 68.28 13.83 1063.24 25942.38 3.12 0.24 1.73 9.64 2.07 47.21 6825.12 0.62 0.25 2.09 10.6 2.2 185.66 7374.39 0.86
jmeter_v3 1.39 14.1 81.6 17.61 1380.78 17542.05 3.78 0.16 1.93 10.85 2.39 58.86 4833.83 0.7 0.19 2.94 15.61 3.51 295.78 2938.2 0.97
jmeter_v4 1.12 16.06 83.42 18.04 1422.88 11761.66 3.81 0.16 2.1 10.86 2.4 59.07 1481.61 0.67 0.21 3.3 15.66 3.65 303.56 1934.82 1.01
jmeter_v5 1.24 18.35 96.51 21.21 1801.14 13119.46 4.42 0.23 2.47 12.67 2.84 71.5 1347.98 0.77 0.42 3.69 18.32 4.47 377.77 2001.66 1.20
xmlsec_v1 1.13 22.06 99.16 22.64 2365.41 10392.07 4.20 0.47 4.69 24.3 5.52 118.31 1368.55 1.20 0.25 3.35 14.51 3.06 339.86 1435.36 1.16
xmlsec_v2 1.21 24.06 108.63 26.1 2703.6 11188.71 4.97 0.54 6.37 28.58 7.03 150.92 1593.97 1.54 0.18 3.54 15.26 3.34 375.93 1363.08 1.30
xmlsec_v3 1.21 18.78 89.32 20.26 2098.82 10128.92 4.45 0.36 5.12 24.59 5.69 111.92 1314.03 1.28 0.14 2.7 12.03 2.45 259.3 1050.24 1.03

Java(test-class)

ant_v1 0.42 3.69 19.67 4.33 133.56 6457.16 1.44 0.13 0.82 5.71 1.01 35.04 1178.75 0.40 0.10 0.62 3.86 0.73 25.2 922.62 0.33
ant_v2 1.36 11.57 64.61 14.26 628.79 18689.06 3.65 0.44 2.93 17.66 3.64 171.69 3686.37 1.01 0.19 1.78 11.26 2.43 111.20 2376.55 0.72
ant_v3 1.4 11.37 64.0 14.28 630.27 19582.33 3.85 0.27 2.87 17.52 3.58 170.01 4371.02 1.06 0.28 1.79 10.98 2.29 109.12 2755.49 0.70
ant_v4 5.76 76.96 420.2 101.54 9003.24 102183.09 17.85 1.57 22.47 119.32 26.76 1933.59 19413.74 4.94 1.22 13.56 64.98 15.84 1465.66 13110.27 2.90
ant_v5 6.44 88.95 460.8 109.61 10078.73 116900.69 19.14 1.72 24.71 131.13 28.89 2139.8 20867.59 5.34 0.9 16.01 70.96 16.95 1656.95 13822.1 3.12
ant_v6 6.65 82.74 451.09 107.43 9705.8 116659.29 18.64 1.84 22.4 128.29 27.67 2017.54 21966.04 5.14 0.89 13.27 69.35 16.64 1587.45 15390.26 3.02
ant_v7 12.8 249.01 1193.98 326.64 131530.77 163839.7 39.39 3.60 69.75 344.87 90.07 5848.22 54516.25 11.67 2.00 42.48 196.28 53.68 7277.59 32652.62 7.48
ant_v8 12.68 247.24 1196.01 325.44 132814.84 156276.32 39.79 3.61 70.38 346.6 90.6 5934.71 57982.7 11.84 1.97 41.67 195.86 53.18 7261.99 41400.42 7.17
jtopas_v1 0.15 0.62 4.66 0.74 6.16 8268.77 0.50 0.06 0.20 1.73 0.28 2.29 2093.0 0.19 0.02 0.05 0.42 0.05 0.53 677.81 0.04
jtopas_v2 0.16 0.61 5.34 0.86 7.67 7132.1 0.55 0.06 0.22 1.98 0.37 2.95 2625.9 0.20 0.02 0.05 0.48 0.08 0.78 898.9 0.05
jtopas_v3 0.49 2.12 15.62 2.65 31.87 27084.71 1.38 0.19 0.72 5.63 0.88 11.73 6509.74 0.48 0.07 0.16 1.36 0.22 3.02 1514.9 0.13
jmeter_v1 0.2 0.77 5.99 0.89 16.66 6560.88 0.44 0.06 0.15 1.33 0.19 3.66 1602.51 0.10 0.04 0.16 1.19 0.18 3.36 1254.53 0.09
jmeter_v2 0.31 1.32 12.27 1.81 38.84 10595.78 0.79 0.07 0.24 1.85 0.28 6.11 1655.58 0.14 0.05 0.26 2.06 0.34 6.66 1272.91 0.18
jmeter_v3 0.36 1.97 16.52 2.57 64.97 13330.05 1.02 0.07 0.3 2.57 0.44 9.54 1464.98 0.16 0.08 0.44 3.37 0.53 14.07 1915.9 0.25
jmeter_v4 0.36 1.98 16.94 2.64 67.29 13366.85 1.05 0.06 0.28 2.59 0.31 9.44 2238.46 0.17 0.09 0.42 3.44 0.54 14.48 2167.08 0.25
jmeter_v5 0.43 2.43 20.95 3.28 93.95 10861.39 1.30 0.07 0.36 3.02 0.51 11.7 2088.49 0.20 0.08 0.53 4.19 0.66 19.83 2475.02 0.29
xmlsec_v1 0.21 1.02 8.25 1.21 18.86 6315.35 0.65 0.06 0.24 2.14 0.3 4.15 576.82 0.18 0.04 0.16 1.3 0.16 2.79 875.06 0.10
xmlsec_v2 0.2 1.01 8.53 1.24 19.05 6104.03 0.64 0.09 0.25 2.47 0.32 4.31 1269.4 0.18 0.06 0.14 1.22 0.18 2.72 937.54 0.11
xmlsec_v3 0.17 0.77 6.9 0.98 12.84 4190.4 0.57 0.06 0.21 2.01 0.26 2.93 521.64 0.14 0.04 0.11 1.01 0.14 1.8 706.94 0.08

Average 7.77 505.2 2091.45 764.06 222084.94 116924.45 54.71 2.24 166.81 611.01 221.85 7517.83 30431.32 20.47 1.24 111.17 337.81 129.6 42221.74 18223.62 35.36
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.1. Prioritization strategies

Despite the large body of research on coverage-based
CP (Fang et al., 2014; Miranda et al., 2018; Epitropakis et al.,
015; Peng et al., 2020), the total-greedy and additional-greedy
reedy strategies remain the most widely investigated priori-
ization strategies (Rothermel et al., 1999). In addition to the
bove greedy-based strategies, researchers have also investigated
ther generic strategies (Li et al., 2007; Jiang et al., 2009). For
xample, Li et al. (2007) transform the TCP problem into a search
roblem and propose two search-based prioritization strategies
i.e., a hill-climbing strategy and a genetic strategy). Furthermore,
nspired by the advantages of adaptive random testing (ART) in
eplacing random testing (RT) (Huang et al., 2019; Jiang et al.,
009) investigate ART to improve random test case prioritization
nd propose an art-based strategy based on the distribution of
est cases across the input domain.

Researchers have also proposed some alternative strategies
n previous studies to take further advantage of the code cov-
rage information (e.g., the covered times of code units). For
xample, Eghbali and Tahvildari (2016) propose an enhanced
dditional-greedy strategy for breaking ties using the notion of
exicographical ordering (i.e., the lexicographical-greedy strategy),
here fewer covered code units should have higher priority value

or coverage. Specifically, unlike traditional greedy-based strate-
gies (Elbaum et al., 2000), Eghbali et al. do not categorize all code
units into two distinct groups, (i.e., covered and not covered).
At each iteration, huge calculations are required to calculate the
priority values of all code units based on the number of times
they are covered, and then each one in the remaining test cases
is lexicographically compared against others. Similarly, Zhang
et al. (2013a) propose a variant of the additional-greedy strat-
egy to unify the total-greedy strategy and the additional-greedy
trategy. Each time a code unit is covered by a test case, the
robability that the code unit contains undetected faults is re-
uced by some ratio between 0% (as in the total-greedy strategy)
nd 100% (as in the additional-greedy strategy), which can also
e considered as an effective strategy to break tie cases. The
bove techniques attempt to make use of more accurate coverage
nformation obtained by additional calculations. For example, the
exicographical-greedy strategy needs to rank all code units based
n the number of times they are covered, while the unified-greedy
trategy needs to calculate the value of fault detection probability
or each code unit. Most recently, Zhou et al. (2022) propose
ight parallel test prioritization techniques, which are adapted
rom four typical sequential test prioritization techniques (includ-
ng total-greedy, the additional-greedy strategy, the search-based
trategy, and the art-based strategy). Different from traditional
equential TCP techniques, it aims at generating a set of test
equences, each of which is allocated in an individual computing
esource. Thus, we do not include it in this work.

It can be observed that most existing TCP strategies tend to
onsider the whole candidate set in prioritization iterations. To
ddress this limitation, we pay attention to partial candidate test
ases with the aid of previous priority values, resulting in a better
erformance in both effectiveness and efficiency.

.2. Coverage criteria

In principle, TCP techniques can use any test adequacy cri-
erion as the underlying coverage criterion (Hao et al., 2016;
ang et al., 2012). Among various criteria, structural coverage has
een widely adopted in previous TCP research, such as statement
overage (Rothermel et al., 1999; Di Nucci et al., 2020), branch
overage (Jiang et al., 2009), method coverage (Zhang et al.,
013a; Wang et al., 2017), block coverage (Li et al., 2007) and
13
modified condition/decision coverage (Jones and Harrold, 2003).
Elbaum et al. (2000) also propose a fault-exposing-potential (FEP)
criterion based on the probability of the test case detecting a
fault. Fang et al. (2012) use logic coverage for TCP, where high
coverage of logic expressions implies a high probability of de-
tecting faults. Recently, Chi et al. (2018) demonstrate that basic
structural coverage may not be enough to predict fault detection
capability and propose a dynamic relation-based coverage based
on method call sequences. Wang et al. (2017) detect fault-prone
source code by existing code inspection techniques and then pro-
pose a quality-aware TCP technique (i.e., QTEP) by considering the
weighted source code in terms of fault-proneness. However, such
techniques require not only coverage information but also other
source code information (e.g., the defect prediction results and
method call sequences) and thus are not considered in our work.
In this work, we investigate how the basic structure coverage
criteria influence the performance of TCP techniques.

6.3. Empirical studies

As an effective regression testing technique, TCP has been
extensively studied in the literature from both academic and in-
dustrial perspectives. Recently, researchers also performed a large
number of empirical studies to investigate TCP from different
aspects. For example, several studies usually focus on the per-
formance of the traditional dynamic test prioritization regarding
some effectiveness and efficiency criteria (e.g., APFD, APFDC , and
rioritization time) (Rothermel et al., 1999; Elbaum et al., 2000;
o et al., 2006; Do et al., 2010). Meanwhile, Lu et al. (2016) were
he first to investigate how real-world software evolution impacts
he performance of prioritization strategies: They reported that
ource code changes have a low impact on the effectiveness of
raditional dynamic techniques, but that the opposite was true
hen considering new tests in the process of evolution. Citing
lack of comprehensive studies comparing static and dynamic

est prioritization techniques, Luo et al. (2016), Luo et al. (2019)
ompared static TCP techniques with dynamic ones. Henard et al.
2016) compared white-box and back-box TCP techniques. In this
ork, we focus on the coverage-based TCP techniques and con-
uct an extensive study to evaluate OCP with six state-of-the-art
CP techniques.

. Threats to validity

To facilitate the replication and verification of our experi-
ents, we have made the relevant materials (including source
ode, subject programs, test suites, and mutants) available
t Anon. (0000a). Despite that, our study may still face some
hreats to validity.

.1. Internal validity

The implementation of our experiment may introduce threats
o internal validity. First, randomness might affect the reliabil-
ty of conclusions. To address this, we repeat the prioritization
rocess 1000 times and used statistical analysis to assess the
trategies. Second, the data structures used in the prioritization
lgorithms, and the faults in the source code, may introduce noise
hen evaluating the effectiveness and efficiency. To minimize
hese threats, we use data structures that are as similar as possi-
le, and carefully reviewed all source code before conducting the
xperiment. Third, to assess the effectiveness of TCP techniques,
he most widely used metric APFD is adopted in our experiment.
owever, APFD only reflects the rate at which faults are detected,
gnoring the time and space costs. Our future work will involve
dditional metrics (e.g., APFDC ) that can measure other practical
erformance aspects of prioritization strategies.
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.2. External validity

The main threat to external validity lies in the selection of
he subject programs and faults. First, although 19 Java and 30
program versions with various sizes are adopted in our ex-
eriment, the results may not generalize to programs written in
ther languages (e.g., C++ and Python). Meanwhile, the relative
erformances of TCP techniques on the used mutants may not
e generalizable to the real faults, despite the fact that mutation
esting have argued to be an appropriate approach for assessing
CP performance (Andrews et al., 2005; Do et al., 2005; Just
t al., 2014), To mitigate these threats, additional studies will be
onducted to investigate the performance of TCP on programs
ith real faults and other languages in the future.

. Conclusion

In this paper, we have introduced a generic partial attention
echanism that adopts priority values of previously selected

est cases to avoid considering all test cases. We also apply the
oncept to the additional-greedy strategy and implement a novel
overage-based TCP technique, partition ordering based priori-
ization (OCP). Results from our empirical study have demon-
trated that OCP can achieve better fault detection rate than
ix state-of-the-arts (i.e., total-greedy, additional-greedy, unified-
greedy, lexicographical-greedy, art-based, and search-based TCP
techniques). OCP is also found to have much less prioritization
time to prioritize test cases than most state-of-the-arts (ex-
cept the total-greedy strategy) and the improvement can achieve
85%–99% on average.

In the future, we plan to continue refining the generic par-
tial attention mechanism and extend it to other TCP techniques
(e.g., the lexicographical-greedy strategy). We will also launch an
xtensive effort on understanding the impact of the proposed
echnique for other application domains of TCP research (Wang
t al., 2021; Chen et al., 2020; Sharif et al., 2021), such as config-
ration testing (Cheng et al., 2021; Sun et al., 2020) and combi-
atorial testing (Henard et al., 2014; Wu et al., 2020).
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