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Abstract—Automated program repair (APR) aims to fix soft-
ware bugs without human intervention and plays a crucial
role in software development and maintenance. Template-based
APR has been widely investigated and shown promising results.
However, it is challenging for template-based APR to select the
appropriate donor code, which is an important repair ingredient
for generating candidate patches. Inappropriate donor code may
cause plausible but incorrect patch generation even with correct
fix patterns, limiting the repair performance.

In this paper, we aim to revisit template-based APR, and
propose GAMMA, to directly leverage large pre-trained language
models for donor code generation. Our main insight is that
instead of retrieving donor code in the local buggy file, we can
directly predict the correct code tokens based on the context
code snippets and repair patterns by a cloze task. Specifically,
(1) GAMMA revises a variety of fix templates from state-of-the-
art template-based APR techniques (i.e., TBar) and transforms
them into mask patterns. (2) GAMMA adopts a pre-trained
language model to predict the correct code for masked code as
a fill-in-the-blank task. Although our idea is general and can
be built on various existing pre-trained language models, we
have implemented GAMMA as a practical APR tool based on
the recent UniXcoder model. The experimental results demon-
strate that GAMMA correctly repairs 82 bugs on Defects4J-
v1.2, which achieves 20.59% (14 bugs) and 26.15% (17 bugs)
improvement over the previous state-of-the-art template-based
approach TBar and learning-based one Recoder. Furthermore,
GAMMA repairs 45 bugs and 22 bugs from the additional
Defects4J-v2.0 and QuixBugs, indicating the generalizability of
GAMMA in addressing the dataset overfitting issue. We also prove
that adopting other pre-trained language models can provide
substantial advancement, e.g., CodeBERT-based and ChatGPT-
based GAMMA is able to fix 80 and 67 bugs on Defects4J-
v1.2, indicating the scalability of GAMMA. Overall, our study
highlights the promising future of adopting pre-trained models
to generate correct patches on top of fix patterns in practice.

Index Terms—Automated Program Repair, Fix Pattern, Pre-
trained Model, LLM4SE

∗Chunrong Fang and Zhenyu Chen are the corresponding authors.

I. INTRODUCTION

The complexity and size of modern software systems are
continuously enlarging, leading to the soaring number of
software bugs [1], [2]. Software bugs have detrimental effects
on software development, as they give users an annoying
experience, and sometimes can cause huge financial losses to
developers [3]. A considerable amount of time and budget is
spent on identifying and fixing such software bugs manually
[4]. To facilitate the process of manual debugging, automated
program repair (APR), which aims to generate correct patches
for identified buggy code snippets automatically, is getting
growing attention from both academia and industry [5], [6],
such as Meta [7], Google [8] and Microsoft [9], [10].

In the literature, a variety of APR techniques have been pro-
posed to generate patches, such as heuristic-based [11], [12],
constraint-based [13], [14], template-based [15], [16]. Among
these traditional APR techniques, template-based APR, which
employs repair patterns hand-crafted by human experts to
transform buggy code snippets into correct ones, has been
widely investigated and recognized as state-of-the-art [17]–
[19]. Candidate patches are usually generated by leveraging
two kinds of repair ingredients (i.e., fix patterns and donor
code) that are found in existing code bases. The repair pattern
represents common code change actions (e.g., insertion of
an If statement) and donor code represents code fragments
(e.g., identifier tokens such as method names) to concretize
patches guided by abstract patterns. A mass of studies has been
dedicated to template extraction schemes, such as manually
extracted templates and automatically mining templates [20]–
[23]. For example, state-of-the-art template-based APR tool
TBar [17] focuses on the local buggy file and leverages the
context of buggy code to prune away irrelevant donor code.
Previous works [24], [25] have shown a considerable number
of bugs cannot be fixed because the relevant donor code is not
available in the local file. Therefore, TBar may fail to generate
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correct patches with inappropriate donor code although the fix
pattern matches with correct code change actions.

In this paper, we propose a novel template-based APR tool
called GAMMA by combining the advances of fix patterns
and pre-trained language models. The key insight is that
considering pre-trained models can acquire adequate general
knowledge about programming language from all possible
open-source projects in the wild, we can directly employ such
models to retrieve relevant donor code from the fix pattern and
surrounding code context. In particular, we first collect and
summarize a super-set of fix patterns drawn from previous
template-based work (e.g., TBar). We then transform these
fix templates into hole-filling-based patterns, which replace
donor code with several masked tokens to be filled. Finally,
we perform a mask prediction task on the hole-filling-based
fix patterns with the help of pre-trained models in a fill-in-
the-blank manner, i.e., predicting the correct donor code for
the masked tokens. Although GAMMA is conceptually gener-
alizable to various pre-trained models, we have implemented
GAMMA on top of one recent pre-trained language model,
UniXcoder [26]. Unlike current template-based APR tools
which usually retrieve fix ingredients in the local buggy file,
GAMMA directly utilizes generic knowledge pre-trained with
millions of code snippets from open-source projects, allowing
it to provide a variety of donor code to fix different bugs.

We conduct extensive experiments to compare GAMMA
with state-of-the-art APR approaches (including both tra-
ditional and learning-based ones) on the widely-adopted
Defects4J-v1.2 benchmark. The experimental results demon-
strate that GAMMA is able to outperform all existing APR
approaches, improving the number of correctly-fixed bugs to
82 with a precision of 81.19%, and 14 unique bugs that no
prior work can fix, which is a new frontier in the APR field.
Besides, GAMMA fixes 45 and 22 bugs on the additional
Defects4J-v2.0 and QuixBugs, 27 and 5 more than state-of-
the-art learning-based technique Recoder, demonstrating that
GAMMA can address the important dataset overfitting issue
well. Moreover, we implement GAMMA with CodeBERT [27]
and ChatGPT [28], and find 80 and 67 bugs are fixed correctly
on Defects4J-v1.2. The results demonstrate that GAMMA
with other pre-trained models can further provide substantial
advancement, highlighting the generalizability of GAMMA.

To sum up, the contributions of this paper are as follows:
• New Dimension. We bridge the gap between the ad-

vances in recent pre-trained models and template-based
APR. Different from existing template-based APR re-
trieving donor code from local buggy files and existing
learning-based APR generating a patched code snippet
from scratch, our work demonstrates that we can leverage
pre-trained models to generate correct code tokens in a
given fix pattern. More importantly, our work reveals the
potential for leveraging pre-trained models to resolve the
important fix ingredient problem in template-based APR.

• Novel APR tool. We propose GAMMA, which leverages
the large pre-trained language model to generate correct
code with the help of fix patterns without any additional

historical bug-fixing pairs for training. We define a set of
fix patterns in a fill-in-the-blank format and leverage the
original pre-training objective of pre-trained models to
predict actual masked-out tokens. Considering the fill-in-
the-blank task can leverage various pre-trained language
models, GAMMA is general in concept and can be imple-
mented with different pre-trained models in practice.

• Extensive study. We conduct an empirical study to
investigate the effectiveness of GAMMA compared to
state-of-the-art traditional and learning-based APR tech-
niques. The results on the widely-adopted Defects4J-v1.2
show that GAMMA is able to fix 82 bugs and 14 of
them cannot be fixed by existing APR tools, creating
a new higher baseline of repair performance. More im-
portantly, GAMMA fixes 45 and 22 bugs on the newly-
developed Defects4J-v2.0 and QuixBugs, demonstrating
that GAMMA can avoid the important dataset overfitting
issue of existing APR techniques. Moreover, we adopt
different pre-trained models (e.g., ChatGPT) to further
investigate the generalization ability of GAMMA.

• Available artifacts. To support the open science commu-
nity, we release the relevant materials (including source
code, experimental results, and correct patches) in our
experiment for replication and future research [29].

II. BACKGROUND AND MOTIVATION

A. Automated Program Repair

As a promising technique to shift the heavy manual de-
bugging to efficient automated patch generation, APR has
developed rapidly and received much attention from a broad of
research communities, such as software engineering, software
security, and artificial intelligence [6], [30]. The workflow of
APR usually involves three phases: (1) fault localization, i.e.,
the off-the-shelf fault localization techniques are utilized to
identify a ranked list of suspicious code elements, with whose
help APR can focus on a small code region, thus reducing the
workload [31]; (2) patch generation, i.e., candidate patches
are generated by applying a set of transformation rules to the
suspicious code snippets [32]; and (3) patch validation, i.e., the
available test suites are utilized as the program specifications
to check the correctness of candidate patches [33]. The can-
didate patches that pass all available test suites are considered
plausible ones. The plausible patches that are semantically
equivalent to the developer patch by manual inspection are
considered correct ones; otherwise overfitting ones [34], [35].

In the literature, as the core component of APR research,
a mass of research efforts are devoted to generating patches
from different aspects, including traditional and learning-
based ones. In particular, traditional APR techniques can be
classified as heuristic-based [11], [12], constraint-based [13],
[14], template-based [15], [16]. Among them, template-based
APR is proven to achieve the best performance, which consists
of two fix ingredients, i.e., fix patterns and donor code. Fix
patterns are hand-crafted by human experts to denote the
common code changes, and donor code is retrieved in buggy
files to denote the actual correct code tokens. GAMMA aims



to revise the important donor code by employing pre-trained
language models in a fill-in-the-blank manner.

Compared with traditional APR techniques, learning-based
techniques handle the program repair problem as a neural
machine translation (NMT) task, which translates a code
sequence from a source language (i.e., buggy code snippets)
into a target language (i.e., correct code snippets). Existing
NMT repair models are typically built on the top of the
encoder-decoder architecture [36]. The encoder extracts the
hidden status of buggy code snippets with the necessary
context, and the decoder takes the encoder’s hidden status and
generates the correct code snippets [22], [37], [38]. Thanks
to the powerful ability of DL to learn hidden and intricate
relationships from massive code corpora, learning-based APR
techniques have achieved remarkable performance in the last
couple of years. Although learning-based APR techniques
have demonstrated their promising future, they are still limited
by the quality and quantity of historical bug-fixing pairs for
training [18]. We view GAMMA as a novel learning-based APR
technique that attempts to boost traditional APR techniques by
utilizing deep learning technology. However, different from
most existing learning-based APR that treats patch generation
as an end-to-end NMT task with a limited number of bug-
fixing pairs as training data, GAMMA integrates pre-trained
language models into template-based APR and only predicts
masked code tokens with a zero-shot learning scenario.

B. Pre-trained Model

Recently, pre-trained language models (e.g., UniXcoder [26]
and ChatGPT [28]) have significantly boosted performance
across a wide range of code-related tasks [39], [40]. These
models are pre-trained by self-supervised training on large-
scale unlabeled corpora and then fine-tuned by supervised
training on limited corpora to enhance performance on mul-
tiple downstream tasks. During the pre-training process, a
masked language modeling objective is usually employed
to derive generic language representations from the massive
unlabeled training data [41], i.e., a small percentage of tokens
are replaced by masked tokens, and the training objective is
to predict the original values of the masked tokens.

Existing pre-trained models usually adopt the encoder-
decoder architectures, where the former encodes an input
sequence as a fixed-length vector representation, and the
latter generates an output sequence based on the input rep-
resentation. These models can be generally categorized into
three architectures: encoder-only, decoder-only, and encoder-
decoder ones [42]. Encoder-only models (e.g., CodeBERT
[41]) usually pre-train a bidirectional transformer in which
each token can attend to each other. Decoder-only models
(e.g., GPT [43]) are pre-trained using unidirectional language
modeling that only allows tokens to attend to the previous
tokens and themselves to predict the next token. Encoder-
decoder models (e.g., UniXcoder [26]) often make use of
denoising pre-training objectives that corrupt the source input
and require the decoder to recover them.

1 @@ -786,7 +786,7 @@ void replace() {
2 } else {
3 - int indexOfDot = namespace.indexOf(’.’);
4 + int indexOfDot = namespace.lastIndexOf(’.’);
5 if (indexOfDot == -1) {
6 compiler.getNodeForCodeInsertion(

minimumModule)

Listing 1: The Defects4J bug Closure-92

In this work, we select UniXcoder to retrieve the doner code
via a mask prediction task. UnixCoder is pre-trained using the
MLM objective which can be used to directly generate masked
code tokens from the appropriate fix pattern and surrounding
code context. Besides, CodeBERT and ChatGPT are employed
to investigate the generalization ability of GAMMA.

C. Fix Template

Fix templates are widely employed in the APR commu-
nity [17]. A fix template is a pre-defined code transformation
rule that represents a common code change in the bug-fixing
process. The insight behind fix templates is that many software
bugs are similar in nature [22]. Therefore, with fix templates
summarized from previous bugs, it is possible to automatically
fix some other flawed code [24].

In the literature, there are several strategies to access
fix templates: (1) manual template mining [44], [45], i.e.,
through performing analysis on existing bugs as well as their
relevant patches, experienced developers can identify similar
code changes, and turn them into fix templates. (2) machine
learning [15], [20], i.e., learning approaches are used so
that fix templates can be generated automatically. (3) static
analysis [16], [46], i.e., fix templates are generated from
assorted types of warnings raised by static analysis tools.

The process of applying a fix template to patch generation
typically involves two steps. First, the APR tool selects an
appropriate fix template based on the abstract syntax tree
(AST) representation of the buggy code. Fix templates are
chosen according to the types of nodes in AST, and bugs
are fixed by mutating the target nodes. Second, the APR tool
generates a repaired version of the buggy code by searching
and applying the relevant donor code to the fix pattern.

D. Motivation Example

To better illustrate the limitation of existing template-based
APR, we further present a motivating example in this section.
As shown in Listing 1, we use a real-world bug Closure-
92 from the widely-used benchmark Defects4J-v1.2 as an
example. Closure-92 denotes the 92nd buggy version of the
Google Closure Compiler project in Defects4J-v1.2. This bug
is fixed by GAMMA successfully, while TBar fails to generate
a correct patch. To fix this bug, the method name “indexOf”
is replaced by “lastIndexOf”. The fix template used here is to
mutate method names. TBar applies the selected fix patterns
to the source code in a naive way. In this case, TBar searches
all the methods that appear in the local file where the bug
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Fig. 1: The overall workflow of GAMMA

is localized, and replaces the buggy method with all the
other methods with the same return type one by one. As a
result, TBar is not able to generate method names that do
not exist in the original file, like the “lastIndexOf” in this
example, limiting its repair performance. Different from TBar,
we replace the method name “indexOf” with a mask token (i.e.
<mask>) instead, and query the pre-trained model UniXcoder
to fill the mask with the fix pattern and corresponding context.

Based on the example, we can observe that, although the
correct fix pattern is selected, as a state-of-the-art traditional
APR, TBar still fails to generate a correct patch with inap-
propriate donor code (i.e., “lastIndexOf”). The effectiveness
of template-based APR is largely dependent on donor code,
which refers to the code tokens (e.g., variable name) that
can be combined with the fix template in order to produce
a complete patch. Donor code can be accessed in different
scopes of the buggy program (e.g. a method, a file, or a
package), but for some bugs, the correct donor code cannot
be found even if the whole program is searched. For example,
previous work demonstrates that half of the bugs from the
Defects4J benchmark cannot be fixed because the relevant
donor code is not available in the search space [24]. Thus,
these bugs cannot be correctly fixed by template-based APR
tools like TBar [17], which only identifies the donor code
within the local file. With a larger search space (e.g., searching
donor code from other projects), there might be more chances
to fix these bugs. However, such a strategy leads to the search
space explosion problem and an unaffordable search time,
reducing repair efficiency. In this paper, we utilize pre-trained
language models to retrieve relevant donor code. These models
have learned programming language knowledge from a great
number of programs in the wild, making it possible to repair
bugs that require donor code from outside the buggy program.

III. APPROACH

In order to assess the effectiveness of fix ingredients, we
build GAMMA, a template-based APR tool that combines the
recurrently-used fix patterns and pre-trained language models.
Fig. 1 presents the workflow of GAMMA. Given a buggy
program and a set of test suites that make the program
fail, a list of suspicious code elements is returned by fault
localization approaches (i.e., fault localization phase). On

top of the existing fix pattern corpus, GAMMA then selects
appropriate fix patterns to the suspicious elements (i.e., pattern
selection phase) and queries pre-trained models to retrieve
donor code via a mask prediction mask (i.e., patch generation
phase). GAMMA finally employs the available test suites as the
oracle to check the generated patches and returns plausible
patches for manual inspection (i.e., patch validation phase).
Considering that fault localization is usually developed as an
independent field and existing APR techniques employ off-
the-shelf fault localization tools in the repair pipeline, we
do not discuss the fault localization below. We describe the
role and operation of other phases as well as all necessary
implementation details.

A. Mask Template Definition

In the literature, a variety of fix patterns are designed based
on manual summarization or automatic mining. On top of
the state-of-the-art template-based approach TBar [17], we
manually inspect all fix patterns and transform them into hole-
filling-based patterns. We show the related templates as well
as how they are applied to buggy code, or how statements with
mask tokens are generated based on these templates.

T1: Check Cast Expressions. Adding an instanceof check
around a statement when it contains an unchecked cast ex-
pression.
+ if(exp instanceof T){

var=(T) exp ...
+ }

T2: Mutate Conditional Expressions: Mutating an expres-
sion that returns a boolean value by removing part of the
expression, replacing it with masks or adding new masks.
Removing expression:
- condExp1 op condExp2
+ condExp1

Updating expression:
- condExp1 op condexp2
+ condExp1 op <mask>

Adding expression:
- condExp1
+ condExp1 <mask>

where condExp denotes conditional expressions and Op de-
notes the logical operator (i.e., ∥ or &&).



T3: Mutate Data Types: Using one or more masks to replace
data types in the variable declaration or cast expression nodes.

- T var = ...
+ <mask> var = ...

- ... (T) exp ...
+ ... (<mask>) exp ...

where both T denotes a data type and exp denotes the being
casted expression (e.g., variable).

T4: Mutate Literal Expressions: Replacing literal expres-
sions, including number literals, string literals, boolean literals,
etc. with masks.

- ...literal...
+ ...<mask>...

T5: Mutate Method Invocations. Mutating method invoca-
tion expressions by changing either method names or argu-
ments.

Method name replacement:
- method(...)
+ <mask>(...)

Argument insertion:
- method(arg)
+ method(arg,<mask>)

Argument removal:
- method(arg1,arg2)
+ method(arg)

Argument replacement:
- method(arg)
+ method(<mask>)

T6: Check Null Pointer: Adding a null check to a statement
that contains an expression that is probably null.

Null point skip:
+ if (exp != null){

...exp...
+ }

Return insertion:
+ if (exp == null){
+ return <mask>;
+ }

...exp...

Continue:
+ if (exp == null){
+ continue;
+ }

...exp...

Exception throw:
+ if (exp == null){
+ throw new IllegalArgumentException();
+ }

...exp...

Re-assignment:
+ if (exp == null){
+ exp=<mask>
+ }

...exp...

T7: Mutate Operators: Replacing an operator in a statement
with masks or changing the priority of operations.

Changing the priority:
- (exp1 op1 exp2) op2 exp3
+ exp1 op1 (exp2 op2 exp3)

Replacing operator:
- exp1 op exp2
+ exp1 <mask> exp2

T8: Check Array Range: Checking the range of index before
accessing an element in an array.

+ if (index<array.length) {
...array[index]...

+ }

T9: Mutate Return Statements: Replacing the expression
(e.g., literals, variables, and conditional expressions) that is
returned in a method with masks.

- return exp;
+ return <mask>;

T10: Insert Statements: Inserting return statements, try catch
statements, if statements, method invocations, or simply some
masks to the existing statement.

Return statement:
+ return <mask>;

statement;

Try-catch statement:
+ try{

statement;
+ } catch(Exception e){}

If statement:
+ if (<mask>) {

statement;
+ }

Simple statement:
+ <mask>;

statement;

T11: Remove Statements: Directly deleting one or more
buggy statements from the original code.

- statement;

T12: Replace Variables: Replacing a variable in a buggy
statement with masks.

- ...var...
+ ...<mask>...

T13: Move statements: Moving a statement from its original
position to a new one.

- statement;
...

+ statement;

B. Template Selection

On top of the defined mask fix templates, GAMMA deter-
mines which template should be applied to the input buggy
statements. Similar to TBar [17], GAMMA employs an AST-
based matching approach with a depth-first strategy. We first
generate an AST for the input, and then all the nodes in the
AST are traversed. If the AST contains a type of node that
is required in a specific template, we apply the template to



the bug. We give an example of the Closure-10 bug from the
Defects4J-v1.2 in Listing 2 and how we generate its patch
in Fig. 1. In the AST of the input line, we find a Method
Invocation node in the AST of the input line, so we choose
the template T5: Mutate Method Invocation. For the template
Method name replacement that alters the name of a method,
after locating the method name allResultsMatch, we replace
it with a mask token, which is going to be predicted in the
next phase. It is worth noting that GAMMA is built on top
of UniXCoder, which is able to predict a sequence of code
tokens based on a masked token. Thus, we do not need to
consider how many tokens should be masked during patch
generation and only use one mask token in the selected repair
template, which is different from other pre-trained models,
such as CodeBERT used in AlphaRepair [18] (discussed in
Section V-C). There might be multiple repair templates that
are suitable for a piece of buggy code at the same time. In
this case, we stop the selection of repair templates as soon as
the first correct patch is generated.

1 @@ -1414,7 +1414,7 @@ static boolean mayBeString(
Node n) {

2 static boolean mayBeString(Node n, boolean recurse)
{

3 if (recurse) {
4 - return allResultsMatch(n,

MAY_BE_STRING_PREDICATE);
5 + return anyResultsMatch(n,

MAY_BE_STRING_PREDICATE);
6 } else {
7 return mayBeStringHelper(n);
8 }

Listing 2: The Defects4J bug Closure-10

C. Patch Generation with Mask Prediction

After selecting an appropriate fix template for a buggy code,
we use UniXcoder [26] to generate the correct code tokens via
a fill-in-the-blank format. To this end, we leverage the original
pre-training training objective of masked language modeling
in UniXcoder. UniXcoder is an advanced pre-trained model
for programming languages that support code understanding
and generation tasks. It contains a pre-training objective of
Masked Language Modeling (MLM), which is designed to
predict some tokens that have been masked out. We leverage
this pre-training task to complete the clozes generated in the
previous step with any fine-tuning, so that candidate patches
for the buggy programs can be produced.

The prediction for the mask is largely dependent on the
tokens surrounding the mask. If the correct token appears in
the input for the model, it is more likely that the token will
be chosen as one of the possible results. The precision of
mask prediction is quite limited when only a single masked
buggy line is given without any context of the code, where
there may be some useful information for bug fixing. To get
more context of the buggy line in each bug, we extract the
method that contains the line and use the whole method with

the masked buggy line as the input for UniXcoder. Considering
that some tokens in the buggy line have been replaced with
masks but these tokens may also contain essential information
for mask prediction, in the first line of our input, we add the
original buggy line in the form of a comment (i.e., add a “//” in
front of the line). The commented buggy line followed by the
method the bug is in together forms the final input. For every
input, N candidate patches are generated by the UniXcoder
model. N is the beam size and is an adjustable parameter of
GAMMA. Relatively large beam size increases the possibility
of generating correct patches.

D. Patch Validation

After a candidate patch for a given bug is generated by
GAMMA, we apply the corresponding changes to the buggy
program. Following the practice in the APR community [18],
[47], we first recompile the patched program and filter out
any patches that fail to compile. We then execute the patched
program against the available test suite to identify the plausible
patches that successfully pass all the test suites. For those
plausible patches, we examine them manually to ensure the
programs are fixed correctly, i.e., whether the patches are
semantically equivalent to developer patches.

IV. EXPERIMENTAL SETUP

A. Research Questions

In this paper, we study the following research questions:
RQ1: What is the performance of GAMMA compared to

state-of-the-art APR approaches?
RQ2: What is the generalizability of GAMMA in repairing

additional real-world bugs?
RQ3: What is the scalability of GAMMA when employing

other advanced pre-trained models?

B. Benchmarks

To evaluate the repair performance, we use the standard
benchmark of Defects4J-v1.2 [48] in the APR community.
Defects4J-v1.2 is a collection of real-world bugs from open-
source projects and is widely adopted by existing tradi-
tional [17], [49] and learning-based APR approaches [38],
[39], [47], [50]. In particular, Defects4J-v1.2 contains 395
known and reproducible bugs, each of which contains a buggy
version and a fixed version, as well as a corresponding test
suite that triggers that bug for patch validation. Evaluation on
Defects4J-v1.2 can reflect the performance of GAMMA in a
real-world debugging scenario and provides sufficient com-
parison results against most of the existing APR techniques.

Besides, we choose Defects4J-v2.0 and QuixBugs as other
bug benchmarks for evaluation, so as to investigate the gener-
alizability of GAMMA. Defects4J-v2.0 provides 420 additional
real-world bugs from 17 Java projects, which is adopted by
some recent APR studies [18], [50]. QuixBugs [51] is a multi-
lingual parallel bug-fixing dataset in Python and Java used in
[18], [39]. QuixBugs contains 40 small classic algorithms with
a bug on a single line, along with the bug-triggering test suite.



C. Baselines

To enable sufficient evaluations, we compare GAMMA
against both traditional and learning-based APR approaches.
We choose seven recent learning-based APR tools, i.e., Al-
phaRepair [18], Recoder [50], CURE [47], CoCoNuT [52],
CIRCLE [39], DLFix [38], and SequenceR [53]. We
also choose two state-of-the-art template-based APR tools
TBar [17] and PraPR [54] as representatives of traditional
APR. In total, we evaluate GAMMA against nine advanced
APR tools from different categories. Although the fault lo-
calization configuration is a significant part of APR, we do
not take it into consideration in our experiment because of
potential deviations that fault localization may bring about.
Following recent APR studies [38], [39], [47], [50], we apply
perfect fault localization in the way of inputting the exact
buggy lines into different APR techniques to standardize the
impact of fault localization on repair performance, discussed
in Section VI.

D. Evaluation Metrics

We use two common metrics to evaluate the performance
of all involved APR approaches [5], [6], i.e., plausible patch
and correct patch. The first one fixes the buggy functionality
without harming other correct functionality (i.e., passing all
available test suites), and the second one is semantically or
syntactically equivalent to the developer patch (i.e., gener-
alizing the potential test suite). We manually inspect each
plausible patch to identify whether it is a correct patch by
following the standard practice in APR research.

E. Implementation Details

At the stage of fix template selection, we apply Eclipse
JDT to parse the input line into AST, and then the AST is
traversed to examine if it contains any node that is required
by a fix template. There are several templates that can fit all
the input buggy lines. For example, the template T10: Insert
Statements only requires adding statements around the buggy
line and does not mutate any nodes in the AST. Such templates
are directly applied to all the inputs without checking the AST.

In the mask prediction phase, we choose the UniXcoder
model “unixcoder-base”. This is a model pre-trained on nat-
ural language-programming language (NL-PL) pairs and is
reported in the original UniXcoder paper [26]. We use the
encoder-decoder mode of the model to give predictions for
each mask and generate candidate patches. We set the beam
size as 250 due to the limitation of our device, which is smaller
than 1000 used in CURE [47] and CoCoNuT [52]. Following
previous learning-based APR approaches [18], [50], we set a
5-hour running-time limit for fixing one bug to perform a fair
comparison. w

All experiments are conducted on one Ubuntu 18.04.3 server
with two Tesla V100-SXM2 GPUs.

1 @@ -409,7 +409,7 @@ public static double
factorialLog(final int n) {

2 public static int gcd(int u, int v) {
3 - if (u * v == 0) {
4 + if ((u == 0) || (v == 0)) {
5 return (Math.abs(u) + Math.abs(v));
6 }

Listing 3: The Defects4J bug Math-94

V. EVALUATION AND RESULTS

A. Comparison with State-of-the-arts

Experimental Design. In this section, we aim to evaluate
the performance of GAMMA. We employ the 395 real-world
bugs presented in the Defects4J-v1.2 dataset and compare
GAMMA with state-of-the-art APR techniques, including tradi-
tional and learning-based ones. We report the performance of
all compared techniques under perfect fault localization (i.e.,
the ground-truth buggy statement is known to the techniques).

Results. Table I presents the number of bugs that different
APR techniques successfully fix on the Defects4J-v1.2 dataset.
Overall, we find that GAMMA substantially outperforms the
compared APR techniques including both traditional and
learning-based APR techniques. GAMMA is able to generate
correct patches for 82 real-world bugs, 20.59% (14 bugs),
26.15% (17 bugs) and 14.8% (8 bugs) more than TBar,
Recoder and AlphaRepair. In particular, GAMMA fixes 11,
24, 16, 25, 3, and 3 bugs for Chart, Closure, Lang, Math,
Mockito, and Time projects, respectively, four of which are
best-performing (bold in Table I). More importantly, we find
that GAMMA achieves a correct rate of 81.19% (82/101)
for plausible patches, 9.61% (68/95), 23.15% (65/112) and
13.30% (74/109) higher than TBar, Recoder and AlphaRepair,
indicating that GAMMA is able to alleviate the long-standing
patch overfitting problem in the community of APR.

Overlap Analysis. To investigate what extent GAMMA
complements existing APR techniques, we further calculate
the number of overlapping bugs fixed by different tech-
niques. One best-performing traditional technique (i.e., TBar)
and three best-performing learning-based techniques (i.e.,
AlphaRepair, CURE, and Recoder) are selected. As shown
in Fig. 2, GAMMA fixes 14 unique bugs that other APR
approaches fail to fix, which is 11, 3, 8, and 10 more than
TBar, AlphaRepair, CURE, and Recoder, respectively. More
importantly, as a template-based APR technique, there are 22
correctly-fixed bugs unique to GAMMA compared with TBar,
highlighting the benefits of mask prediction performed by
UniXcoder. Overall, the results demonstrate that GAMMA is
complementary to these best-performing APR techniques, to
increase the number of correctly-fixed bugs in the Defects4J-
v1.2 benchmark.

Case Study. We have demonstrated the superior perfor-
mance of GAMMA over a state-of-the-art template-based tool
TBar, which is most related to our work. To further investigate
the effectiveness of GAMMA, we provide some examples of



TABLE I: Comparison with state-of-the-art APR techniques. Following the common practice in the APR community [39],
[47], [52], we reuse the released results from the most recent work [18] instead of directly running the APR tools. Due to the
APR community’s subsequent validation of publicly released correct patches, the results of some APR tools may be different
from the reported results in their published papers. (†) PraPR is evaluated with the results of Ochiai fault localization [31].

Project SequenceR CoCoNuT CURE DLFix Recoder AlphaRepair CIRCLE PraPR† Tbar GAMMA

Chart 3 7 10 5 10 9 7 7 11 11
Closure 3 9 14 11 21 23 17 12 16 24

Lang 2 7 9 8 11 13 10 6 13 16
Math 6 16 19 13 18 21 27 10 22 25

Mockito 0 4 4 1 2 5 1 3 3 3
Time 0 1 1 2 3 3 2 3 3 3

Total 14/19 44/85 57/104 40/68 65/112 74/109 64/182 41/146 68/95 82/101
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Fig. 2: The overlaps of the bugs fixed by different approaches

1 @@ -742,7 +742,7 @@ static boolean isSimpleNumber(
String s) {

2 return false;
3 }
4 }
5 - return len > 0;
6 + return len > 0 && s.charAt(0) != ’0’;
7 }
8 static double getSimpleNumber(String s) {

Listing 4: The Defects4J bug Closure-52

bugs that GAMMA is able to fix but TBar fails to. Listing 3
presents the bug Math-94 from the Defects4J-v1.2. Math-94
can be fixed with the fix template of mutating conditional
expressions. The conditional expression “u * v == 0” within
an if statement is replaced by “(u == 0) || (v == 0)”. TBar
deals with this template in the way of replacing the suspicious
expression with other compatible ones collected from the same
local file, while GAMMA directly replaces the expression with
a mask token so that they can later be predicted by the mask
prediction task from the pre-trained model, making it possible
to generate new expressions that can correctly fix the bugs.

Listing 4 presents a similar example of the bug Closure-52
from the Defects4J-v1.2. Closure-52 denotes the 52nd buggy
version of the Google Closure Compiler project in Defects4J.

To fix this bug, we need to insert a new sub-conditional
expression into the original expression. TBar fails to generate
a correct patch with improper operation and variables while
GAMMA is able to directly predict the masked expression with
corresponding code context.

B. Generalizability of GAMMA

Experimental Design. We have demonstrated that GAMMA
achieves impressive performance to repair real-world bugs
from the widely-adopted Defects4J-v1.2 benchmark on top
of fix patterns. Durieux et al. [55] demonstrate that there
exists a common benchmark overfitting phenomenon in APR
evaluation, i.e., APR tools usually perform significantly better
on Defects4J-v1.2 than on other benchmarks. In this section,
according to prior work [18], [50], to evaluate the general-
izability of GAMMA, we continue to conduct some extended
experiments on additional projects for further evaluation.

Results. Table II presents the comparison results of
GAMMA against baselines on Defects4J-v2.0 and QuixBugs.
In Defects4J-v2.0, following some recent work [18], [56], we
only focus on those bugs whose patches are confined to a sin-
gle location. Overall, GAMMA generates 45 correct patches in
the given 257 buggy programs, outperforming both traditional
and learning-based approaches. We find that the performance
achieved on the Defects4J-v2.0 dataset is commonly less than
that achieved on the Defects4J-v1.2 dataset. For example, Al-
phaRepair fixes 18.73% (74/395) of bugs from Defects4J-v1.2
while only fixes 14.01% (36/257) of bugs from Defects4J-v2.0.
Based on our analysis of the two datasets, the possible reason
is that Defects4J-v2.0 contains a harder set of projects for
APR with a different variety of fixes compared to Defects4J-
v1.2. Despite that, GAMMA is able to generate 9, 34, and 37
more correct patches, which is the highest number among all
approaches. We also find that as a template-based approach,
TBar is able to generate a high amount of correct patches (68)
for Defects4J-v1.2, while it only generates a limited number
of correct patches (8) for Defects4J-v2.0. The possible reason
may be that most fix patterns are designed to target Defects4J-
v1.2, which may not generalize to other unseen projects, such
as Defects4J-v2.0; Besides, learning-based approaches also
suffer from moving to a harder evaluation dataset since the
code transformation patterns are learned from training datasets



TABLE II: Comparison on additional datasets

Project AlphaRepair Recoder CURE CoCoNuT CIRCLE TBar GAMMA

Defects4J 2.0 36 11 - - - 8 45
QuixBugs 28 17 26 13 19 - 22

which might not be present in Defects4J-v2.0. In contrast,
GAMMA is able to address the generalizability issue without
training on specific bug datasets, which makes it less prone
to suffer from generalizability issues of traditional template-
based or learning-based tools.

Apart from Defects4J-v2.0, we also try to validate our
approach on QuixBugs, which extracts bugs from Quixey
Challenge and translates them into both Java and Python
languages. Since our fix templates are designed for Java, we
only focus on Java programs in QuixBugs following previous
work [17]. Table II shows that among 40 bugs in QuixBugs, 22
are correctly fixed by GAMMA, highlighting the competitive
performance of GAMMA against state-of-the-art approaches.
It is worth noting that most of the templates are summarized
from Defects4J-v1.2, which may mean that some templates
cannot be applied to any bugs except those from Defects4J-
v1.2. Thus, GAMMA may be limited by the lack of more
efficient fix templates when coming to other new bug datasets.
For example, although various types of templates along with
sub-templates are defined, some of the templates cannot be
used to fix at least one bug from QuixBugs. As a result, we
expect to explore more general fix templates in the future to
further improve the performance of template-based APR.

C. Scalability of GAMMA

Experimental Design. To further investigate whether the
performance of GAMMA is affected by different pre-trained
models, we apply two other advanced models to perform the
mask prediction task: CodeBERT and ChatGPT. CodeBERT
[27] is a pre-trained model for programming and natural
languages, and mask prediction is one of its pre-training tasks.
ChatGPT is a state-of-the-art language model that has shown
impressive ability in conversations with human beings. We also
use Defects4J-v1.2 as a benchmark but replace UniXcoder
with these two models in the process of filling masks to
find out to what extent pre-trained models influence the
effectiveness of template-based program repair.

Similar to UniXcoder, CodeBERT can also generate predic-
tions for a mask token “<mask>” in the given code snippet.
The difference between them is that UniXcoder can predict
several continuous tokens for a single mask while CodeBERT
can only give one token for a mask. However, there is usually
more than one token under a mask, so when using CodeBERT,
we have to use different numbers of successive masks to mask
the initial code and then predict them sequentially. We do
not know the exact number of masks we should use (i.e.,
the number of tokens in the fixed code) as there could be
a great many possibilities in the patch. So while masking, we
naively try all the mask numbers from 1 to 20, which is a range
suitable to most cases. In every iteration, a mask is predicted

and a joint score for each prediction is calculated. Those
predictions with the highest scores will be chosen to replace
the mask, and the next mask will be predicted according to the
previous predictions. We set the beam size as 250, the same
as that used in UniXcoder, so in each iteration, CodeBERT
will give 250 most possible predictions for the mask. Taking
the process of fixing the Defects4J Closure-10 bug as an
example (shown in Listing 2), the patch of the bug involves a
change in the method name. To fix this bug, the method name
allResultsMatch is replaced with masks, and then CodeBERT
is asked to give 250 predictions for the first mask. Among the
predictions, the token “any” has a relatively high score, so it
replaces the first mask and CodeBERT will continue to predict
the next mask until all masks are filled.

Different from UniXcoder, ChatGPT is fine-tuned from
GPT-3.5 and close-sourced. We can access ChatGPT with
ChatGPT’s API of gpt-3.5-turbo-0301, which is the latest
version available. We interact with ChatGPT through natural
language conversations, i.e., sending requests to ChatGPT or
receiving responses from ChatGPT. To fill the masks with
ChatGPT, we first give it some prompts, instructing it to return
back predictions for the mask. Following the prompts we then
add the masked buggy line along with its context to form the
complete query for ChatGPT. In our experiment, the input for
ChatGPT starts with a prompt “Next token prediction task,
the first line is a comment to help prediction, just return 250
possible predictions for <mask> with highest probability: ”,
and then the bug context we give is the same as the input for
UniXcoder, which consists of a commented buggy line and the
whole method where the buggy line belongs. Besides, due to
the benefits of the designed prompt, we do not set the number
of masked tokens in the buggy code, which is the same as
UniXcoder.

Results. Fig. 3 presents the repair results of different pre-
trained language models. Overall, the combination of the
three models is able to fix 93 bugs from Defects4J-v1.2,
demonstrating these models can be used together by GAMMA
to further increase the number of correct patches that can
be generated. In particular, we find when using CodeBERT
to perform the mask prediction task, 80 bugs in total are
fixed by GAMMA correctly, only two less than the bugs that
GAMMA with UniXcoder fixes. However, it takes much more
time for CodeBERT to generate correct patches, as the number
of masks that should be used in fixing a bug is unpredictable,
and we have to run the mask prediction program on the same
bug and the same fix template for a lot of times, each with
a different mask number. In contrast, UniXcoder circularly
predicts the next token for a mask until an EOF token is
generated, so only one mask is required to fix the bug. We
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also find that GAMMA with ChatGPT only fixes 67 bugs
correctly, performing not well as GAMMA with UniXcoder and
CodeBERT in mask prediction. The possible reason lies in that
UniXcoder is pre-trained with a masked language modeling
objective, where some training text is artificially masked and
the training objective is to predict the real text. However,
ChatGPT is designed for natural language conversations and
it is unclear how ChatGPT is pre-trained due to it being close-
sourced. Thus, it is natural to employ UniXcoder to recover
masked code tokens for buggy code snippets in our approach.
Future researchers should further explore how to betters utilize
ChatGPT (e.g., designing other prompts) for mask prediction.

VI. THREATS TO VALIDITY

The first threat to validity comes from the manual inspection
of correct patches. To alleviate the influence of potential bias,
following previous works [39], [47], three authors manually
verify all plausible patches (i.e. patches that successfully
pass the test) based on ground truth patches (i.e., developer
patches). A plausible patch is considered to be correct if
all three authors identify it as equivalent to a ground truth
patch semantically. To facilitate the replication and verification
of our experiments, we also release the relevant materials
(including all source code and correct patches) publicly [29].

The second threat to validity is the fault localization setting.
We evaluate GAMMA and baselines on perfect fault localiza-
tion (i.e., ground-truth buggy location is known) due to two
reasons. First, off-the-shelf fault localization approaches affect
the performance of APR techniques significantly, introducing
a bias in comparison results [57]. The perfect fault localiza-
tion mitigates the influence of differences in different fault
localization approaches on the repair results and enables a
fair assessment of repair performance independently of the
fault localization approach used. Second, the most recent APR
techniques [39], [47], [52], [58], [59] are only evaluated
with perfect fault localization, which makes our work also use
perfect localization to ensure direct comparison. However, this
comparison setting may bring bias in repair performance since

the perfect fault localization results are usually unavailable in
real practice. Despite that, we believe that perfect fault local-
ization has little impact on our results, as perfect localization
can show the pure performance of different APR approaches.
In the future, we attempt to report the repair performance
of GAMMA and baselines with both the automated fault
localization (e.g., Ochiai [31]) and perfect fault localization.

The third threat to validity comes from the potential of data
leakage of pre-trained models. In our experiment, we imple-
ment GAMMA on top of UniXCoder and evaluate GAMMA on
the widely-adopted benchmark Defects4J-v1.2. Considering
that UniXCoder is pre-trained with millions of code snippets,
there may exist some bugs in the evaluation benchmark of
Defects4J-v1.2 that appear in the pre-training dataset of UniX-
coder. We perform a manual inspection to check whether the
fixed bugs by GAMMA are leaked into the pre-training dataset.
In particular, we query the pre-training datasets including 2.3M
functions paired with comments and 4.1M unimodal code from
CodeSearchNet. The manual inspection is performed by two
authors independently and confirmed by a third author. We
find there are three bugs leaked into the pre-training set, i.e.,
Closure-73, Closure-126, and Time-19. For the three bugs,
we manually perturb the buggy code (e.g., changing variable
names, adding dead code) and find GAMMA is still able to
generate the correct patches for all three bugs. We also find
that if we exclude the three overlapping bugs, GAMMA still
outperforms state-of-the-art APR techniques (79 vs. 68 for
TBar, 79 vs. 74 for AlphaRepair). Thus, we are confident that
the data leakage is not a key point to our conclusion.

VII. RELATED WORK

A. Automated Program Repair

Existing APR techniques can be divided into four cate-
gories, i.e., heuristic-based [11], [12], constraint-based [13],
[14], [60], template-based [15]–[17] and learning-based repair
techniques [38], [50], [52]. Our work is related to template-
based and learning-based APR, discussed as follows.

Template-based APR, which generates patches with the help
of fix patterns, represents state-of-the-art among traditional
APR techniques. TBar [17] systematically collects and sum-
marizes fix patterns from previous literature and investigates
the effectiveness of patch generation based on these tem-
plates. Some other techniques explore fix patterns in various
ways. For example, PAR [44] manually extracts fix patterns
from 60,000 human-written patches. FixMiner [15] mines fix
patterns with an iterative clustering strategy. AVATAR [16]
leverages fix patterns from static bug detection tools to gen-
erate patches. Different from most existing template-based
APR techniques that focus on mining fix patterns, GAMMA
is the first work that aims to address the donor code issue by
integrating pre-trained models with a fill-in-the-blank task.

With large available open-source code corpora, learning-
based APR, which applies machine learning to the bug-
fixing objective, is getting growing attention. For example,
DLFix [38] uses a tree-based recurrent neural network (RNN)
model to learn from bug fixes and surrounding contexts in the



form of an abstract syntax tree. CoCoNuT [52] introduces a
novel context-aware neural machine translation (NMT) archi-
tecture that separately represents the buggy code and context.
CURE [47] attempts to break the limit of existing NMT-based
techniques by pre-training a programming language model
on a large codebase, introducing a new code-aware search
strategy, and using subword tokenization to narrow the search
space. Recoder [50] is a syntax-guided edit decoder with
placeholder generation, which provides a novel provider/de-
cider architecture to guarantee that patches with correct syntax
are generated. Different from existing learning-based APR
techniques generating patches from scratch with bug-fixing
data training, GAMMA aims to directly predict correct code
tokens with the help of fix patterns in a zero-shot scenario.

Recently, there exists an increasing number of APR tech-
niques on top of pre-trained models. For example, Yuan et
al. [39] propose CIRCLE, a T5-based program repair frame-
work equipped with continual learning ability across multiple
languages. Xia et al. [18] propose AlphaRepair, a cloze-style
APR approach based on CodeBERT without fine-tuning on
historical bug-fixing data. In our work, we include CIRCLE
and AlphaRepair as baselines in the experiment. Sobania
et al. [61] investigate the performance of ChatGPT on the
QuixBugs benchmark. Mashhadi et al. [62] investigate the
performance of fine-tuning CodeBERT to fix software bugs
from ManySStuBs4J. Jiang et al. [58] explore the performance
of pre-trained models with and without fine-tuning for the
program repair domain. Xia et al. [59] further present an
extensive evaluation of recent pre-trained models for fixing
real-world projects and find state-of-the-art pre-trained models
are able to fix a considerable number of bugs. For example,
CodeX, the most effective one, fixes 99 bugs in Defects4J-v1.2
with a total combination of three repair settings. We exclude
CodeX as a baseline in our experiment due to the uncertainty
of training data in such black-box large pre-trained models.

B. Pre-trained Language Models and Applications

In this section, we introduce some typical pre-trained lan-
guage models and then discuss the applications of pre-trained
language models to some code-related tasks, e.g., code search.

1) Pre-trained Language Models: Pre-trained language
models have shown promising results on NLP tasks. BERT
[63] is a model to condition on left and right contexts in
all layers so as to pre-train deep bidirectional representations
from unlabeled text. GPT-3 [43] is an autoregressive language
model having 175 billion parameters, significantly outnumber-
ing the parameters in previous language models. ChatGPT [28]
is the currently most popular language model fine-tuned from
GPT-3 and is receiving attention from both scientific and
industrial fields. The most remarkable feature of ChatGPT is
that it can generate human-like responses and communicate
with human beings like what a real human can do.

Inspired by the success of pre-trained models in NLP,
many researchers apply the pre-trained model to code-related
tasks. Feng et al. [27] propose a bimodal pre-trained model
(CodeBERT) for both programming language and natural lan-

guage. CodeBERT is developed on Transformer-based neural
architecture and pre-trained with the task of masked language
modeling, which is to predict tokens, and replaced token
detection. Guo et al. [26] present UniXcoder, a unified cross-
modal pre-trained model for programming language. UniX-
coder utilizes mask attention matrices with prefix adapters to
control the behavior of the model and leverages cross-modal
contents such as AST and code comment to enhance code
representation. Different from these studies designing novel
pre-train models from scratch, we attempt to boost template-
based APR on top of these pre-trained models.

2) Applications of Pre-trained Models: In addition to the
above-mentioned typical pre-trained models, researchers have
also applied such pre-trained models to some code-related
domains (e.g., code completion, and program repair). Mas-
tropaolo et al. [64] present an empirical study to investigate the
usage of pre-trained models for four code-related tasks, includ-
ing program repair, mutants injection, assertion generation,
and code summarization. A similar strategy combining mu-
tation patterns and pre-trained models is adopted in mutation
testing. For example, Degiovanni et al. [65] introduce µBERT,
a CodeBERT-based mutation testing tool by masking a token
from the expression and replacing the masked token with the
predicted one from CodeBERT. Richter et al. [66] propose
a contextual mutation operator by employing CodeBERT to
produce a context-dependent distribution over feasible token
replacements. Recently, Zhang et al. [67] conduct an extensive
empirical study to investigate the performance of pre-trained
models in repairing security vulnerabilities and propose a
enhanced approach with bug fixing transfer learning. Although
there exist some SE tasks (e.g., mutation testing and program
repair) benefitting from pre-trained models, in this work, we
perform the first work to employ pre-trained models to directly
predict the correct code with the help of fix patterns.

VIII. CONCLUSION

In this work, we present GAMMA, an innovative template-
based APR tool that assimilates the advances of fix templates
and pre-trained models. GAMMA first defines a set of mask fix
templates by masking buggy code tokens with corresponding
code context. GAMMA then uses the off-the-shelf pre-trained
models to directly recover the correct code with a mask
prediction task. More importantly, GAMMA can be built on
various pre-trained models under a zero-shot learning setting
and we implement it as a practical APR tool using the recent
UniXcoder model. The experimental results on the popular
Defects4J-v1.2 dataset have shown promising performance,
e.g., 82 bugs are fixed by GAMMA, outperforming all state-
of-the-art APR techniques. We also demonstrate that GAMMA
is able to address the dataset overfitting well, e.g., 45 and 22
bugs are fixed in Defects4J-v2.0 and Quixbugs. We further
demonstrate that GAMMA is generalizable to different pre-
trained language models, such as CodeBERT and ChatGPT.
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