
MUTCR: Test Case Recommendation via
Multi-Level Signature Matching

Weisong Sun1, Weidong Qian2, Bin Luo1, Zhenyu Chen1
1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

2China Ship Scientific Research Center, Wuxi, China

weisongsun@smail.nju.edu.cn, qianwd@cssrc.com.cn, luobin@nju.edu.cn, zychen@nju.edu.cn

Abstract—Off-the-shelf test cases provide developers with test-
ing knowledge for their reference or reuse, which can help
them reduce the effort of creating new test cases. Test case
recommendation, a major way of achieving test case reuse, has
been receiving the attention of researchers. The basic idea behind
test case recommendation is that two similar test targets (methods
under test) can reuse each other’s test cases. However, existing
test case recommendation techniques either cannot be used in
the cross-project scenario, or have low performance in terms of
effectiveness and efficiency. In this paper, we propose a novel test
case recommendation technique based on multi-level signature
matching. The proposed multi-level signature matching consists
of three matching strategies with different strict levels, including
level-0 exact matching, level-1 fuzzy matching, and level-2 fuzzy
matching. For the query test target given by the developer, level-
0 exact matching helps to retrieve exact recommendations (test
cases), while level-1 and level-2 fuzzy matching contribute to
discovering richer relevant recommendations. We further develop
a prototype called MUTCR for test case recommendation. We
conduct comprehensive experiments to evaluate the effectiveness
and efficiency of MUTCR. The experimental results demonstrate
that compared with the state-of-the-art, MUTCR can recommend
accurate test cases for more test targets. MUTCR is faster than
the best baseline by three times based on the time cost. The user
study is also performed to prove that the test cases recommended
by MUTCR are useful in practice.

Index Terms—unit test case, test case recommendation, test
reuse

I. INTRODUCTION

Software reuse has some strong economic value, such as

increasing programmer productivity and software quality [1],

[2]. Modern code search engines support indexing vast va-

rieties of reusable software code artifacts, including a large

number of unit test cases along with production code [3]. Unit

test cases writing and execution are done by the developer

to make sure that individual units of the production code

are working as expected. They can expose bugs early in the

software development life cycle [4], [5]. Thus, unit test cases

have been widely recognized as important and valuable assets

and built into and shipped with the production code [6], [7].

However, the unit test coverage is not high in most open-

source projects. After investigating the existing studies [8]–

[12], we found that the main reason is that in pursuit of

agile development, most of the developers’ efforts are focused

on production code development and with a dismissive and

negative view on test cases [12], [13]. Besides, writing unit

test cases not only is a time-consuming task but also requires

developers to have a lot of testing knowledge. Therefore, some

researchers [9], [14]–[16] envision that, if these valuable test

cases could be excavated and recommended to developers

for their reference and reuse when writing test cases, it will

effectively improve their productivity.

A fundamental problem in test case recommendation is to

locate potential test cases in the search corpus for a given

test target. The basic idea that two similar test targets (i.e.,

methods under test) can reuse each other’s test cases, has been

widely adopted by test case recommendation techniques [9],

[12], [14], [16], [17]. Formally, given a test case tci whose test

target is the method mi, assuming that we plan to test a new

test target mj , if mi and mj are very similar measured by a

similarity function sim(·), the tci would be recommended to

mj . For example, as shown in Fig. 1, two test targets m1 and

m2 are identical in functionality, and thus we can recommend

the test case tc1 that belongs to m1 to the new test target m2.

Obviously, only by accurately measuring test target similarity

can we make ensure the recommended test cases are accurate.

Fig. 1: An example of test case recommendation

Existing test case recommendation techniques can be

roughly divided into two categories: in-project test case rec-

ommendation [12], [17] and cross-project test case recommen-

dation [9], [14], [16]. The in-project techniques recommend

test cases of the project currently under test to developers,

179

2023 IEEE/ACM International Conference on Automation of Software Test (AST)

2833-9061/23/$31.00 ©2023 IEEE
DOI 10.1109/AST58925.2023.00022

while the cross-project techniques can recommend test cases

from other projects to developers. All of them provide us

with some valuable insights and inspiration, but they also

have some deficiencies. We pay more attention to the cross-
project techniques because the in-project techniques can not

work when the project currently under test does not have test

cases. The technique in the work [14] designs sim(·) based on

method signature information. The method signature informa-

tion is represented as a three-tuple 〈PN,CN, S〉 where PN
(Package Name) and CN (Class Name) are the names of the

package and class where the method appears; S (Signature)

is the method signature that consists of the method name

(MN) and parameter type list (PT). The sim(·) designed

based on method signature information determines whether

two test targets are similar by comparing the matching degree

of the signature information. Its main advantage is fast, but its

disadvantage is low query coverage 1. For example, assuming

that the method name of m2 (in Fig. 1) is changed to ‘sor-

tArrayWithBubbleAlgorithm’, TestTenderer [14] would not

recommend the test case tc1 to m2 because m1 and m2 do not

match on method names. Mostafa et al. [9] proposed another

technique for cross-project test case recommendation. They

designed sim(·) based on code similarity, which determines

whether two test targets are similar by measuring the code

similarity between them. Its main advantage is high accuracy,

but its disadvantages are low query coverage and high time

cost. The code is longer and more complex than the signature

information. For example, the work [9] employs a mature

clone detector NiCad [18] to measure the code similarity

between two test targets. NiCad first transforms the code into

a blind mode, and then uses the longest common subsequence

matching algorithm to measure the code similarity in blind

mode. Both steps are time-consuming. Relatest proposed by

Robert et al. [16] is also based on code similarity. Relatest

uses the Jaccard index over 3-grams implemented in the Java

String Similarity library [19] to measure the code similarity.

More details are shown in Section III-C.

In this paper, we propose a multi-level signature matching

strategy for test case recommendation. The matching strategy

consists of six matching rules that are divided into three

groups: level-0 exact matching and two different levels (Level-

1 and Level-2) of fuzzy matching. Level-0 exact matching

requires that the class name and method name of the corpus

test target must be the same as the query test target, while

level-2 fuzzy matching only requires the same class name

or method name. Based on the proposed signature matching

strategy, we further develop a prototype for test case recom-

mendation named MUTCR. MUTCR retrieves matching test

targets in the search corpus from strict to loose as instructed

by the proposed signature matching strategy. Compared with

the matching strategy proposed by TestTenderer [14], our

signature matching strategy is sophisticated and productive.

1Given a method under test (we also refer to it as a query test target), if the
test case recommendation technique can recommend at least one test case for
it, we claim that the technique can cover the query test target. More details
are shown in Section III-B

We conduct comprehensive experiments to evaluate the

effectiveness and efficiency of MUTCR. Compared with the

state-of-the-art, MUTCR can rapidly recommend accurate test

cases for more test targets. In addition, we perform a user study

to evaluate the usefulness of the test cases recommended by

MUTCR. The statistical results of the user study prove that

MUTCR can recommend useful test cases for more test targets

than the state-of-the-art baselines.

In summary, we make the following contributions:

• We propose a novel and lightweight sim(·) that measures

the test target similarity accurately and rapidly through

multi-level signature matching.

• We develop a prototype for test case recommendation

named MUTCR and evaluate it comprehensively. The

evaluation results show that MUTCR can recommend

more accurate test cases than three baselines. The user

study also proves that the test cases recommended by

MUTCR are useful in practice.

II. DESIGN

Fig. 2 illustrates the overview of MUTCR. Given a query

test target, MUTCR decomposes the test case recommendation

process into three phases: signature information extraction,

similar test target search, and test case loading. Algorithm 1

details the collaboration of the three phases. The input to

MUTCR consists of a query test target (q), the expected

number of recommendations (k), and the set of test targets

(C). The output is a list of recommended test cases. MUTCR

initializes the necessary variables in lines 1-4. Cq , CCMN ,

CCN , and CCN are lists. Cq is used to store the test targets

that are similar to q retrieved by MUTCR. CCMN is used

to store test targets with the same class name (CN) and

method name (MN) as q. CCN and CMN are used to store

test targets with the same class name and method name as

q, respectively. Given a query test target, MUTCR extracts

signature information from it and its code context, including

class name, method name, and parameter types (PT) (lines

7-9, corresponding to the step 1© in Fig. 2). The code context

represents the class in which the query test target appears.

Details are discussed in Section II-A. In the second phase,

MUTCR introduces a multi-level signature matching strategy

to retrieve the top k similar corpus test targets in C (lines

11-26). The multi-level signature matching strategy includes

level-0 exact matching (corresponding to the step 2© in Fig. 2

and detailed in Section II-B), level-1 fuzzy matching (step

3© and detailed in Section II-C), and level-2 fuzzy matching

(step 4© and detailed in Section II-D). It should be noted

that the multi-level matching strategy is conditionally executed

sequentially rather than in parallel (lines 15 and 22). After

retrieving similar test targets, MUTCR further loads their test

cases and recommends them to the developers (lines 29-30).

A. Signature Information Extraction

In this phase, MUTCR aims to extract signature-related

information from the given query test target. The signature-

related information includes class name, method name, and

180

��������	
�

�����

����
�����������
������
���
���

������������
�

��
�����

���������� ��

��
�����

������!��� ��

��
�����

"��#�	�

��	
������
	

������

��	
������
	

"��#�	�

��	
�"�	�	

��	
�"�	��

�����

$�������%�%

��	
�"�	�	

���������	
������
�
����� ��	
�"�	�����%���

����
����

��
���
��

����
����

�������
���

������

��	
������
	

$�������%�%

��	
�"�	�	

����
����

�������
���

��������	
�

�����

"�%��

"��
��

��#�
 &�
#�

� � �

�

�

Fig. 2: Framework of MUTCR

Algorithm 1 Multi-Level Signature Matching

INPUT: q query test target
k expected number of recommendations
C corpus test target set

OUTPUT: T recommended test cases

1: Cq ← ∅ � list of corpus test targets similar to q
2: CCMN ← ∅ � test targets with same CN and MN
3: CCN ← ∅ � test targets with same CN
4: CMN ← ∅ � test targets with same MN
5:
6: � Signature Information Extraction
7: CNq ← extract class name of q from its context
8: MNq ← extract method name of q
9: PT q ← extract parameter types of q

10:
11: � Level-0 Exact Matching
12: Cq , CCMN , CCN , CMN ←

L0EXACTMATCHING(CNq ,MNq , PT q , k.C)
13:
14: � Level-1 Fuzzy Matching
15: if |Cq | < k then
16: n← k − |Cq |
17: Cq1 ← L1FUZZYMATCHING(CCMN , CCN , CMN , PT q , n)
18: Cq ← append Cq1 to Cq

19: end if
20:
21: � Level-2 Fuzzy Matching
22: if |Cq | < k then
23: n← k − |Cq |
24: Cq2 ← L2FUZZYMATCHING(CCN , CMN , n)
25: Cq ← append Cq2 to Cq

26: end if
27:
28: � Test Case Loading
29: T ← load test cases according to Cq

30: return T

parameter type. Like [14], by default, the code context for the

query test target is provided along with the query test target

by the developer. MUTCR extracts the class name from the

code context.

B. Level-0 Exact Matching

In the step of level-0 exact matching, MUTCR (1) searches

for the corpus test targets that exactly match the query test

target; (2) collects other corpus test targets that are related to

the query test target. Algorithm 2 shows the implementation

details of the level-0 exact matching step. The input of

Algorithm 2 includes the class name (CNq), method name

Algorithm 2 Level-0 Exact Matching

INPUT: CNq class name of q
MNq method name of q
PT q parameter types of q
k expected number of recommendations
C corpus test target set

OUTPUT: Cq list of corpus test targets similar to q
CCMN test targets with the same CN and MN
CCN test targets with the same CN
CMN test targets with the same MN

1: function L0EXACTMATCHING(CNq ,MNq , PT q , k, C)
2: Cq ← ∅ � list of corpus test targets similar to q
3: CCMN ← ∅ � test targets with same CN and MN
4: CCN ← ∅ � test targets with same CN
5: CMN ← ∅ � test targets with same MN
6: count← 0
7: for each corpus test target c ∈ C do
8: CNc ← extract class name of c
9: MNc ← extract method name of c

10: PT c ← extract parameter types of c
11: if CNc == CNq then
12: if MNc == MNq then
13: if PT c == PT q then
14: � Rule 1: CN +MN + PT
15: Cq ← append c to Cq

16: count← count+ 1
17: if count == k then
18: break
19: end if
20: else
21: CCMN ← append c to CCMN

22: end if
23: else
24: CCN ← append c to CCN

25: end if
26: else
27: CMN ← append c to CMN

28: end if
29: end for
30: return Cq , CCMN , CCN , CMN

31: end function

(MNq), and parameter types (PT q) of the query test target q,

the expected number of recommendations k, and corpus test

target set C. The output of Algorithm 2 includes four lists, i.e.,

Cq , CCMN , CCN , and CMN . The meanings of these four

lists are the same as in Algorithm 1. MUTCR compares the

query test target with the corpus test target one by one (lines 7-

29). Specifically, for each corpus test target c ∈ C, MUTCR

first extracts its class name CN c, method name MN c, and

181

parameter types PT c. If c and q have the same class name,

method name, and parameter types, we say that c and q match

exactly (lines 11-13). In this case, MUTCR appends c to Cq .

When the number of retrieved corpus test targets reaches the

expected number of recommendations k, MUTCR will stop

searching, thereby improving the search efficiency of similar

test targets (lines 17-19). If c and q have the same class name

and method name, MUTCR will append c to CCMN (line 21).

If c and q only have the same class name, MUTCR will append

c to CCN (line 24). If c and q only have the same method

name, MUTCR will append c to CMN (line 27). CCMN ,

CCN , and CMN will be used by MUTCR to further pick out

recommendations in steps 3© and 4©.

C. Level-1 Fuzzy Matching

Algorithm 3 Level-1 Fuzzy Matching

INPUT: CCMN test targets with same class and method names

CCN test targets with same class names

CMN test targets with same method names
PT q parameter types of the query q
k expected number of recommendations

OUTPUT: Cq list of corpus test targets similar to q

1: function L1FUZZYMATCHING(CCMN , CCN , CMN , PT q, k)
2: count ← 0
3: � Rule 2: CN + MN + ∗
4: for each corpus test target c ∈ CCMN do
5: Cq ← append c to Cq

6: count ← count + 1
7: if count == k then
8: return Cq

9: end if
10: end for
11:
12: � Rule 3: CN + ∗ + PT
13: for each corpus test target c ∈ CCN do
14: PT c ← extract parameter types of c
15: if PT c == PT q then
16: Cq ← append c to Cq

17: count ← count + 1
18: CCN ← remove c from CCN

19: end if
20: if count == k then
21: return Cq

22: end if
23: end for
24:
25: � Rule 4: ∗ + MN + PT
26: for each corpus test target c ∈ CMN do
27: PT c ← extract parameter types of c
28: if PT c == PT q then
29: Cq ← append c to Cq

30: count ← count + 1
31: CMN ← remove c from CMN

32: end if
33: if count == k then
34: break
35: end if
36: end for
37: return Cq

38: end function

Algorithm 3 shows the implementation details of the level-1

fuzzy matching in MUTCR. The input of Algorithm 3 consists

of CCMN , CCN , CMN , PT q , and the expected number of

recommendations k. The output is a list of corpus test targets

retrieved by the level-1 fuzzy matching (Cq). In the level-

1 fuzzy matching, MUTCR introduces three matching rules,

including Rule 2 (CN+MN+∗), Rule 3 (CN+∗+PT), and

Rule 4 (∗+MN+PT). ‘*’ represents a wildcard. Specifically,

Rule 2 requires that the corpus test target and the query test

target have the same class and method names (lines 4-10).

Rule 3 requires that the corpus test target and the query test

target have the same class name and parameter types (lines 13-

23). Rule 4 requires that the corpus test target and the query

test target have the same method name and parameter types

(lines 26-36). It should also be noted that these three matching

rules are also conditionally executed sequentially rather than

in parallel (lines 7-9, 20-22, 33-35). Since step 4© will still

continue to search for similar test targets with more relaxed

conditions, the items that have been selected in step 3© should

be removed to prevent repeated selection. MUTCR removes

the items that have been selected from CCN and CMN (lines

18 and 31). When the number of retrieved corpus test targets

reaches the expected number of recommendations k or all

three matching rules have been tried, MUTCR will return the

list of similar corpus test targets Cq (lines 8, 21, 37).

D. Level-2 Fuzzy Matching

Algorithm 4 Level-2 Fuzzy Matching

INPUT: CCN test targets with same class name

CMN test targets with same method name
k expected number of recommendations

OUTPUT: Cq list of corpus test targets similar to q

1: function L2FUZZYMATCHING(CCN , CMN , k)
2: count ← 0
3: � Rule 5: CN + ∗ + ∗
4: for each corpus test target c ∈ CCN do
5: Cq ← append c to Cq

6: count ← count + 1
7: if count == k then
8: return Cq

9: end if
10: end for
11:
12: � Rule 6: ∗ + MN + ∗
13: for each corpus test target c ∈ CMN do
14: Cq ← append c to Cq

15: count ← count + 1
16: if count == k then
17: break
18: end if
19: end for
20: return Cq

21: end function

Compared with the level-1 fuzzy matching, the level-2 fuzzy

matching is more permissive. The level-2 fuzzy matching only

requires that the corpus test target and the query test target

have the same class name or method name. Algorithm 4 shows

the implementation details of the level-2 fuzzy matching in

MUTCR. The input of Algorithm 4 is composed of CCN ,

CMN , and the expected number of recommendations k. The

output is a list of similar corpus test targets retrieved by the

level-2 fuzzy matching (Cq). In the level-2 fuzzy matching,

MUTCR introduces two matching rules, including Rule 5

(CN + ∗+ ∗) and Rule 6 (∗+MN + ∗). ‘*’ also represents a

wildcard. Matching Rule 5 and Rule 6 are also conditionally

executed sequentially. When the number of retrieved corpus

test targets reaches the expected number of recommendations

182

k or two matching rules have been executed, MUTCR will

return the list of similar corpus test targets Cq (lines 8, 20).

E. Test Case Loading

In this phase, MUTCR loads test cases in the search corpus

according to the similar test targets returned in the second

phase. In practice, to build the test case search corpus, we

develop an automated tool named TConstructer. To ensure the

quality of the search corpus, TConstructer consists of four

core sequential components used to complete four sequential

tasks, i.e., test method extraction, test dependency analysis,

test target recognition, and test assert normalization. The test

method extraction component is used to extract test meth-

ods from complex test code. The test dependency analysis

component is used to extract test methods’ contexts from the

test code and production code. The test target recognition

component is responsible for recognizing test targets tested

by test methods. The test assert normalization component is

responsible for normalizing test targets within test methods.

For more details on TConstructer please read our previous

work [20]. In our search corpus, test targets and test cases

exist in pairs. Therefore, it is very direct and simple to load

the corresponding test cases from the search corpus through

the index of the similar test targets.

III. EVALUATION

Our experimental study is designed to answer the following

research questions.

RQ1: How effective is MUTCR compared with state-of-

the-art test case recommendation techniques?

RQ2: How efficient is MUTCR compared with state-of-the-

art test case recommendation techniques?

RQ3: How useful is MUTCR compared with the state-of-

the-art TCR techniques in practice?

The research questions RQ1 and RQ2 investigate whether

MUTCR recommends test cases accurately and efficiently.

RQ3 investigates the usefulness of recommended test cases.

A. Experiment Design

Considering the possible subjective bias in manual evalua-

tion, in this paper, we try to automate the evaluation of test

case recommendation techniques. We propose an automated

evaluation framework for test case recommendation based on

intuition, that is the test cases corresponding to two similar

test targets should be similar. Fig. 3 shows the automated

evaluation framework.

Specifically, with the guide of the work [21], we simply

view the test case recommendation as a test case search

process. In this case, the query test targets are regarded as

the queries used in the search process. Then, different test

case recommendation (TCR) techniques extract different in-

formation (e.g., method signature and code text) from queries

as search conditions, and search results are the recommended

test cases. The evaluation framework employs a similarity

metric [22] between search results (i.e., the recommended test

cases) and the ground-truth test cases to assess whether a

������

�	�
�����	
�

������

�	�
����	�

�������	
���

��������� ���������

�	� �����	���

�	��

�	�
�����	

�������
��
�

�	�
����	�

�������������	�

�
�����������
���
�
�����������
���

��	�
����	��

��
�������
�������

Fig. 3: Automated evaluation framework.

query was correctly answered. In other words, we compute the

similarity value for each result with respect to the appropriate

ground-truth test case. The higher the similarity value, the

closer the recommended test case is to the ground-truth test

case, which also indirectly indicates the more accurate the

recommended test case of the corresponding TCR technique.

According to the experimental design, the evaluation needs

two datasets, i.e., the test case search corpus and the bench-

mark query dataset.

1) Search Corpus: There is no ready-made test case corpus

that could be used to evaluate test case recommendations.

Existing studies [10], [23] investigated the usage of the unit

testing in open-source projects and found that although the

unit testing coverage in most projects has not reached 100%,

there are a large number of test cases in them. These test

cases are invaluable assets and play a key role in determining

the success of a software system, which makes it possible

to implement test case recommendations. To build a test

case corpus supporting recommendations, we choose the Java

projects that have at least 20 stars from January 2017 to

December 2018 in GitHub. After filtering the projects without

test cases, we collect 3,929 useful projects from 13,029. In

total, we extract more than 136,000 test cases that constitute

a search corpus.

2) Benchmark Query: We are the first to adopt an auto-

mated evaluation framework to evaluate test case recommen-

dation techniques, and there is no readily available benchmark

query dataset. The evaluation framework requires that every

query must have a ground-truth result. In other words, each

query test target has at least one ground-truth test case. To

build the benchmark query dataset, we crawled 730 Java

projects from GitHub that are created in January 2019. In the

same way as the search corpus, we extract 12,473 test cases

that covered 9,139 test targets. We further randomly select

1,000 from these test targets used as benchmark queries.

In order to detect whether the benchmark query dataset is

representative, we compared the difference in the distribution

of the number of code lines of test targets in the benchmark

query dataset and search corpus. Specifically, we counted the

number of code lines of all corpus test targets in the search

corpus, and then divided them into 5 intervals. For example,

[1,5) means that the number of code lines of the test target

is greater than or equal to 1 and less than 5. We further

183

performed the same statistics and division on the number of

code lines of the query test target in the benchmark query

dataset. Fig. 4 shows the comparison of distributions of code

lines of two datasets, where the blue curve connected by

triangles represents the distribution of code lines of corpus test

targets, and the orange curve connected by circles represents

the query test targets in the benchmark queries. From the

figure, we can observe that although these 1,000 queries were

randomly selected, the distribution of the number of code lines

of the two datasets is almost identical. This also indicates that

the benchmark query dataset is representative.

����

����

����

����

����

����

��	�

��
�

����
 �����
 ������
 ������
 �����

��� ��	
� ���	
 ���	
 ����� �����

��� ��	
	 ���
� ���	� ����� �����

�
��
��
�
��

�
�

����������	
����

�

�

Fig. 4: The distribution of the code lines of two datasets.

B. Evaluation Metrics

Learning from the evaluation experience in the information

retrieval and code search literature [24]–[28], we propose the

following two evaluation metrics to measure the effectiveness

of test case recommendation.

Query Coverage (QC). Given a query (test target), if the

test case recommendation technique retrieves at least one test

case for it, we deem that the query is covered. The query

coverage (QC, for short) measures the percentage of queries in

Q that are covered by the test case recommendation technique.

It is computed as:

QC =
1

|Q|
|Q|∑

q=1

�(n > 0) (1)

where Q is a set of queries (i.e., test targets); n is the number

of query results (i.e., test cases) corresponding to the query

q, and �(·) is a function which returns 1 if the input is true

and 0 otherwise. QC is important because a better test case

recommendation technique should allow developers to search

for test cases for more test targets. The higher the metric value,

the better the test case recommendation performance.

Coverage Accuracy of the Top k Hits (CA@k). The

closer the query result is to the ground-truth result, the more

accurate the query result is. Specifically, we use the similarity

metric between the recommended test case and the ground-

truth test case to indicate accuracy. The larger the similarity,

the more accurate the recommended test case. For each query,

we measure the average accuracy (Accuracy@k, for short)

of the top k query results when k is 1, 5, and 10. These

values reflect the typical sizes of results that users would

inspect. Accuracy@1 is important as users scan the search

results from top to bottom [24]. A larger Accuracy@1 implies

a lower inspection effort for finding the expected result.

Accuracy@5 and Accuracy@10 are also important because

developers often inspect multiple results of different usages to

learn from [26]. Accuracy@k is calculated as follows:

Accuracy@k =
1

k

n∑

rank=1

ratio(tcrank, tcground truth) (2)

where k and n are the expected and actual number of query

results respectively. ratio(·) is a function provided by the

tool MAF 2 developed in our previous work [22] used to

calculate the similarity between two test cases, where tcrank

and tcground truth represent the recommended and ground-

truth test cases, respectively.

In addition, we find that a test target may be tested by multi-

ple test cases. Therefore, when the retrieved similar corpus test

target has multiple recommended test cases, we compute the

similarity between each recommended test case (i.e., tcrank)

and the ground-truth test case (i.e., tcground truth), and then

select the maximum value as the accuracy score.

The coverage accuracy of the top k hits (CA@k) measures

the average accuracy of the results of the queries that have

been covered by the test case recommendation technique.

CA@k is calculated as follows:

CA@k =
1

|Q′|
|Q′|∑

q=1

Accuracy@k (3)

where Q′ ⊆ Q is a set of covered queries. Accuracy@k is

used to measure the accuracy of a technique against a single

query, and in reality, there may inevitably be coincidences

- a technique happens to perform well on a given query

but in fact, it performs poorly on other queries. CA@k is

a measurement of the accuracy of a set of queries, which

can effectively avoid the coincidence problem, so it can more

accurately reflect the effectiveness of a technique. A better

test case recommendation technique should allow developers

to search for test cases for any query test target as much as

possible. The higher the metric values, the better the test case

recommendation performance.

C. Comparison Techniques (Baselines)

In this paper, we compare MUTCR with the following three

baselines.

TestTenderer. TestTenderer proposed by Werner et al. [14]

combines the method signature matching with a relaxation

strategy. The relaxation strategy is applied in the recursive

call in the matching algorithm, and consists of four levels: 1)

Search for the exact match of the query; 2) Add wildcards to

the method names; 3) Remove the methods and search only

for the class name; 4) Add wildcards to the class name. We

did not find the test case search engine claimed to be public

2https://github.com/wssun/MAF

184

in their paper, so we implemented the search algorithm they

proposed according to their paper description [14].

NiCadBased. The test case recommendation technique is

based on clone detection, that is, if the two test targets are

a clone pair, they can reuse each other’s test cases. This

approach has been adopted in the work [9] where a mature

clone detector NiCad was used. This work also did not provide

a tool that can be directly used for comparison. We thus also

implemented its search algorithm according to the description

of the paper [9]. For ease of description, we refer to their

technique as NiCadBased for short. In the experiment, NiCad

is configured with function-level granularity, blind setting, and

0.1 dissimilarity threshold.

Relatest. Relatest [16] follows the work by Ragkhitwetsagul

et al. [29], [30] and designs sim(·) based on the Jaccard

index [31]. Specifically, Relatest uses the Jaccard index over

3-grams implemented in the Java String Similarity library [19].

The pair-wise Jaccard index method retrieves a similar corpus

test target in the search corpus and adds it to the candidate

set if the similarity to the query test target is greater than or

equal to a certain threshold τ . The Jaccard index is also a

textual similarity measure. Therefore, like the threshold used

by FuzzyWuzzy [32], τ is uniformly set to 0.6. The candidate

set is then ranked by these similarity scores.

IV. RESULT ANALYSIS

In this section, we present experimental results and the

answer to each of the research questions posed.

RQ1: How effective is MUTCR compared with state-of-
the-art test case recommendation techniques?

������������

	
���
����

�����

��������

Fig. 5: The Venn diagram of queries covered by MUTCR and three
baselines

We analyze the effectiveness of MUTCR from two auto-

mated evaluation metrics, i.e., query coverage and coverage

accuracy. Fig. 5 shows the Venn diagram of queries covered

by MUTCR and three baselines. Observe that MUTCR covers

the most queries in Q (736 = 2+13+28+359+167+14+153,

QC ≈ 0.74), followed by TestTenderer (567 = 13 + 28 +
359+ 167, QC ≈ 0.57), Relatest (224 = 28+ 167+ 14+ 15,

QC ≈ 0.22), and NiCadBased (48 = 3+ 4+ 13 + 28, QC ≈
0.05). Moreover, MUTCR covers most of the queries covered

by NiCadBased (43/48=90%), Relatest (209/224=93%), and

TestTenderer (567/567=100%).

In terms of coverage accuracy (i.e., CA@k), as shown in Ta-

ble I, overall, MUTCR outperforms NiCadBased, Relatest, and

TestTenderer when k is 1, 5 and 10. It should be noted that the

values in Table I are the average scores of all covered queries.

TABLE I: The comparison between MUTCR and baselines on the
intersection of covered queries in CA@k and search efficiency.

Techniques CA@1 CA@5 CA@10 time cost (ms)
NiCadBased 0.87 0.23 0.14 5,841
MUTCR 0.89 0.60 0.46 7
Relatest 0.78 0.31 0.20 5,343
MUTCR 0.78 0.56 0.46 9
TestTenderer 0.73 0.52 0.40 21
MUTCR 0.74 0.53 0.43 7

The average scores cannot reflect whether the improvement

is significant. Fig. 6 shows the comparison results between

MUTCR and three baselines in terms of Accuracy(q)@k
scores in detail. To test statistical significance, we apply the

Wilcoxon matched-pairs signed-rank test to the comparison of

Accuracy(q)@k scores between MUTCR and three baselines.

The Wilcoxon matched-pairs signed-rank test is a nonparamet-

ric method to compare ‘before-after’, or matched subjects [33].

In our case, ‘before’ refers to three baselines, whereas ‘after’

refers to MUTCR. The test results are presented in Fig. 6

in the form of ‘*’. For example, in Fig. 6(b), the ‘****’ on

the above NiCadBased and MUTCR indicates that there is a

significant difference between NiCadBased and MUTCR in

terms of CA@5 (i.e., p-value < 0.05).
From Fig. 6, we can observe that, compared with NiCad-

Based, Relatest and TestTenderer, when k is 1, MUTCR does

not have significant improvement, but it is significantly better

than them when k is 5 and 10. In Relatest, the maximum

recommendation list size is set to five (i.e., k = 5) as it has

been shown that the average person is only able to reason about

five to nine different items at a given time [34]. Therefore,

we can conclude that MUTCR is significantly better than

baselines under the common k setting (k = 5).

TABLE II: The comparison between MUTCR and baselines on all
1,000 queries in terms of CA@k and search efficiency

Techniques QC CA@1 CA@5 CA@10 time cost

NiCadBased 0.05 0.05 0.02 0.01 5,343

Relatest 0.22 0.17 0.07 0.04 6,499

TestTenderer 0.57 0.42 0.29 0.23 23

MUTCR 0.74 0.48 0.35 0.29 9

In the above, we primarily compare MUTCR and baselines

on the intersection of queries covered by them. We further

compare them on all 1,000 benchmark queries, that is under

the setting |Q′| ≡ 1000. Table II shows the results of MUTCR

and three baselines on all 1,000 queries. From this table,

we can observe that, MUTCR performs the best in QC and

CA@k and outperforms all three baselines. MUTCR improves

the best baseline TestTenderer by 30% in QC, 14% in CA@1,

21% in CA@5, and 26% in CA@10.

Answer to RQ1.
Based on the above analysis, we can make a conclusion
that, in terms of search effectiveness, MUTCR is signifi-
cantly better than the state-of-the-art techniques in terms of
QC and CA@k. In other words, MUTCR can effectively
recommend test cases to more test targets.

185

0.0 0.5 1.0

TestTenderer (567)

MuTCR (567)

Relatest (209)

MuTCR (209)

NiCadBased (43)

MuTCR (43)

Coverage Accuracy

T
ec

h
n
iq

u
es

n
s

n
s

ns

(a) k = 1

0.0 0.5 1.0
Coverage Accuracy

(b) k = 5

0.0 0.5 1.0
Coverage Accuracy

(c) k = 10

Fig. 6: The distribution of the Accuracy(q)@k scores attained by MUTCR and three baselines. In the figure, ‘+’ denotes the mean, which is
the value filled in Table I. ‘*’ (0.01 < p < 0.05), ‘**’ (0.001 < p < 0.01), ‘***’ (0.0001 < p < 0.001), and ‘****’ (p < 0.0001) represent
the differences between the two groups are Significant, Very significant, Extremely significant, and Extremely significant, respectively. ‘ns’
(p ≥ 0.05) means Not significant.

RQ2: How efficient is MUTCR compared with state-of-
the-art test case recommendation techniques?

We further present the comparison results between MUTCR

and three baselines in terms of search efficiency. For a given

query, in addition to the search process, it also includes

other follow-up processes such as loading test dependencies,

transmitting search results to the client, and so on. To eliminate

the other bias, we only compare the time it takes for different

techniques to search the top k results for a given query. The

last column ‘time cost (ms)’ in Table I and Table II shows the

average time it takes for different test case recommendation

techniques to search the top 10 results for any query in

Q. From the two tables, we can observe that among three

baselines, TestTenderer takes about 20-23 milliseconds (ms) to

search the top 10 results for any query in Q, while NiCadBased

and Relatest take 5–6 seconds. MUTCR takes the shortest time

(about 7–9 ms). Compared to the best baseline TestTenderer,

MUTCR improves test case search efficiency by 3 times.

Answer to RQ2.
In terms of search efficiency, MUTCR is superior to NiCad-
Based, Relatest, and TestTenderer. MUTCR can search 10
results for a given query in a time scale of milliseconds
on average. Thus, MUTCR can efficiently recommend test
cases to test targets.

RQ3: How useful is MUTCR compared with the state-of-
the-art TCR techniques in practice?

In this section, we further investigate how useful is MUTCR

compared with the state-of-the-art test case recommendation

techniques in practice through a user study.

To conduct a user study, we recruit 10 graduate students to

check the usefulness of test cases recommended by MUTCR,

NiCadBased, Relatest, and TestTenderer. The 10 participants

consist of 8 masters (including 6 first-year and 2 second-year

masters) and 2 second-year PhD candidates. Their program-

ming experience ranged from 3 years up to 6 years. Their

TABLE III: The score interpretation

Score Interpretation

1 The test case is useless.

2 The test case can provide test ideas.

3 The test case can provide test ideas and a small amount of
reusable source code.

4 The test case can provide test ideas and a large amount of
reusable source code.

5 The test case can be used without modification.

testing experience ranged from 2 years to up to 4 years. We

randomly select 50 queries from the 1,000 benchmark queries

used in the automatic evaluation. We ask them to indepen-

dently score the usefulness of test cases recommended by four

techniques for these queries based on their development and

testing experience. We mingle the ground-truth test cases with

the test cases recommended by the four test case recommen-

dation techniques (i.e., NiCadBased, TestTenderer, Relatest,

and MUTCR), so that we can check whether the participants

blindly trust these recommended test cases. Therefore, we can

get 10 objective scores for each recommended test case. All

scores are integers, ranging from 0 to 5, according to previous

studies [35], [36]. Table III shows the score interpretation of

the user study, where a score of 1 indicates the test case is

useless, and a score of 5 indicates the test case is good enough

and can directly be used to test the query test target without

modification. Like the automatic evaluation, each technique

recommends the top 10 test cases for each query.

The statistical results of the user study are shown in Ta-

ble IV. All values in the table are average scores calculated

on 50 queries. The first column (i.e., Scoreall) shows the

average scores of all recommended test cases from TCR tools.

The Score@1, Score@5, and Score@10 columns present the

average scores of the top 1, 5, and 10 test cases, respectively.

Score@k is computed as:

186

Score@k =

∑k
i=1 score(tci)

k
(4)

where k is set to 1, 5, and 10; score(tci) represents the

average score of i-th test case scored by 10 students.

Table IV shows the usefulness scores of the recommended

test cases on the queries covered by different techniques

respectively. In the Scoreall column, we can observe that

the ground-truth test case (i.e., Ground-truth) gets the highest

score, followed by our MUTCR, and the worst is NiCadBased.

From the Score@1 columns, we can observe that our MUTCR

gets a score of 3.68, and outperforms TestTenderer (3.01),

Relatest (1.15), and NiCadBased (0.29). According to the

score interpretation in Table III, we can conclude that most of

the test cases recommended by MUTCR can provide valuable

references for developers to test the query test target. In

addition, from the Score@5 and Score@10 columns, we can

observe that all four techniques get low scores. The dominant

reason is that the number of the test cases recommended by

the four techniques is less than the expected k. In terms of

Score@5 and Score@10, our MUTCR still outperforms the

three baselines.

In Table IV, we only present the usefulness scores averaging

over users and queries. To show the detailed results, we further

present and compare the distribution of usefulness scores

attained by our MUTCR and three baselines (NiCadBased,

Relatest, and TestTenderer). Fig. 7 shows the distribution of

the usefulness scores. From the figure, we can observe that

the distribution of the usefulness scores of the recommenda-

tions found by MUTCR is significantly better than the three

baselines under all k settings (i.e., k = 1, 5, and 10).

TABLE V: The relationships
between usefulness score (US)
and similarity score (SS).

US SS
[0.0, 1.0) 0.00
[1.0, 2.0) 0.29
[2.0, 3.0) 0.38
[3.0, 3.5) 0.39
[3.5, 4.0) 0.45
[4.0, 4.5) 0.66
[4.5, 5.0] 0.95

TABLE VI: The number of
useful recommendations

Techniques k = 1 k = 5 k = 10
NiCadBased 41 44 45
Relatest 180 208 210
TestTenderer 446 498 513
MUTCR 504 613 640

We also analyze the correlation between the usefulness score

used in the user study and the similarity score used in the

automatic evaluation. As shown in Table V, we can observe

that, in general, the usefulness score is positively correlated

with the similarity score. When the similarity score between

the recommended test case and the ground-truth test case is

greater than 0.4, its usefulness score has exceeded 3.5. If

we simply consider recommendation results with a similarity

greater than 0.4 as useful recommendations, otherwise as

useless recommendations, the performance of these four tech-

niques is shown in Table VI. From this table, we can observe

that, compared to NiCadBased, Relatest, and TestTenderer,

MUTCR is able to recommend useful test cases for more

queries (640 when k = 10).

Answer to RQ3.
The statistics of user feedback results demonstrate that
(1) Compared to NiCadBased, Relatest, and TestTenderer,
the test cases recommended by MUTCR are more useful
and closer to ground-truth test cases. (2) MUTCR can
recommend useful test cases for more test targets than three
baselines.

V. THREATS TO VALIDITY

• Internal Validity.
The threat to internal validity lies in the implementation of

the three baselines, i.e., TestTenderer, NiCadBased, and Relat-

est. To mitigate this threat, when implementing their algorithm,

we set all involved configurations strictly as described in their

paper.

In addition, the selection of participants in the human study

might be a threat to internal validity. Due to a monetary limi-

tation, following existing work [37]–[39], we recruit students

instead of professional developers from industry, which may

introduce a bias in our conclusions. To mitigate this threat,

we select participants with varied experience (i.e., formal

work experience, internship work experience, and limited work

experience). Each recommended test case is evaluated by 10

human students, and we use the average score of the 10

students as the final score. Meanwhile, the empirical study

performed by Salman et al. demonstrates that both students

and professional developers have similar performance for a

new software engineering task [40]. As such, we believe the

selection strategy may not be a key point to our user study.

• External Validity.
The threats to external validity mainly lie in the search

corpus and benchmark queries. The richness of the test targets

contained in the search corpus may affect the performance

of different techniques. To mitigate the threat resulting from

the search corpus, we used a large number of Java projects

from GitHub to build the search corpus. In the future, we will

continue to enrich the search corpus through more projects

on Github or other open-source platforms (e.g., SourceForge
3). The selection of benchmark queries may also affect the

performance of different techniques. To mitigate the threat

resulting from the benchmark queries, we randomly selected

1,000 queries from 9,139 test targets extracted from more

than 700 Java projects. Although these queries were randomly

selected, the distribution of the code lines of the methods under

test in these queries is almost the same as that in the large-

scale search corpus. This means that the benchmark queries

are representative. In the future, we will integrate MUTCR

into a mature IDE (e.g., Eclipse and IntelliJ IDEA) to receive

any possible methods under test from developers as queries.

In this paper, we do not evaluate the usefulness of the

recommended test cases by test case recommendation tech-

niques in reducing the effort in creating new test cases, which

might be another threat to external validity. The baseline

Relatest [16] shows that the recommended test cases can

3https://sourceforge.net/

187

TABLE IV: The results of the user study on
queries covered by different techniques

Techniques Scoreall Score@1 Score@5 Score@10

Ground-truth – 4.59 – –

NiCadBased 0.29 0.29 0.07 0.03

Relatest 1.09 1.15 0.50 0.37

TestTenderer 2.38 3.01 1.72 1.13

MUTCR 3.03 3.68 2.55 1.98

0 1 2 3 4 5

NiCadBased

Relatest

TestTenderer

MuTCR

Usefulness Score

T
ec

h
n
iq

u
e

(a) k = 1

0 1 2 3 4 5

Usefulness Score

(b) k = 5

0 1 2 3 4 5

Usefulness Score

(c) k = 10

Fig. 7: The distribution of the usefulness scores attained by MUTCR and three baselines.

significantly benefit the task of test creation. We use a similar

automatic evaluation method as in the baseline Relatest [16],

that is to measure the textual similarity between ground-

truth test cases and recommended test cases. In the automatic

evaluation, our MUTCR is significantly better than Relatest

in terms of QC and CA@k. Therefore, we have reasons to

believe that the test cases recommended by MUTCR can help

developers reduce the efforts of creating new test tests for

query test targets. We leave the evaluation of the usefulness

of recommendations in reducing the effort in creating tests in

future work.

VI. RELATED WORK

A. Code Similarity Measurement

The test target similarity analysis is essentially a code sim-

ilarity measurement that is a traditional and mature research

field. A large number of code similarity measurement meth-

ods have been proposed one after another [29], [41]. These

methods mainly measure code similarity from two levels of

text and structure. The text level mainly includes string-based

[42], [43] and token-based [44]–[46] methods. The structural

level mainly includes tree-based [47]–[49] and graph-based

[50]–[52] methods. All of these methods have advantages and

disadvantages. Overall, their performance (i.e., accuracy) has

improved over time, but their complexity (including cost) has

also increased. MUTCR measures the test target similarity

based on multi-level signature matching. Compared with long

code text and complex structure, signature information is

relatively short and simple, which can greatly improve the

efficiency of similar test target searches and help realize real-

time test case recommendations. We plan to explore advanced

techniques, such as deep learning-based code semantic repre-

sentation method [21], [53], [54] in future work.

B. Test Case Recommendation

Along with software testing development, test case search

or recommendation [9], [12], [14], [17] gets more and more

attention. Test Recommender [12] recommends test cases from

the project’s test cases to newcomers of the project, aiming

at facilitating learning and test writing. Test Recommender is

useful in facilitating newcomers to learn to write tests, but it

requires that the project that newcomers join is rich in test

cases. Thus, for a new project, it does not work. Mostafa et

al. [9] recommend test cases mined from software repositories

to developers with the help of clone detection techniques,

aiming at supporting developers in creating new test cases.

Compared with the work [12], their technique can achieve

the test case recommendation across project boundaries. But

they only evaluated the proposed technique on a few projects

and did not compare it with others’ techniques. Werner et

al. [14] first built a test case search engine SENTRE which

contains a lot of test cases collected from the open web. Based

on SENTRE, they developed a tool, namely TestTenderer,

used to recommend test cases to developers. TestTenderer

searches for test cases in SENTRE using method signatures

matching and relaxation algorithm. Unfortunately, we haven’t

found either SENTRE or TestTenderer. TeSRS [17] is an

online test recommendation system that can effectively assist

test novices in learning unit testing. TeSRS gets test snippets

from superior crowdsourcing test scripts by program slicing

and recommends test cases by method signature matching.

However, it is only used on an educational platform and its

source code is not public. Its recommendation accuracy may

decline because it only uses method signature as the metric.

The search algorithm proposed by Relatest requires a high

textual similarity between the entire code snippets of the two

test targets. However, two test targets that implement the same

function usually have similar method names but may have

completely different code text because developers may have

different coding styles and wording habits. Compared with

these techniques, MUTCR introduces a multi-level signature

matching strategy to measure test target similarity, which is

not only efficient but also can effectively find more relevant

recommendations.

VII. CONCLUSION

In this paper, we propose a novel multi-level signature

matching for test case recommendation. We develop a proto-

type named MUTCR for test case recommendation. MUTCR

achieves better performance by reasonably leveraging the ad-

vantages of three matching strategies with different strict lev-

els. Our comprehensive experiments have shown that MUTCR

is effective and efficient, and outperforms the state-of-the-art

baselines. Furthermore, statistical results from the user study

show that MUTCR can find useful recommendations for more

query test targets and is better than all baselines.

188

ACKNOWLEDGMENT

This work is supported partially by Science, Technol-

ogy, and Innovation Commission of Shenzhen Municipality

(CJGJZD20200617103001003), Innovative Research Founda-

tion of Ship General Performance(25422207), and the Program

B for Outstanding PhD Candidate of Nanjing University

(202201B054). Weidong Qian is the corresponding author.

REFERENCES

[1] T. A. Standish, “An essay on software reuse,” IEEE Transactions on
Software Engineering, vol. 10, no. 5, pp. 494–497, 1984.

[2] W. B. Frakes and B. A. Nejmeh, “Software reuse through information
retrieval,” SIGIR Forum, vol. 21, no. 1-2, pp. 30–36, 1987.

[3] W. Janjic, O. Hummel, and C. Atkinson, “Reuse-oriented code recom-
mendation systems,” in Recommendation Systems in Software Engineer-
ing. Springer, 2014, pp. 359–386.

[4] T. Xie, N. Tillmann, and P. Lakshman, “Advances in unit testing: theory
and practice,” in Proceedings of the 38th International Conference on
Software Engineering - Companion Volume. Austin, TX, USA: ACM,
May 14-22 2016, pp. 904–905.

[5] E. Daka and G. Fraser, “A survey on unit testing practices and problems,”
in Proceedings of the 25th International Symposium on Software Relia-
bility Engineering. Naples, Italy: IEEE Computer Society, November
3-6 2014, pp. 201–211.

[6] S. Planning, The economic impacts of inadequate infrastructure for
software testing. National Institute of Standards and Technology, 2002.

[7] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

[8] J. Lee, S. Kang, and D. Lee, “Survey on software testing practices,” IET
software, vol. 6, no. 3, pp. 275–282, 2012.

[9] M. Erfani, I. Keivanloo, and J. Rilling, “Opportunities for clone detection
in test case recommendation,” in Proceedings of the 37th Annual
Computer Software and Applications Conference. Kyoto, Japan: IEEE
Computer Society, July 22-26 2013, pp. 65–70.

[10] P. S. Kochhar, F. Thung, D. Lo, and J. L. Lawall, “An empirical study
on the adequacy of testing in open source projects,” in Proceedings of
the 21st Asia-Pacific Software Engineering Conference. Jeju, South
Korea: IEEE Computer Society, December 1-4 2014, pp. 215–222.

[11] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how,
and why developers (do not) test in their ides,” in Proceedings of the
2015 Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. Bergamo,
Italy: ACM, August 30 - September 4 2015, pp. 179–190.

[12] R. Pham, Y. Stoliar, and K. Schneider, “Automatically recommending
test code examples to inexperienced developers,” in Proceedings of the
2015 Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. Bergamo,
Italy: ACM, August 30 - September 4 2015, pp. 890–893.

[13] R. Pham, S. Kiesling, O. Liskin, L. Singer, and K. Schneider, “Enablers,
inhibitors, and perceptions of testing in novice software teams,” in
Proceedings of the 22nd International Symposium on Foundations of
Software Engineering. Hong Kong, China: ACM, November 16 - 22
2014, pp. 30–40.

[14] W. Janjic and C. Atkinson, “Utilizing software reuse experience for
automated test recommendation,” in Proceedings of the 8th International
Workshop on Automation of Software Test. San Francisco, CA, USA:
IEEE Computer Society, 2013, pp. 100–106.

[15] C. Zhu, W. Sun, Q. Liu, Y. Yuan, C. Fang, and Y. Huang, “Homotr:
Online test recommendation system based on homologous code match-
ing,” in Proceedings of the 35th International Conference on Automated
Software Engineering. Melbourne, Australia: IEEE, September 21-25
2020, pp. 1302–1306.

[16] R. White, J. Krinke, E. T. Barr, F. Sarro, and C. Ragkhitwetsagul, “Arte-
fact relation graphs for unit test reuse recommendation,” in Proceedings
of the 14th Conference on Software Testing, Verification and Validation.
Porto de Galinhas, Brazil: IEEE, April 12-16 2021, pp. 137–147.

[17] R. Qian, Y. Zhao, D. Men, Y. Feng, Q. Shi, Y. Huang, and Z. Chen,
“Test recommendation system based on slicing coverage filtering,” in
Proceedings of the 29th International Symposium on Software Testing
and Analysis. Virtual Event, USA: ACM, July 18-22 2020, pp. 573–
576.

[18] J. R. Cordy and C. K. Roy, “The NiCad clone detector,” in Proceed-
ings of the 19th International Conference on Program Comprehension.
Kingston, ON, Canada: IEEE Computer Society, June 22-24 2011, pp.
219–220.

[19] Tdebatty, “Java string similarity – Jaccard index,” site: https://github.
com/tdebatty/java-string-similarity#jaccard-index, 2015, accessed 10
January 2023.

[20] W. Sun, Q. Zhang, C. Fang, Y. Chen, X. Wang, and Z. Wang, “Test case
recommendation based on balanced distance of test targets,” Information
& Software Technology, vol. 150, no. 1, p. 106994, 2022.

[21] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” in Proceedings of the 2019 Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. Tallinn, Estonia: ACM, August
26-30 2019, pp. 964–974.

[22] W. Sun, X. Wang, H. Wu, D. Duan, Z. Sun, and Z. Chen, “MAF:
method-anchored test fragmentation for test code plagiarism detection,”
in Proceedings of the 41th International Conference on Software Engi-
neering, Software Engineering Education and Training. Montreal, QC,
Canada: IEEE / ACM, May 2019, pp. 110–120.

[23] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “An empirical study
of adoption of software testing in open source projects,” in Proceedings
of the 13th International Conference on Quality Software. Najing,
China: IEEE, July 29-30 2013, pp. 103–112.

[24] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings of the
40th International Conference on Software Engineering. Gothenburg,
Sweden: ACM, May 27 - June 03 2018, pp. 933–944.

[25] M. Raghothaman, Y. Wei, and Y. Hamadi, “SWIM: synthesizing what i
mean: code search and idiomatic snippet synthesis,” in Proceedings of
the 38th International Conference on Software Engineering. Austin,
TX, USA: ACM, May 14-22 2016, pp. 357–367.

[26] X. Li, Z. Wang, Q. Wang, S. Yan, T. Xie, and H. Mei, “Relationship-
aware code search for JavaScript frameworks,” in Proceedings of the
24th International Symposium on Foundations of Software Engineering.
Seattle, WA, USA: ACM, November 13-18 2016, pp. 690–701.

[27] F. Lv, H. Zhang, J. Lou, S. Wang, D. Zhang, and J. Zhao, “CodeHow:
effective code search based on API understanding and extended boolean
model (E),” in Proceedings of the 30th International Conference on
Automated Software Engineering. Lincoln, NE, USA: IEEE Computer
Society, November 9-13 2015, pp. 260–270.

[28] X. Ye, R. C. Bunescu, and C. Liu, “Learning to rank relevant files for
bug reports using domain knowledge,” in Proceedings of the 22nd In-
ternational Symposium on Foundations of Software Engineering. Hong
Kong, China: ACM, November 16 - 22 2014, pp. 689–699.

[29] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “A comparison of code
similarity analysers,” Empirical Software Engineering, vol. 23, no. 4,
pp. 2464–2519, 2018.

[30] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “Similarity of source
code in the presence of pervasive modifications,” in Proceedings of the
16th International Working Conference on Source Code Analysis and
Manipulation. Raleigh, NC, USA: IEEE Computer Society, October
2-3 2016, pp. 117–126.

[31] J. P, “Étude comparative de la distribution florale dans une portion des
alpes et des jura,” Bull Soc Vaudoise Sci Nat, vol. 37, no. 1, pp. 547–579,
1901.

[32] Seatgeek, “FuzzyWuzzy.” site: https://github.com/seatgeek/fuzzywuzzy,
2021, accessed 10 January 2023.

[33] H. J. Motulsky, “GraphPad statistics guide.” site: http://www.graphpad.
com/guides/prism/8/statistics/index.htm, 2016, accessed 10 January
2023.

[34] G. A. Miller, “The magical number seven, plus or minus two: some
limits on our capacity for processing information,” Psychological review,
vol. 63, no. 2, pp. 343—352, 1956.

[35] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in Proceedings of the 21th International Symposium
on Software Testing and Analysis. Minneapolis, MN, USA: ACM, July
15-20 2012, pp. 177–187.

[36] Y. Tao, J. Kim, S. Kim, and C. Xu, “Automatically generated patches
as debugging aids: a human study,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering. Hong Kong, China: ACM, November 16 - 22 2014, pp. 64–74.

[37] X. Xie, Z. Liu, S. Song, Z. Chen, J. Xuan, and B. Xu, “Revisit of
automatic debugging via human focus-tracking analysis,” in Proceedings

189

of the 38th International Conference on Software Engineering. Austin,
TX, USA: ACM, May 14-22 2016, pp. 808–819.

[38] Y. Feng, Z. Chen, J. A. Jones, C. Fang, and B. Xu, “Test report
prioritization to assist crowdsourced testing,” in Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering. Bergamo, Italy:
ACM, August 30 - September 4 2015, pp. 225–236.

[39] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 20th International Sympo-
sium on Software Testing and Analysis. Toronto, ON, Canada: ACM,
July 17-21 2011, pp. 199–209.

[40] I. Salman, A. T. Misirli, and N. J. Juzgado, “Are students representatives
of professionals in software engineering experiments?” in Proceedings of
the 37th International Conference on Software Engineering. Florence,
Italy: IEEE Computer Society, May 16-24 2015, pp. 666–676.

[41] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577–591, 2007.

[42] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent
approach for detecting duplicated code,” in Proceedings of the 7th
International Conference on Software Maintenance. Oxford, England,
UK: IEEE Computer Society, August 30 - September 3 1999, pp. 109–
118.

[43] J. H. Johnson, “Identifying redundancy in source code using finger-
prints,” in Proceedings of the 3th Conference of the Centre for Advanced
Studies on Collaborative Research. Toronto, Ontario, Canada: IBM,
October 24-28 1993, pp. 171–183.

[44] M. J. Wise, “YAP3: improved detection of similarities in computer
program and other texts,” in Proceedings of the 27th SIGCSE Technical
Symposium on Computer Science Education. Philadelphia, Pennsylva-
nia, USA: ACM, February 15-17 1996, pp. 130–134.

[45] Z. Li, S. Lu, S. Myagmar, and Z. Yuanyuan, “CP-Miner: finding copy-
paste and related bugs in large-scale software code,” IEEE Transactions
on software Engineering, vol. 32, no. 3, pp. 176–192, 2006.

[46] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: scaling code clone detection to big-code,” in Proceedings
of the 38th International Conference on Software Engineering. Austin,
TX, USA: ACM, May 14-22 2016, pp. 1157–1168.

[47] I. D. Baxter, A. Yahin, L. M. de Moura, M. Sant’Anna, and L. Bier,
“Clone detection using abstract syntax trees,” in Proceedings of the
6th International Conference on Software Maintenance. Bethesda,
Maryland, USA: IEEE Computer Society, November 16-19 1998, pp.
368–377.

[48] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: scalable
and accurate tree-based detection of code clones,” in Proceedings of the
29th International Conference on Software Engineering. Minneapolis,
MN, USA: IEEE Computer Society, May 20-26 2007, pp. 96–105.

[49] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in Pro-
ceedings of the 41th International Conference on Software Engineering.
Montreal, QC, Canada: IEEE / ACM, May 2019, pp. 783–794.

[50] J. Krinke, “Identifying similar code with program dependence graphs,”
in Proceedings of the 8th Working Conference on Reverse Engineering.
Stuttgart, Germany: IEEE Computer Society, October 2-5 2001, pp. 301–
309.

[51] R. Komondoor and S. Horwitz, “Using slicing to identify duplication
in source code,” in Proceedings of the 8th International Static Analysis
Symposium. Paris, France: Springer, July 16-18 2001, pp. 40–56.

[52] G. Zhao and J. Huang, “DeepSim: deep learning code functional
similarity,” in proceedings of the 2018 Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering. Lake Buena Vista, FL, USA: ACM, November
04-09 2018, pp. 141–151.

[53] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “CodeBERT: a pre-trained model
for programming and natural languages,” in Proceedings of the 25th
Conference on Empirical Methods in Natural Language Processing:
Findings. Online Event: Association for Computational Linguistics,
16-20 November 2020, pp. 1536–1547.

[54] C. Zeng, Y. Yu, S. Li, X. Xia, Z. Wang, M. Geng, B. Xiao, W. Dong,
and X. Liao, “deGraphCS: Embedding variable-based flow graph for
neural code search,” CoRR, vol. abs/2103.13020, pp. 1–21, 2021.

190

