
Integrating Extractive and Abstractive Models for Code Comment Generation

Weisong Sun, Yuling Hu, Yingfei Xu, Yuchen Chen, and Chunrong Fang∗
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai, China

{weisongsun, yulinghu, yingfeixu}@smail.nju.edu.cn, yuc.chen@outlook.com, fangchunrong@nju.edu.cn
*corresponding author

Abstract—Code comments play an essential role in aiding
developers understand and maintain source code. Current code
comment generation techniques can be classified into cate-
gories: extractive methods and abstractive methods. Extractive
methods use text retrieval techniques to extract important
code tokens to constitute comments. Such comments contain
important factual details articulated explicitly in code tokens,
but are poor in naturalness. Abstractive methods usually regard
code comment generation as a neural machine translation task.
By leveraging powerful deep learning-based language models,
abstractive methods can generate comments that resemble
human writing. However, compared with natural language,
programming language code is more complex. Comments
generated by abstractive methods often leave out important
factual details. In this paper, we propose a novel method
for code comment generation by integrating extractive and
abstractive models. Our extractive model is built on the
Latent Semantic Analysis (LSA) model, effectively extracting
important factual details in code snippets. Meanwhile, our
abstractive model is built on a deep learning-based encoder-
decoder model, enabling it to generate concise and human-
written-like comments. We evaluate the effectiveness of our
method, called ICS, by conducting extensive experiments
on the CodeSearchNet dataset involving six programming
languages. The results demonstrate that ICS outperforms state-
of-the-art techniques in three widely used metrics: BLEU,
METEOR, and ROUGE-L. Moreover, the outcomes of the
human evaluation indicate that the comments generated by ICS
exhibit superior naturalness and informativeness, and closely
align with the provided code snippets.

Keywords–Code Comment Generation; Code Summarization;
Latent Semantic Analysis; Text Summarization; Deep Learning

1. INTRODUCTION

Code comments play a crucial role in enhancing code un-
derstanding and facilitating software maintenance [1]. Writing
high-quality code comments has been regarded as a funda-
mental programming practice, but it demands significant time
and effort [2]. Consequently, valuable comments often become
absent, unmatched, and outdated as the code evolves [3].
Code comment generation, also known as code summarization,
represents a prominent research area [4], [5]. It focuses on
developing advanced techniques for automatically generating
comments for code snippets. Given a code snippet (at the

public static Constructor getCompatibleConstructor(final Class type, final Class valueType){
try{

return type.getConstructor(new Class[]{valueType});
} catch (Exception ignore) {

Class[] types = type.getClasses();
for (int i = 0; i < types.length; i++) {

try{
return type.getConstructor(new Class[]{types[i]});

} catch (Exception ignore2) {}
}

}
return null;

}

(a) A Code Snippet 𝑠𝑠!

get a compatible constructor for the given value type.

(b) A Comment 𝑐𝑐!

Figure 1: Example of Code Snippet and Comment

method/function level), code comment generation techniques
can automatically produce a concise natural language com-
ment for it. Figure 1 illustrates an example. The code snippet
presented in Figure 1(a) is provided by the developer. The
comment “get a compatible constructor for the given value
type.” in Figure 1(b) fulfills the developer’s requirement.
Code comment generation represents a unique form of text
summarization task, where the text is expressed in a program-
ming language, diverging from conventional natural languages.
Automatic text summarization was introduced to code com-
ment generation over a decade ago [4]. Hence, similar to text
summarization, current code comment generation techniques
can be classified into extractive methods and abstractive
methods. Initially, code comment generation techniques pri-
marily relied on extractive methods, utilizing an index-retrieval
framework to produce comments [4], [6]. They first index
terms/tokens in code snippets and then retrieve top-n key terms
as comments. The terms in comments can be extracted from
the present code snippets [7], context code snippets [8] or
similar code snippets [6]. Consequently, extractive methods
can produce comments that uphold the conceptual integrity
and factual information of the input code snippet. However,
the key terms extracted from code snippets may comprise
frivolous words or abbreviations, especially when the identi-
fiers are poorly named. Furthermore, the comments generated
by extractive methods are less natural and lack the appearance
of being written by humans [9], detailed in Section 3.
In recent years, with the boom of deep learning (DL) in
abstractive text summarization, DL-based code comment gen-
eration techniques have been proposed successively [9], [10],
[11], [12]. Compared with extractive methods, DL-based code
comment generation techniques possess superior abilities in

184

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS)

2693-9177/23/$31.00 ©2023 IEEE
DOI 10.1109/QRS60937.2023.00027



abstract expression and can produce comments that resemble
human writing, akin to abstractive text summarization [13].
Therefore, we classify the DL-based code comment generation
techniques as abstractive methods. Abstractive methods typi-
cally employ the neural network model built on the encoder-
decoder architecture and train the model on a large code-
comment corpus. The encoder first converts code snippets
into numerical context vectors (also known as embeddings),
which are then decoded by the decoder to produce concise
natural language text. As documented by Allamanis et al. [14],
traditional methods have largely been replaced by DL methods
that rely on substantial input from big data. However, although
abstractive methods can generate novel words and phrases that
are not present in the code snippet, they may omit crucial
factual details in the code snippet, detailed in Section 3.
In this paper, we propose a novel method for code comment
generation by integrating extractive and abstractive models.
Our method retains the advantages of extractive and abstrac-
tive methods while mitigating their respective shortcomings.
Specifically, large code corpora are used to train an extractive
model (like an extractive method) through the Latent Semantic
Analysis (LSA) and an abstractive model (like an abstractive
method). The extractive model serves as an extractor, responsi-
ble for extracting essential statements from the code snippets.
The abstractive model functions as an abstracter, taking both
the entire code snippet and important statements extracted
by the extractor as input and generating a concise natural
language comment. The abstracter first utilizes two distinct
encoders to transform the entire code snippet and important
statements into two embeddings, and then integrates them to
create an integration embedding. The integration embedding
will subsequently be fed to a decoder to generate comments.
In comparison to existing abstractive methods, our method
integrates an extractive method, effectively balancing attention
between global contextual information and crucial contextual
information, thus minimizing the risk of omitting essential
factual details and enhancing the overall performance.
In summary, we make the following contributions.
• We propose to integrate extractive and abstractive models to

enhance code comment generation. Our method preserves
the advantages of both extractive and abstractive methods
while mitigating their respective shortcomings.

• We conduct extensive quantitative experiments on a widely
used dataset called CodeSearchNet (CSN), and the results
demonstrate that the proposed method named ICS signifi-
cantly outperforms state-of-the-art baselines in three widely
used automatic metrics.

• We conduct a qualitative human evaluation to assess the
comments generated by ICS and baselines based on four
aspects: similarity, naturalness, informativeness, and rele-
vance. The statistical results of human scores indicate that
the comments generated by ICS are more informative and
relevant to code snippets.

• We release the source code of ICS at the project home-
page [15] for experiment replication, future research, and
practical use.

2. BACKGROUND

2.1 Automatic Text Summarization
We draw inspiration from the advanced techniques of auto-
matic text summarization. Therefore, we begin by introducing
the background of automatic text summarization.
Automatic text summarization refers to the process of automat-
ically condensing a piece of text into a concise summary while
preserving its key points [16]. Based on their technical charac-
teristics, text summarization can be categorized into extractive
text summarization (extractive methods) and abstractive text
summarization (abstractive methods) [13]. Extractive methods
directly extract words, phrases, and sentences from the source
text to assemble summaries. The generated summaries typ-
ically contain salient information from the source text [17].
In contrast, abstractive methods can generate summaries that
include novel words and phrases that are not present in the
source text – similar to the abstracts written by humans [17].
As a result, they are more likely to generate summaries that
are fluid, easy to understand, and of high quality [13].
As early as ten years ago, automatic text summarization
techniques were introduced to automatic code comment gen-
eration [4], [6]. For instance, in 2010, Sonia Haiduc et al. [7]
proposed an extractive code comment generation technique
that automatically generates extractive comments for source
code entities. Extractive comments are generated by selecting
the most important terms in code snippets. Recently, DL-based
code comment generation techniques have been successively
proposed [18], [19], [20], [21]. Similar to abstractive text
summarization, these techniques also extensively adopt the
encoder-decoder models borrowed from neural machine trans-
lation [18] to generate natural language comments. Therefore,
DL-based code comment generation techniques can be viewed
as abstractive methods.
In this paper, we integrate extractive and abstractive methods
together. The extractor is responsible for extracting important
factual details while the abstracter is responsible for generat-
ing human-written-like natural language comments, detailed
in Section 4. Existing works that combine extractive and
abstractive summarization methods are primarily proposed in
NLP [22], [23]. Unlike these works, where extractors select
important sentences from the source text, our extractor extracts
important statements from the source code. Additionally, our
abstracter takes both the source code and important statements
as input to generate comments, rather than considering only
important sentences as in [23] or focusing solely on the source
text with sentence-level attention as in [22].

2.2 Latent Semantic Analysis
The extractor of ICS is based on Latent Semantic Analysis
(LSA). Thus, in this subsection, we will provide an introduc-
tion to LSA.
LSA is an unsupervised method that discovers topic-based
semantic relationships between documents and words through
matrix decomposition based on a large text corpus [24].
LSA represents documents and words as vectors in a high-
dimensional space, where each dimension corresponds to a
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word. The technique then employs singular value decomposi-
tion (SVD) to reduce the dimensionality of the space, repre-
senting the semantic content of documents and words through
topic vectors. This ability allows it to measure similarities
more accurately in the topic vector space and handle synonyms
effectively [25].
LSA was originally developed for information retrieval tasks,
such as indexing and retrieval of large document collec-
tions [26]. Over two decades ago, LSA was first introduced to
the task of text summarization [27], [28], [29]. This method
can summarize the event/topic of a set of documents related
to a specific event/topic.
In this paper, we apply LSA in our extractor since it can
accurately capture the semantic similarity between texts.
Furthermore, compared with DL-based methods, LSA has
a significantly lower training cost in terms of both time
and computational resources. Specifically, we treat each code
snippet as a document, each token in the code snippet as a
word, and pick the top-n relevant tokens in each code snippet
as key tokens. Next, we identify the statements that contain
these key tokens as important statements. The details will be
discussed in Section 4-B1.

3. MOTIVATING EXAMPLE

Reference Comment: get a compatible constructor for the given value type.
Extractive Comment: type compatible constructor classes value
Abstractive Comment: get compatible constructor.
Integrated Comment: returns the compatible constructor for the given type.

Public static Constructor getCompatibleConstructor(final Class type, final Class valueType){}
return type.getConstructor(new Class[]{valueType});
Class[] types = type.getClasses();
for (int i = 0; i < types.length; i++) {
return type.getConstructor(new Class[]{types[i]});

(a) Important Statements Selected by Extractor

(b) Comments Generated by Different Techniques

Figure 2: Motivating Example

In this section, we use the code snippet s1 in Figure 1(a)
as an example and apply different techniques to generate
comments for comparison. It is a real-world example from the
CodeSearchNet dataset (detailed in Section 5-A1). Figure 1(b)
displays the comment written by the developer for s1, which
we consider as the reference comment (the ground truth)
indicated in the first line of Figure 2(b). According to the
grammar rules in natural language, we can divide the reference
comment into two parts: “get a compatible constructor” (Blue
font), and “for the given value type” (Green font).
We use two techniques, an extractive method [29] and an
abstractive method [30] to generate comments for s1. The
extractive method [29] adopts the Latent Semantic Analysis
(LSA) techniques [31] to assess the informativity of each token
in the code snippet and then selects the top 5 key tokens.
The second line of Figure 2(b) shows an extractive comment
generated by the extractive method. It contains significant
factual details that should be included in the comment, e.g., the
important words “type”, “compatible”, and “constructor”. The

abstractive method [30] first trains a model called CodeT5 to
obtain code representations, and then fine-tunes it on the code
comment generation task. The third line of Figure 2(b) shows
the comment generated by the abstractive method. Observing
the generated abstractive comment, we notice the following: 1)
intuitively, it possesses good naturalness, resembling human-
written text; 2) the abstractive comment covers the first part
(Blue font) of the reference comment but fails to cover the
second part (Green font), i.e., it misses some factual details.
Our solution. The last comment (i.e., Integrated Comment)
in Figure 2(b) is generated by our ICS. It is observed that
1) the integrated comment contains the key tokens selected
by the LSA-based extractive method; 2) compared with the
abstractive comment generated by [30], the integrated com-
ment can cover both parts of the reference. Based on the
above observations, it is evident that our method can generate
human-written-like comments while preserving important fac-
tual details. The good performance of our method is attributed
to its ability to give more attention to essential statements.
Intuitively, the first part (Green font) serves as a translation or
comment of the factual details (keywords “compatible” and
“constructor”) contained in the important method declaration
statement public static Constructor getCompatibleConstruc-
tor(final Class type, final Class valueType){}. The second part
(Green font) represents a translation or summary of the factual
details (e.g., the key token “type”) contained in the remaining
important statements shown in Figure 2(a).

4. METHODOLOGY

(i) Training of Extractor

Code Snippets

①

IStates

② ③

Well-trained
Extractor

Integration Decoder
𝒆𝒆!"

GCommentLoss ℒ!"

(1) Training of ICS

Code Snippets

Comments

Well-trained
Extractor

(ii) Training of Abstracter

Key Tokens

AbEncoder

⑦

⑥

④

Word-Code
Matrix

Topic Vector
Space

IStates

⑤

⑨

Well-trained 
Abstracter

ExEncoder
𝒆𝒆𝑬𝑬$

𝒆𝒆%&

Abstracter

⑧

⑧

⑩ ⑩

LSA

A Comment

(2) Deployment of ICS

Well-trained Extractor

Input Output

Well-trained Abstracter

Well-trained ICS

s'
A Code Snippet s

Figure 3: The overview of ICS

4.1 Overview

Figure 3 provides the overview of our approach ICS. The top
part illustrates the training process of ICS, while the bottom
part shows the deployment (usage) of ICS. ICS divides the
training process into two phases: (i) training of extractor and
(ii) training of abstracter. The goal of the extractor’s training
is to produce a well-trained model capable of extracting
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important statements from a given code snippet. The training
of the abstracter aims to produce a well-trained abstracter
capable of generating a succinct natural language comment for
a given code snippet. The training of the extractor leverages
one type of input data: code snippets, and the training of the
abstracter also leverages their corresponding comments. To
construct the extractor, ICS first treats code snippets as texts
and builds up an LSA model, detailed in Section 4-B1-Step ➀
and Step ➁. Then, ICS determines the most relevant top-5
key tokens for each code snippet, detailed in Section 4-B1-
Step ➂ and extracts important statements based on the key
tokens, as explained in Section 4-B1-Step ➃. To train the
abstracter, ICS uses its well-trained extractor to extract the
important statements from a given code snippet, detailed in
Section 4-B2-Step ➄. The extracted important statements will
be further transformed into the embedding representation eEx

by an encoder named ExEncoder, detailed in Section 4-B2-
Step ➅. Then, ICS uses another encoder named AbEncoder
to transform the entire code snippet into the embedding repre-
sentation eAb, detailed in Section 4-B2-Step ➆. Furthermore,
ICS produces the integrated embedding representation eIn by
integrating eEx and eAb, detailed in Section 4-B2-Step ➇.
The embedding eIn will be passed to a decoder to generate
predicted comments (PComments), detailed in Section 4-B2-
Step ➈. During this procedure, the model parameters of the
abstracter (including ExEncoder, AbEncoder, and Decoder) are
randomly initialized. Finally, based on the loss (LAb) between
the predicted comments (PComments) and ground-truth com-
ments, ICS can iteratively update the model parameters of the
abstracter, detailed in Section 4-B2-Step ➉. The well-trained
extractor and abstracter are the two core components of ICS
to support the code comment generation service. When ICS
is deployed for usage, it receives a code snippet from the
developer and generates a concise natural language comment
for the code snippet, detailed in Section 4-C.

4.2 Training of ICS
4.2.1 Part (i): Training of Extractor
The primary goal of the extractor is to identify highly in-
formative statements, ensuring that the extracted statements
contain essential information needed to generate an abstractive
summary. As shown in part (i) of Figure 3, the training of the
extractor is divided into four steps: ➀ and ➁ involve building
up the LSA model, with ➀ constructing a token-code matrix
and ➁ performing a truncated singular value decomposition
on it. Subsequently, ➂ calculates top-5 most relevant key
tokens for a given code snippet, and ➃ selects the statements
containing the top-5 key tokens as important statements. Next,
we will discuss these four steps in detail.
Step ➀ and Step ➁: Building up the LSA model. LSA
starts by obtaining a word-document matrix [29]. We treat each
code snippet as a document and build a token-code matrix.
Specifically, during the code preprocessing phase, we begin by
considering a code snippet as an entire string and then tokenize
it into a list of tokens. It’s worth noting that all identifiers will
be split into multiple token (also called words). For instance,

“MergeSort” would be split into “merge” and “sort”. Second,
we remove stop-words from the token list, since most stop-
words are uninformative pronouns, prepositions, conjunctions,
and so on, such as “it”, “in” and “or”. In addition, we eliminate
the keywords (also known as reserved words) specific to
programming languages in use. Finally, we represent each
code snippet by a set of meaningful tokens s = [t1, t2, · · · , ta],
and construct the token-code matrix X:

X =




x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn


 (1)

where m is the number of unique tokens in the entire training
set, and n is the size of the training set. This matrix essentially
represents each token by a n-dimensional vector and each code
snippet by a m-dimensional vector. The element xij represents
the frequency or weight of the token ti in the code snippet sj .
It is usually the number of occurrences of the word (token) in
the document (code snippet), or the word’s (token’s) tf -idf
(term frequency-inverse document frequency) [32], and we
apply the latter one. Given a set of code snippet S, a token ti,
and an individual code snippet sj ∈ S, xij is computed as:

xij = fti,sj ∗ log(n/fti,S) (2)

where fti,sj is the number of times t appears in sj ; fti,S is
the number of code snippets in which ti appears in S.

After the token-code matrix is constructed, a truncated singular
value decomposition is performed on it:

X ≈ UkΣkVk = [u1, u2, · · · , uk]




σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σk







v1T

v2T

...
vk

T


 (3)

where k ≤ n ≤ m. Uk is the topic vector space. Each column
of it represents a topic, and each row of it represents a token.
Each column of the matrix ΣkVk represents a code snippet.
After this, all but the first (largest) k values in the diagonal
of the singular matrix Σ are set to zero, leading to a kind of
principal component analysis. This also reduces the dimension
of each code snippet and token to k.

Step ➂: Calculating top-5 most relevant key tokens for
a code snippet. After Step ➀ and Step ➁, we get the k-
dimensional vector representation of each token and code
snippet in the matrix X . Note that the vector representation
of a new code snippet that is not contained in the training set
can be computed as:

vs = qTUkΣ
−1
k (4)

where q represents the array containing tf -idf value for tokens
in the code snippet, and qT is the transpose of it. This
is equivalent to the geometric addition of constituent token
vectors corresponding to tokens in a code snippet. Further,
the similarity between ti ∈ s and s, denoted sim(ti, s):

sim(ti, s) = cosine(vtiΣ
1/2
k ,vsΣ

1/2
k ) (5)
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Finally, we follow [7] and select top-5 tokens with the highest
similarity as key tokens. We also try to vary top-n to explore
its impact on ICS’s performance, detailed in Section 5-B4.
Step ➃: Selecting important statements containing the key
tokens. For the i-th statement in s, it can be represented by a
set of tokens stati = [t1, t2, · · · , ta] after code preprocessing.
We can also get its top-5 key tokens k = [w1, w2, · · · , w5]
after Step ➂. If

∃w ∈ stati, w ∈ k (6)

then we consider stati an important statement. After traversing
all the statements of a code snippet, we can get a set of
important statements for it. It means that the model should
pay special attention to the factual details contained in these
statements to facilitate comment generation.

4.2.2 Part (ii): Training of Abstracter

As shown in part (ii) of Figure 3, the training of the abstracter
is completed through six steps, i.e., ➄–➉. Next, we will
discuss these six steps in detail.
Step ➄: Extracting Important Statements. To generate
comments without missing factual details, our ICS pays more
attention to the important statements of code snippets where
the factual details are contained in. Therefore, different from
abstracters in existing abstractive code summarization tech-
niques, the abstracter of ICS treats important statements as
part of the input. In this step, we first use the well-trained
extractor to calculate top-5 key tokens. Then, the statements
containing these key tokens will be selected as important
statements (IStates).
Step ➅ and Step ➆: Producing Embedding Represen-
tations. These two steps do a similar thing, i.e. leveraging
an encoder to transform the source code into an embedding
representation. The difference is that Step ➅ deals with
important statements selected by the extractor and Step ➆
deals with the entire code snippet. Therefore, ICS can use
the same neural network architecture or pre-trained model
to design ExEncoder and AbEncoder. Given a code snippet
s = [stat1, stat2, · · · , statr], let s′ ⊆ s denote a set of the
important statements selected by the extractor from s, the tasks
performed by ExEncoder and AbEncoder can be formalized:

eEx = encoder(s′), eAb = encoder(s) (7)

where eEx and eAb represent the embedding representations
of s′ and s, respectively; the encoder is a neural network
architecture (e.g., LSTM [33] and Transformer [34]) or pre-
trained model (e.g., CodeBERT [35] and CodeT5 [30]) that
can process sequential input. We build our ExEncoder and
AbEncoder over the pre-trained encoder provided by CodeT5
because CodeT5 performs better than other models in the task
of code comment generation. The performances of different
models are shown in Table II.
Step ➇: Producing Integrated Representation. In this step,
ICS integrates eEx and eAb to produce a integrated embedding
representation eIn through the component Integrater. Since
eEx and eAb are not aligned, we integrate them in a con-

catenated fashion. We try two concatenated ways as follows:

eIn = [eEx; eAb] or [eAb; eEx] (8)

where [·; ·] denotes the concatenation of two vectors. The
effects of both ways on the performance of ICS are discussed
in Section 5-B3.
Step ➈: Generating Predicted Comments. This step makes
use of the decoder to generate natural language comment,
which takes in the embedding representation eIn and predicts
words one by one. Specifically, we build our decoder on the
pre-trained encoder provided by CodeT5 [30] to unfold the
context vector eIn into the target sequence (i.e., comment)
through the following dynamic model,

ht = f(yt−1,ht−1, e
In)

p(yt|Y<t, X) = g(yt−1,ht, e
In)

(9)

where f(·) and g(·) are activation functions, ht is the hidden
state of the neural network at time t; yt is the predicted
target word at t (through g(·) with Y<t denoting the history
{y1, y2, · · · , yt−1}. The prediction process is typically a clas-
sifier over the vocabulary. It can be seen from Equation 9
that the probability of generating a target word is related to
the current hidden state, the history of the target sequence,
and the context eIn. The essence of the decoder is to classify
the vocabularies by optimizing the loss function to generate
the vector representing of the target word yt. After the vector
passes through a softmax function, the word corresponding to
the highest probability is the result to be output.
Step ➉: Model Training. During the training of the abstracter,
the three components (ExEncoder, AbEncoder, and Decoder)
are jointly trained to minimize the negative conditional log-
likelihood, i.e., LAb(Θ) computed as:

LAb(Θ) = −
1

N

N
n=1

logp(yn|xn; Θ) (10)

where Θ is the model parameters of the abstracter; (xn,yn)
is a (code snippet, comment) pair from the training set.

4.3 Deployment of ICS

After ICS is trained, we can deploy it online for code comment
generation service. Part (2) of Figure 3 shows the deployment
of ICS. For a given code snippet s, ICS first uses the well-
trained extractor to extract important statements from s, repre-
sented s′. Next, ICS uses the well-trained abstracter to generate
the comment. In practice, we can treat the well-trained ICS
as a black-box tool that takes in a code snippet given by the
developer and generates a concise natural language comment.

5. EVALUATION

To evaluate the proposed method, we aim to answer the
following five research questions:
RQ1: How does ICS perform compared to baselines?
RQ2: How does ICS perform in human evaluation?
RQ3: How does the integration way of the extractor and

abstracter affect ICS?
RQ4: How does the number of key tokens affect ICS?
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RQ5: How does the robustness of ICS perform when varying
the code length and comment length?

5.1 Experimental Setup

5.1.1 Dataset

We conduct experiments on the clean version of the Code-
SearchNet (CSN) dataset [36] provided by [37]. This dataset
has a large number of pairs of code snippets and com-
ments across six programming languages, including Go, Java,
JavaScript, PHP, Python, and Ruby. It has been widely used
by existing code comment generation studies [19], [35], [11],
[21]. The statistics of it are listed in Table I.

TABLE I: Statistics of the CSN dataset

Language Training Set Size Validation Set Size Test Set Size
Go 167,288 7,325 8,122

Java 164,923 5,183 10,955
JavaScript 58,025 3,885 3,291

PHP 241,241 12,982 14,014
Python 251,820 13,914 14,918
Ruby 24,927 1,400 1,262

5.1.2 Evaluation Metrics

We use three metrics BLEU [38], METEOR [39], and
ROUGH-L [40] to evaluate our model ICS, which are widely
used in code comment generation [9], [34], [41], [21]
BLEU, the abbreviation for BiLingual Evaluation Under-
study [38], is commonly used to assess the quality of generated
code summaries [9], [41]. It is a variant of precision metric,
which measures the similarity of a generated summary to
the reference summary by computing the n-gram precision,
with a penalty for overly short lengths [38]. In this paper, we
follow [21], [42] and report the standard BLEU score which
provides a cumulative score of 1-, 2-, 3-, and 4-grams [43].
METEOR, the abbreviation for Metric for Evaluation of
Translation with Explicit ORdering [39], is another widely
used metric for evaluating the quality of generated code
summaries [44], [45]. For a pair of summaries, METEOR
establishes a word alignment between them and calculates the
similarity scores.
ROUGE-L. ROUGE is the abbreviation for Recall-oriented
Understudy for Gisting Evaluation [40]. ROUGE-L, a variant
of ROUGE, is computed based on the longest common subse-
quence (LCS). ROUGE-L is also widely used to evaluate the
quality of generated code summaries [41], [44], [46], [47].

5.1.3 Experimental Settings

In this paper, we build our encoder and decoder on the pre-
trained encoder and decoder provided by CodeT5. Following
CodeT5 [30] and set the mini-batch size to 32, the word em-
bedding size to 512, the learning rate to 5e-5, and the dropout
to 0.1, and update the parameters via AdamW optimizer [48].
The code snippets are padded with a special token ⟨PAD⟩ to
the maximum length. All models are implemented using the
PyTorch 1.7.1 framework with Python 3.8. All experiments are
conducted on a server equipped with one Nvidia Tesla V100
GPU with 31 GB memory, running on Centos 7.7. All models

are trained for the same epochs as their original paper, and we
select the best model based on the lowest validation loss.

5.1.4 Baselines

LSTM [33] (Long Short-Term Memory) is a type of recurrent
neural network architecture with multiple memory cells, each
controlled by a set of gates to retain or discard information
based on input data and the network’s previous state.
Transformer-based [11] (also shortened to Transformer
in [21], NCS in [49]) adopts a Transformer-based encoder-
decoder architecture. It incorporates the copying mecha-
nism [17] in the Transformer, enabling it to both generate
words from vocabulary and copy from the source code.
CodeBERT [35] is a representative pre-trained model for
source code. It uses the same model architecture as RoBERTa-
base [50]. It is trained with the Masked Language Modeling
(MLM) task and the Replaced Token Detection (RTD) task.
CodeT5 [30] is one of the state-of-the-art pre-trained models
for source code. CodeT5 builds on an encoder-decoder frame-
work with the same architecture as T5 [51]. CodeT5 is trained
with four pre-training tasks, including Masked Span Prediction
(MSP) task, Identifier Tagging (IT), Masked Identifier Predic-
tion (MIP), and Bimodal Dual Generation (BDG). Different
from CodeBERT, CodeT5 has a pre-trained decoder.
UniXcoder [52] is a unified cross-modal pre-trained model
for programming language. It is based on a multi-layer Trans-
former and follows Dong et al. [53] to use mask attention
matrices with prefix adapters to control the access to con-
text for each token. It is trained with four tasks, including
MLM (Masked Language Modeling), ULM (Unidirectional
Language Modeling), DNS (Denoising Objective DeNoiSing),
and CFRL (Code Fragment Representation Learning).
It should be noted that, strictly speaking, CodeBERT, CodeT5,
and UniXcoder are three pre-trained models for source code,
not code comment generation techniques. All of them can
be used for multiple downstream software engineering tasks
(such as code search, code clone detection, and code comment
generation) by fine-tuning them on the corresponding down-
stream task datasets. In this paper, we fine-tune the pre-trained
CodeBERT, CodeT5, and UniXcoder on the code comment
generation task on the CSN dataset.
In addition to the DL-based abstractive methods introduced
above, we also conduct experiments on the following two
extractive methods as baselines.
TR-based [7] is an extractive method based on text retrieval
(TR). As described in [4], TR-based methods generate com-
ments through the following two processes: (1) Extract the
text from the code snippet and convert it into a corpus.
(2) Determine the most relevant terms for the given code
snippet in the corpus and incorporate them in the comment.
In process (2), various TR techniques can be integrated,
such as Vector Space Model (VSM) [54], Latent Semantic
Analysis (LSA) [26], Hierarchical Pachinko Allocation Model
(hPAM) [55], to generate code comments. In this paper, we
directly use the top-5 key tokens extracted through LSA
introduced in Section 4-B1 as the TR-based summary.
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TABLE II: Overall performance of ICS and baselines.

1
Technique

Go Java JavaScript PHP Python Ruby
2 B M R B M R B M R B M R B M R B M R
3 LSTM 17.8 15.1 35.6 12.2 10.1 24.6 10.4 6.2 17.2 19.5 12.2 29.8 13.9 9.1 23.3 9.4 5.3 16.3
4 Transformer 19.8 16.2 38.4 15.3 11.8 30.6 11.2 7.4 20.5 21.5 13.9 34.2 15.8 10.6 31.3 10.3 6.4 18.3
5 CodeBERT 21.1 17.5 43.6 18.0 12.4 35.5 13.3 8.7 24.3 24.6 15.3 39.4 18.7 12.4 34.8 11.2 7.1 20.6
6 CodeT5 22.1 18.5 44.8 20.4 14.5 38.1 15.8 11.2 28.9 25.9 18.0 43.0 20.0 15.1 37.8 14.9 10.8 27.9
7 UniXcoder 19.2 14.8 38.9 20.1 13.4 36.7 15.6 10.0 26.9 26.2 16.5 41.2 19.9 13.5 36.8 15.0 9.7 26.8

8 TR-based 5.1 4.1 9.3 7.4 5.1 10.2 6.1 4.2 8.4 11.0 6.8 12.7 5.8 3.9 7.6 6.3 4.1 8.5
9 EX-based 21.6 18.9 43.6 19.8 14.6 37.5 14.9 10.5 27.7 24.7 17.2 41.1 18.6 13.6 35.5 14.9 10.4 27.9

10 ICS 23.4 20.4 46.9 20.9 15.2 39.1 15.9 11.4 29.1 26.2 18.1 43.7 20.4 15.1 38.6 15.2 11.1 28.7
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Figure 4: Distributions of Metrics’ Scores
of in language Go

Extractor-based (Ex-based, for short) is an extractive method
implemented through our extractor. In this approach, we gen-
erate summaries by directly feeding the important statements
extracted by the extractor to CodeT5.

5.2 Experimental Results

5.2.1 RQ1: ICS vs. Baselines

Table II shows the performance of our ICS and baselines
in BLEU (B), METEOR (M), and ROUGE-L (R). Rows
3–7 of Table II indicate that CodeT5 overall outperforms
UniXcoder and previous baselines across all six languages of
the CSN dataset, based on all three metrics. Consequently,
in the rest of our paper, we mainly focus on comparing ICS
with CodeT5. Rows 8–9 show the results of the two extractive
methods, i.e., TR-based and Ex-based. It is observed that TR-
based performs significantly worse than Ex-based. In general,
the best abstractive method CodeT5 outperforms the best
extractive method Ex-based overall. The last row of Table II
displays the results of our ICS. We observed that ICS is better
than the best baseline CodeT5 overall, with particular strength
on the Go dataset.
We further analyze the distribution of the metric scores of
CodeT5 and ICS on the test samples of the Go dataset, and
the statistical results are shown in Figure 4. In Figure 4, ‘+’
denotes the mean, which is the value filled in Table II. It can
be seen that the first, median, and third quartiles associated
with ICS are better than those associated with CodeT5. To test
whether there is a statistically significant difference between
the two techniques, we perform the paired Wilcoxon-Mann-
Whitney signed-rank test at a significance level of 5%, fol-
lowing previously reported guidelines for inferential statistical
analysis involving randomized algorithms [56]. In Figure 4,
‘*’ (0.01 < p < 0.05), ‘**’ (0.001 < p < 0.01), ‘***’
(0.0001 < p < 0.001), and ‘****’ (p < 0, 0001) represent
the differences between the two groups are Significant, Very
significant, Extremely significant, and Extremely significant,
respectively. Plus, ‘ns’ (p ≥ 0.05) means Not significant. From
the figure, it is observed that all p-values between ICS and
CodeT5 are smaller than the significant threshold value of
0.05. Based on this, combining the results in Table II and
Figure 4, it can be concluded that the performance of ICS is
significantly better than CodeT5 on the Go dataset.

TABLE III: Results of human evaluation. The values in parentheses
represent standard deviations.

Dataset Metrics UniXcoder CodeT5 ICS

Java

Similarity 2.63 (0.96) 2.79 (0.94) 2.85 (0.90)
Naturalness 3.36 (0.78) 3.36 (0.79) 3.40 (0.73)
Informativeness 2.61 (1.02) 2.79 (1.07) 2.87 (1.09)
Relevance 2.89 (0.99) 3.04 (0.97) 3.12 (0.97)

Average 2.87 2.99 3.07

Python

Similarity 2.48 (0.98) 2.64 (0.89) 2.84 (0.71)
Naturalness 3.21 (0.82) 3.32 (0.72) 3.49 (0.77)
Informativeness 2.35 (1.00) 2.72 (0.95) 2.88 (0.75)
Relevance 2.55 (1.00) 2.87 (0.88) 3.0 (0.80)

Average 2.65 2.89 3.05

5.2.2 RQ2: Human Evaluation
Many works [9], [57], [58], [44], [59], [60] have demon-
strated that automatic evaluation metrics (BLEU, METEOR,
and ROUGE-L) primarily calculate the textual similarity
rather than the semantic similarity between reference com-
ments and generated comments. Hence, following the previous
works [21], [57], [58], [44], we perform a human evaluation
to assess the comments generated by the baselines UniXcoder,
CodeT5, and our ICS. Specially, we invite 6 volunteers with
over 3 years of experience in software development and strong
English proficiency to carry out the evaluation. Each volunteer
is requested to rate the generated comments on four aspects
using a scale from 0 to 4 (higher score indicating better
performance): similarity (similarity between generated and ref-
erence comments), naturalness (grammatical correctness and
fluency), informativeness (amount of content preserved from
input code snippets in the generated comments, disregarding
fluency), and relevance (how well the generated comments
match the input code snippets). We randomly select 50 code
snippets, 25 each from the Java dataset and the Python dataset
sourced from the CSN dataset, along with their corresponding
comments generated by UniXcoder, CodeT5, and our ICS,
as well as the reference comments (i.e., ground-truth). We
divide the 50 samples into two groups, each containing 25
samples. To ensure fairness and reduce volunteer workload,
each volunteer evaluates only one group of samples randomly.
Each comment is evaluated by 3 volunteers, and the final score
is calculated as the average of their individual assessments.
The results of the human evaluation are shown in Table III.
From Table III, it reveals that overall our ICS consistently
outperforms UniXcoder and CodeT5 in all four aspects. On
the Java dataset, compared with UniXcoder and CodeT5,
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TABLE IV: Influence of Integration Ways on ICS

Integration Way Java Python
B M R B M R

[eAb; eEx] 20.86 15.22 39.10 20.4067 15.13 38.56
[eEx; eAb] 20.51 15.46 39.15 20.4071 15.15 38.57
p-value ns ** ns ns ns ns

TABLE V: Influence of the Number of Key Tokens on ICS

Number of Key Tokens Java Python
B M R B M R

3 20.56 15.72 39.25 20.23 14.98 38.03
5 20.86 15.22 39.10 20.41 15.13 38.56
7 20.69 15.09 38.88 20.11 14.92 38.10
9 20.70 15.58 39.38 20.17 14.9 38.05

p-value **** **** ns **** **** ****

ICS shows an average improvement of 6.97% and 2.68% in
four aspects, respectively. While on the Python dataset, ICS
improves on average by 15.09% and 5.54%, respectively.

5.2.3 RQ3: Influence of Integration Ways on ICS
We also conduct an experiment to investigate the influence of
the integration ways (i.e., [eAb; eEx] and [eEx; eAb].) on the
performance of ICS. The experimental results are shown in
Table IV. From rows 3-4 of Table IV, it is observed that except
for the BLEU metric on the Java dataset, [eEx; eAb] is slightly
better than [eAb; eEx]. For each metric, we further perform the
paired Wilcoxon-Mann-Whitney signed-rank test on all scores
of both integration ways at a significance level of 5%. The
results are listed in the last row of Table IV, where the symbol
”*” has the same meaning as that in Figure 4. For example, in
the B column indicates that there is no significant difference
between [eAb; eEx] and [eEx; eAb] in terms of the BLEU score
(i.e., p-value > 0.05). From the last row of Table IV, it is
observed that except for the METEOR metric on the Java
dataset, there is no significant difference between [eEx; eAb]
and [eAb; eEx]. Based on the above observations, it can be
concluded that the integration way has less influence on the
performance of ICS.

5.2.4 RQ4: Influence of the Number of Key Tokens on ICS
As described in Section 4-B1, key tokens decide the selection
of important statements, directly impacting the extractor’s
performance. Therefore, the quantity of key tokens also affects
the quality of the selected important statements. Specifically,
a smaller number of key tokens will result in fewer important
statements being identified, possibly omitting certain factual
details. Conversely, more key tokens will result in a larger
number of important statements, where there may exist re-
dundant information. Accordingly, we conduct an experiment
on the Java and Python datasets to investigate the influence of
the number of key tokens on the performance of ICS, setting
it to 3, 5, 7, and 9. The results are shown in Table V.
From rows 3–6 of Table V, we note that 5 key tokens yield the
best scores, with the exception of the METEOR and ROUGE-
L metrics on the Java dataset. Furthermore, we conduct the
Friedman test at a significance level of 5% to examine the
statistical significance of the results. The results are presented

in the final row of Table V, and the symbol ‘*’ has the same
meaning as that in Figure 4. The analysis reveals that all
scores, other than the ROUGE-L metric on the Java dataset,
exhibit statistically significant differences. We further perform
Dunn’s multiple comparisons test [61] on these scores to
identify the groups with significant differences. It turns out
that on the BLEU metric of the Java dataset and all the
metrics of the Python dataset, the results of 5 key tokens
significantly differ from other key token numbers. Based on
the experimental results, setting the number of key tokens to
5 is deemed reasonable as it performs better overall.

5.2.5 RQ5: Robustness of ICS
To study the robustness of ICS, we analyze two parameters
(i.e., code length and comment length) that may affect the
embedding representations of code snippets and comments.
Figure 5 shows the length distributions of code snippets and
comments on the test sets of the Java and Python datasets.
Code length is measured by the number of lines in a code
snippet. Comment length is determined by the number of
words in a comment. From Figures 5(a) and 5(c), it is observed
that most code snippets consist of less than 50 lines. Similarly,
Figures 5(b) and 5(d) show that the majority of comments are
less than 30 words.
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Figure 5: Length distribution of samples in test sets

Figure 6 presents the performance of ICS on different evalua-
tion metrics with varying parameters. As shown in Figures 6(a)
and 6(c), ICS can maintain stable performance even with the
increase of the code snippet length. Figures 6(b) and 6(d)
reveal that, with the increase of comment length, ICS also
maintains stable performance in terms of BLUE, but the scores
of METEOR and ROUGE-L decrease steadily. We further
assess the performance of CodeT5 on varying the comment
length of the Java and Python datasets, and the results,
shown in Figure 7, demonstrate similar behavior to ICS.
It indicates that generating high-quality comments becomes
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(a) Robustness on varying Ja codes (b) Robustness on varying Ja com-
ments

(c) Robustness on varying Py codes (d) Robustness on varying Py com-
ments

Figure 6: Effect of code snippet and comment length on the robust-
ness of ICS. Ja: Java; Py: Python.

(a) Robustness on varying Ja com-
ments

(b) Robustness on varying Py com-
ments

Figure 7: Robustness of CodeT5 on varying comments

more challenging as the expected length of the generated
comment increases. Overall, the results provide evidence for
the robustness of our ICS approach.

5.3 Case Study on Go Code Comment Generation

This section provides a case study aiming to compare the
generated comments of ICS with the state-of-the-art CodeT5
and to demonstrate the effectiveness of our ICS approach.
We take the code snippet s2 in Figure 8 as an example
and apply both CodeT5 and our ICS to generate comments
for comparison. The reference comment is displayed in the
first line of Figure 8(c). The comments generated by CodeT5
and ICS for s2 are shown in the second and third lines,
respectively. From the figure, we observe that, compared to
the reference comment, 1) the comment generated by CodeT5
only covers the red and blue part but omits a crucial factual
detail, namely “to the watcher”; 2) although different tenses
are used, the comment generated by our ICS successfully
covers all three parts and remains semantically equivalent. It

is worth noting that, as depicted in Figure 8(b), our extrac-
tor successfully extracts the important statement containing
the factual detail “watcher” appears. In summary, our ICS
outperforms CodeT5 in terms of the semantic completeness
of the generated comments. This success can be attributed
to the integration of the extractor and abstracter, enabling the
successful generation of the text ”to the watcher.” Based on the
above, we can conclude that our ICS is a competitive technique
for the Go code comment generation task. Additional cases can
be viewed in the publicly reproducible artifact [15].

func (w *Watcher) Add(stream *Stream) {
coal.Init(stream.Model)
if w.streams[stream.Name()] != nil {

...
}
w.streams[stream.Name()] = stream
coal.OpenStream(stream.Store, steam.Model, nil,

func(e coal.Event, id bson.ObjectId, m coal.Model, token []byte) {
if stream.SoftDelete && e == coal.Deleted {

return
}
if stream.SoftDelete && e == coal.Updated {

...
}
evt := &Event{Type: e, ID: id, Model: m, Stream: stream,}
w.manager.broadcast(evt)

},
...

}

Reference Comment: Add will add a stream to the watcher.
CodeT5: Add adds a new stream.
ICS: Add adds a stream to the watcher.

func (w *Watcher) Add(stream *Stream) {

(b) Important Statements Selected by Our Extractor

(a) A Code Snippet 𝑠𝑠! from the Test Set of the CSN Dataset

(c) Comments Generated by Different Techniques

Figure 8: Case study on Go code comment generation

6. RELATED WORK

Code comment generation has consistently been one of the
hottest research topics in software engineering. The majority
of early code comment generation techniques [7], [4], [62]
are extractive methods. These methods involve extracting a
subset of the statements and keywords from the code, and
then incorporating information into the generated comment.
Typically, text retrieval (TR) techniques (e.g., Vector Space
Model [54], Latent Semantic Indexing [26], and Hierarchical
PAM [55]) are utilized to determine the most important n
terms. Acknowledging that the quality of the comments gen-
erated by extractive methods relies heavily on the extracting
process, Paige Rodeghero et al. [63] conducted an eye-tracking
study of programmers and proposed a tool for selecting key-
words based on the study’s findings. The extractive methods
depend on high-quality identifier names and method signatures
from the source code. However, these techniques may fail to
generate accurate comments if the source code contains poorly
named identifiers or method namess [64].
Currently, DL-based (abstractive) code comment generation
techniques are being continuously proposed. Abstractive meth-
ods, which combine Seq2Seq models trained on large-scale
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code-comment datasets, can generate words that do not ex-
plicitly appear in the given code snippet, thereby overcoming
the limitations of extractive methods. Srinivasan Iyer et al. [9]
introduce the first fully abstractive method for generating high-
level summaries of code snippets. Their results demonstrate
that abstractive methods surpass extractive methods signifi-
cantly in terms of the naturalness of generated summaries.
Code representation plays a pivotal role in abstractive meth-
ods. To produce semantic-preserving code representations,
researchers have explored various aspects of the code snippet,
including tokens [9], abstract syntactic trees (ASTs) [18], con-
trol flows [65], code property graph [66]. In addition, existing
abstractive methods have experimented various networks, e.g.,
LSTM [9], Bi-LSTM [44], GRU [57], Transformer [11] and
GNN [67]. Despite the great potential of DL-based abstractive
methods in generating human-like summaries, we observed
that the generated summaries often lack important factual
details. Our ICS combines both extractive and abstractive
techniques. The extractive module of ICS applies LSA to
calculate the top-5 keywords for each code snippet and extract
important statements. Unlike existing abstractive methods,
our abstracter receives both of the entire code snippet and
important statements as input and processes them.

7. CONCLUSION

This paper provides an extractive-and-abstractive method to
enhance code comment generation, namely ICS. The extractor
utilizes LSA to identify crucial statements from the code snip-
pet. The important statements comprise essential factual details
that should be incorporated into the final generated comment.
The abstracter of ICS takes in both the important statements
extracted by the extractor and the entire code snippet as
input, enabling it to generate human-written-like comments.
The experimental results on the CSN dataset demonstrate that
ICS is effective in code comment generation and outperforms
the state-of-the-art. Furthermore, extensive human evaluations
indicate that the comments generated by ICS exhibit superior
informativeness and relevance to given code snippets.
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