
Machine Learning for Actionable Warning Identification: A

Comprehensive Survey

XIUTING GE, Nanjing University, Nanjing, China

CHUNRONG FANG∗, Nanjing University, Nanjing, China

XUANYE LI, Nanjing University, Nanjing, China

WEISONG SUN, Nanyang Technological University, Singapore, Singapore

DAOYUAN WU, The Hong Kong University of Science and Technology, Hong Kong, China

JUAN ZHAI, University of Massachusetts Amherst, Amherst, United States

SHANG-WEI LIN, School of Computer Science and Engineering, Nanyang Technological University, Singapore,

Singapore

ZHIHONG ZHAO, Nanjing University, Nanjing, China

YANG LIU, Nanyang Technological University, Singapore, Singapore

ZHENYU CHEN∗, Nanjing University, Nanjing, China

Actionable Warning Identiication (AWI) plays a crucial role in improving the usability of static code analyzers. With recent

advances in Machine Learning (ML), various approaches have been proposed to incorporate ML techniques into AWI. These

ML-based AWI approaches, beneiting from ML’s strong ability to learn subtle and previously unseen patterns from historical

data, have demonstrated superior performance. However, a comprehensive overview of these approaches is missing, which

could hinder researchers and practitioners from understanding the current process and discovering potential for future

improvement in the ML-based AWI community. In this paper, we systematically review the state-of-the-art ML-based AWI

approaches. First, we employ a meticulous survey methodology and gather 51 primary studies from 2000/01/01 to 2023/09/01.

Then, we outline a typical ML-based AWI worklow, including warning dataset preparation, preprocessing, AWI model

construction, and evaluation stages. In such a worklow, we categorize ML-based AWI approaches based on the warning

output format. Besides, we analyze the key techniques used in each stage, along with their strengths, weaknesses, and

distribution. Finally, we provide practical research directions for future ML-based AWI approaches, focusing on aspects like

data improvement (e.g., enhancing the warning labeling strategy) and model exploration (e.g., exploring large language

models for AWI).

∗Chunrong Fang and Zhenyu Chen are the corresponding authors.

Authors’ Contact Information: Xiuting Ge, Nanjing University, Nanjing, China; e-mail: dg20320002@smail.nju.edu.cn; Chunrong Fang,

Nanjing University, Nanjing, China; e-mail: fangchunrong@nju.edu.cn; Xuanye Li, Nanjing University, Nanjing, China; e-mail: 1525135604@

qq.com; Weisong Sun, Nanyang Technological University, Singapore, Singapore; e-mail: weisong.sun@ntu.edu.sg; Daoyuan Wu, The Hong

Kong University of Science and Technology, Hong Kong, China; e-mail: daoyuan.wu@ntu.edu.sg; Juan Zhai, University of Massachusetts

Amherst, Amherst, United States; e-mail: juanzhai@umass.edu; Shang-Wei Lin, School of Computer Science and Engineering, Nanyang

Technological University, Singapore, Singapore; e-mail: shang-wei.lin@ntu.edu.sg; Zhihong Zhao, Nanjing University, Nanjing, China; e-mail:

zhaozhih@nju.edu.cn; Yang Liu, Nanyang Technological University, Singapore, Singapore, Singapore; e-mail: yangliu@ntu.edu.sg; Zhenyu

Chen, Nanjing University, Nanjing, China; e-mail: zychen@nju.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1557-7341/2024/9-ART

https://doi.org/10.1145/3696352

ACM Comput. Surv.

HTTPS://ORCID.ORG/0000-0003-3683-7374
HTTPS://ORCID.ORG/0000-0002-9930-7111
HTTPS://ORCID.ORG/0009-0008-4580-2046
HTTPS://ORCID.ORG/0000-0001-9236-8264
HTTPS://ORCID.ORG/0000-0002-3752-0718
HTTPS://ORCID.ORG/0000-0001-5017-8016
HTTPS://ORCID.ORG/0000-0002-9726-3434
HTTPS://ORCID.ORG/0009-0009-8850-5583
HTTPS://ORCID.ORG/0000-0001-7300-9215
HTTPS://ORCID.ORG/0000-0002-9592-7022
https://orcid.org/0000-0003-3683-7374
https://orcid.org/0000-0002-9930-7111
https://orcid.org/0009-0008-4580-2046
https://orcid.org/0000-0001-9236-8264
https://orcid.org/0000-0002-3752-0718
https://orcid.org/0000-0001-5017-8016
https://orcid.org/0000-0002-9726-3434
https://orcid.org/0009-0009-8850-5583
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0002-9592-7022
https://orcid.org/0000-0002-9592-7022
https://doi.org/10.1145/3696352
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696352&domain=pdf&date_stamp=2024-09-19

2 • X. Ge et al.

CCS Concepts: · General and reference → Surveys and overviews; · Software and its engineering → Software

veriication and validation; · Computing methodologies→ Machine learning.

Additional Key Words and Phrases: Machine learning, static analysis warnings, actionable warning identiication, literature

review

1 Introduction

Static Code Analyzers (SCAs) can automatically detect defects without executing the program and have been
proven to be important and efective in software quality assurance [74]. However, SCAs often generate an
overwhelming number of warnings, most of which are unactionable (e.g., false positives) [57, 76, 79]. Statistics
show that there are on average 40 warnings per thousand lines of source code [95] and 35%∼91% of warnings
from SCAs are unactionable [28]. Manually partitioning warnings into actionable and unactionable ones is
time-consuming [68] and error-prone [39]. As such, massive unactionable warnings and the cost of manual
inspection pose signiicant obstacles to the practical usage of SCAs [102].
There has been extensive research on improving the usability of SCAs. Various approaches [4] have been

proposed to increase the precision of SCAs from the vendor’s perspective, thereby minimizing false positives.
However, due to the undecidable nature of program behaviors, it is inevitable that SCAs report false positives [84].
Therefore, an alternative approach is Actionable Warning Identiication (AWI) [24, 28, 66, 67], which is proposed
from the user’s perspective. These AWI approaches use diferent techniques (e.g., clustering, ranking, pruning,
automated elimination of false positives, static and dynamic combination analysis, or simplifying manual in-
spection) [67] to postprocess warnings reported by SCAs, thereby classifying or ranking actionable warnings.
Machine Learning (ML)-based AWI approaches are notably popular, which train a model with historical warnings
and use it to identify actionable warnings on new ones [18, 107]. Due to ML’s powerful ability to learn subtle
and previously unseen patterns from historical data, ML-based AWI approaches have demonstrated superior
performance in enhancing the usability of SCAs [47, 113].

Over the past few years, the substantial progress in the ML-based AWI community has attracted considerable
attention from researchers and practitioners. Currently, several existing AWI literature reviews have been
proposed to enumerate [28] or categorize [24, 66, 67] speciic AWI approaches. Diferent from the existing
reviews that mainly focus on postprocessing techniques of warnings, ML-based AWI approaches require unique
characteristics (i.e., the heavy reliance on warning datasets, warning features, and model selection) to identify
actionable warnings. However, the existing reviews overlook such unique characteristics, which could present
various challenges in developing new and advanced ML-based AWI approaches. For example, warning datasets
highly depend on SCAs employing diferent techniques and projects using various development languages,
which could afect the warning feature extraction ways. Also, diferent warning labeling strategies (e.g., closed
warning-based heuristic [102]) could impact the quality of warning datasets and thus afect the ML-based AWI
performance. Moreover, diferent categories of features (e.g., content-based or sequential) necessitate selecting
appropriate models for warning representation, leading to varying AWI performance. These diverse design
options could hinder researchers and practitioners from further advancements in the ML-based AWI research
direction.
To fulill the above gaps, we are the irst to conduct a comprehensive survey by retrospectively examining

the current state-of-the-art ML-based AWI studies after years of development. Through analyzing these studies,
we irst outline a typical ML-based AWI worklow, involving warning dataset preparation, warning dataset
preprocessing, AWI model construction, and AWI model evaluation stages. In such a worklow, we categorize
ML-based AWI approaches based on the warning output format. Besides, we detail the techniques used in each
stage of such a worklow by discussing their strengths and weaknesses and presenting their distribution across
diferent categories of ML-based AWI approaches. Finally, we provide several practical research directions for the

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 3

Table 1. Search keywords.

No. Goal Keyword

1 machine learning 1) machine learning, 2) deep learning

2 static analysis 1) static analysis, 2) automated code analysis, 3) source code analysis

3 warning 1) warning, 2) alert, 3) alarm, 4) violation

4 identiication 1) identifying, 2) elimination, 3) reduction, 4) pruning, 5) classiication, 6)
prioritization, 7) ranking, 8) reviewing, 9) inspection, 10) simpliication

ML-based AWI community. In summary, we believe that our survey can help researchers and practitioners gain a
comprehensive understanding and foster progress toward advanced practices in the ML-based AWI ield. Our
survey makes the following major contributions:

• Survey methodology.We employ a meticulous survey methodology across ive digital libraries from 2000
to 2023 to gather 51 primary ML-based AWI studies.

• ML-based AWI. We outline a typical worklow of applying ML techniques to AWI approaches, which
involves warning dataset preparation, warning dataset preprocessing, AWI model construction, and AWI
model evaluation.

• Elaborate study. We conduct a detailed analysis of the typical ML-based AWI worklow. Such an analysis
includes the categorization of ML-based AWI approaches based on the warning output format as well as
the discussion of key techniques with associated strengths, weaknesses, and distribution across diferent
categories of ML-based AWI approaches.

• Practical directions.We highlight nine practical research directions for future ML-based AWI from the
perspectives of data improvement and model exploration.

• Available artifacts.We share primary ML-based AWI studies along with associated artifacts in a public
repository [108], which facilitates following and extending our survey.

2 Survey Methodology

Guided by the work of Budgen et al. [7], we collect the relevant ML-based AWI studies from the population
via a well-designed survey methodology. Such a methodology includes data sources, search keywords, selection
criteria, selection procedure of primary studies, and data extraction and synthesis. Further, we perform the trend
observations based on the primary studies.

Data sources. We search ive popular digital libraries, including (1) IEEE Xplore, (2) ACM, (3) ScienceDirect,
(4) Springer Link, and (5) Wiley. These libraries archive various and leading journals and conferences from the
software engineering domain [34].
Search keywords. Based on the work of Muske et al. [67], we extend the search keywords to identify the

relevant ML-based AWI studies from every digital library. Table 1 shows the search keywords. Such search
keywords involve four goals (i.e., ML, static analysis, warning, and identiication) with a total of 19 keywords.
To search ML-based AWI studies, the four goals are required to be incorporated to create a complete search
string. Speciically, for each goal, the logical operator łANDž is used. For each keyword in each goal, the logical
operator łORž is used. With these search strings, we search the above ive digital libraries by performing the
keyword-based matching in the metadata (i.e., title, abstract, and keywords) of the study [40]. The search scope
in each digital library is from 2000/01/01∼2023/09/01. Such a search scope is considered because ML techniques
gradually gain attention in the AWI community [28].
Selection criteria. The selection criteria are used to further determine the relevant ML-based AWI studies

from the search keywords-based results. Such criteria are initially obtained by steering 10 arbitrarily selected

ACM Comput. Surv.

https://ieeexplore.ieee.org/
https://dl.acm.org/
https://www.sciencedirect.com/
https://link.springer.com/
https://onlinelibrary.wiley.com/

4 • X. Ge et al.

Table 2. Selection results of primary studies.

Digital library No. of studies from the search

keywords-based results

No. of studies after

the selection criteria

IEEE Xplore 85 25

ACM 913 13

ScienceDirect 35 4

Springer Link 70 5

Wiley 150 0

All 1253 47

Removing 15 duplicate studies 32

Snowballing on 32 studies 19

A total of studies 51

studies and are reined based on the pilot search results. Speciically, there are three inclusion criteria, including (1)
studies that incorporate ML techniques into AWI; (2) studies that record the contextual items, including datasets,
features, ML models, and evaluation details; and (3) studies that locate from 2000/01/01∼2023/09/01. There are
seven exclusion criteria, including (1) studies that identify warnings via non-ML techniques, e.g., [37, 55, 103]; (2)
studies that improve the precision of SCAs, e.g., [96]; (3) studies that evaluate the precision of SCAs, e.g., [74];
(4) studies that track the software quality evolution or SCA rule coniguration by investigating warnings, e.g.,
[1, 95]; (5) studies that identify vulnerable/malicious behaviors via ML techniques and static analysis, e.g., [77];
(6) studies that recommend SCAs to diferent projects, e.g., [71]; and (7) studies that are not peer-reviewed, e.g.,
[30]. When both the metadata and full text of a study satisfy inclusion and exclusion criteria, and this study is
determined to be relevant.
Selection procedure of primary studies. Table 2 shows the detailed selection results of ML-based AWI

studies. Speciically, the search keywords-based results contain 1253 studies. Then, after applying the selection
criteria for each study, there involve 47 studies. After that, we rely on the titles of studies to remove 15 duplicate
studies and determine 32 distinct studies. However, the search keywords in Table 1 may be incomplete due
to the terminological diferences among studies. To alleviate this problem, we conduct the snowballing [106],
including backward and forward snowballing. Given a good start set, the snowballing can help more efectively
and eiciently locate high-quality studies in obscure locations [23]. As such, we take 32 distinct studies as a start
set, conduct the snowballing on this start set, and use the selection criteria to search 19 other relevant studies.
Finally, we determine 51 primary ML-based AWI studies. Particularly, in the selection procedure of studies, we
conduct the 2-pass review. That is, every study goes through two authors (i.e., the irst and third authors in
our survey). When there is a disagreement on the inclusion or exclusion of a study, the two authors make the
discussion and resolve the diference.

Data extraction and synthesis. To ensure data extraction consistency among primary studies, we formulate
a uniied data extraction form based on a pilot study. To ensure the data extraction correctness in each primary
study, the extracted data is checked by two authors. Speciically, the irst author of our survey extracts the data
from all primary studies. The extracted data is assigned and checked by the third author of our survey. If there
is disagreement on the extracted data, the two authors discuss and reach an agreement. In all, 22 data items
are extracted for each primary study. Due to the limited space, the detailed data items are shown in a public
repository [108]. After that, the extracted data is synthesized via quantitative and qualitative analysis, which can
assist us in answering research questions in Section 4.

Trend observations. Fig. 1 shows the statistical distribution of 51 primary studies. The results show that most
studies are from the conference, which accounts for 78% (i.e., 40) of 51 primary studies. The remaining studies

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 5

Fig. 1. Distribution of primary studies. The blue (yellow) dashed lines represent the trends in the number of journal
(conference) studies over years.

(i.e., 11) are from the journal. Besides, the number of studies by year has steadily increased, which indicates that
the ML-based AWI community has received more and more attention from researchers and practitioners in recent
years.

3 Background and Related Work

Static analysis warnings. To help developers quickly and easily locate software defects, warnings reported
by SCAs generally involve characteristics with the category, severity, message, and location. Of these, the
warning location consists of the class and method information containing this warning and the warning line
numbers. Due to the limited space, a warning example from SpotBugs is shown in a public repository [108].
Based on whether warnings are ignored by developers, warnings can be divided into actionable and unactionable
ones [57, 102, 116]. Such a classiication focuses on emphasizing the importance of developer perception [87].
Speciically, an actionable warning is acted on and ixed by developers. By contrast, an unactionable warning
is ignored by developers due to many possible reasons (e.g., the over-approximation behaviors [84] and bugs
[101, 119] of SCAs). Formally, given a set of commits � = {�1, ..., �� , ..., ��} in a project (c� is the latest commit), a
SCA is used to scan the source code of �� and a set of warnings�� = {��1, ...,�� � , ...,���} (m is the number of
warnings in ��) is obtained. If�� � disappears via the warning-related source code change in any commit from ��+1
to �� ,�� � is denoted as an actionable warning. If�� � persists from ��+1 to �� ,�� � is denoted as an unactionable
warning.

AWI. Given a set of warnings reported by a SCA, AWI [67, 87] is to identify actionable warnings from
all reported warnings, thereby (1) reducing the number of warnings before reporting them to SCA users; (2)
prioritizing warnings that are more likely to be actionable ahead of other warnings; and (3) simplifying manual
inspection efort of warnings.
ML-based AWI. ML-based AWI is to extract features from historical warnings, learn a model on the ex-

tracted features, and use this model to identify actionable warnings from targeted warnings. ML-based AWI
is often formalized into a supervised learning-based problem. Given a set of historical warnings (�,�) =

{(�1, �1), ..., (�� , ��), ..., (��, ��)}, (�� , ��) (1 ≤ � ≤ �) is a historical warning. As for�� ∈ � = {���,1, ...,� ��, � , ...,� ��,�},
���, � (1 ≤ � ≤ �) is a warning feature. As for �� ∈ � = {0, 1}, �� is the warning label of �� , where �� = 0/1
denotes that �� is an unactionable/actionable warning respectively. ML-based AWI relies on historical warnings
(�,�) to learn a decision function Y = f(X), aiming to describe the mapping relations between warning features
and warning labels. When given a targeted warning X������ , the learned decision function is used to predict a
corresponding output y������ . In general, such an output format could be a binary or continuous value.
Existing literature reviews. Currently, there have been four related AWI literature reviews [24, 28, 66, 67].

Table 3 shows the diferences between our survey and the four reviews. First, our survey spans a longer period
of search scope (i.e., about 23 years from 2000/01/01 to 2023/09/01) compared to the four reviews. Such an
enlarged search scope helps our survey increase about 20 new studies that have never appeared in the four
reviews, which can facilitate researchers and practitioners tracking and refreshing the current state-of-the-art

ACM Comput. Surv.

6 • X. Ge et al.

Table 3. Comparison of diferences between the existing literature reviews and our survey.

Study
Search

scope

Appr-

oach

cate-

gory

Warning dataset

preparation

Warning dataset

processing
AWI model construction

AWI model

evaluation
Guide-

lines

in ML-

based

AWI

Warning

dataset ac-

quisition

Warning

dataset

labeling

Warning

feature

category

Warning

feature

selec-

tion

Warning

dataset

rebalan-

cing

Model

category

in AWI

Learn-

ing

category

in AWI

AWI

model

struc-

ture

AWI

constru-

ction

scenario

Valida-

tion

strategy

in AWI

Perfor-

mance

measure

in AWI

[28] 1998-2009 ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗

[67] 2002-2006 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[66] 2002-2020 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[24] 2003-2022 ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗

Ours 2000-2023 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ML-based AWI process. Second, our survey conducts a more comprehensive analysis of ML-based AWI. On the
one hand, unlike the four reviews that enumerate or categorize AWI approaches based on the postprocessing
techniques of warnings, our survey categorizes ML-based AWI approaches based on the warning output format.
Such an approach category can help researchers and practitioners gain a deeper understanding of how ML
techniques work for AWI. On the other hand, in each stage of the typical ML-based AWI worklow, our survey
analyzes the key techniques with associated strengths and weaknesses as well as exhibits the distribution of
these key techniques across diferent categories of ML-based AWI approaches. Such a detailed analysis can
provide researchers and practitioners with a thorough understanding of the ML-based AWI ield. Third, our
survey provides more targeted guidelines for the ML-based AWI ield. Based on the analysis results, our survey
highlights practical guidelines from the perspective of data improvement and model exploration when applying
ML techniques in AWI, which can assist researchers and practitioners in enhancing ML-based AWI approaches in
a targeted manner. Particularly, the goal between our survey and the review of Guo et al. [24] is diferent. Our
survey focuses on AWI, while the review of Guo et al. only centers on false positive mitigation. As shown in the
above warning classiication, AWI can embrace a more extensive research scope than false positive mitigation.
This indicates that the indings of our survey could be more practical and lexible than those of the review of Guo
et al.

4 Detailed Analysis of ML-based AWI

4.1 Typical ML-based AWI Workflow and Research uestions

In this section, we describe a typical ML-based AWI worklow and present the proposed Research Questions
(RQs) based on such a worklow.

Typical ML-based AWI worklow. By analyzing the primary studies, we outline a typical ML-based AWI
worklow. As shown in Fig. 2, this worklow mainly contains four stages, i.e., warning dataset preparation,
warning dataset preprocessing, AWI model construction, and AWI model evaluation. In particular, the irst and
second stages focus on the data part of ML-based AWI, and the third and fourth stages focus on the model part of
ML-based AWI.
(1) In the warning dataset preparation stage, given a set of projects and SCAs, the collected warnings with

associated labels are returned. This stage mainly contains warning dataset acquisition and labeling. The warning
dataset acquisition collects warnings from SCAs with various static analysis techniques and projects with
diferent development languages. The warning dataset labeling assigns labels for collected warnings. In general,
the well-prepared warnings are split into the training and test set.

(2) In the warning dataset preprocessing stage, the well-prepared warnings are preprocessed via diferent ways.
According to the existing ML-based AWI approaches [18, 47, 113, 115], the common ways to preprocess warnings
include warning feature extraction, warning feature selection, and warning dataset rebalancing. Speciically, the
warning feature extraction mines useful features from the well-prepared warnings. The warning feature selection

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 7

Data Vector Model

Warning dataset

preparation

Warning dataset

preprocessing

AWI model

construction
AWI model

evaluation

Data Model

Warning

dataset

labeling

Warning

dataset

acquisition

Warning

feature

extraction

Warning

dataset

rebalancing

Warning

feature

selection

AWI

model

training

Model

category

in AWI

AWI

model

structure

AWI

construction

scenario

Learning

category

in AWI

Performance

measure

in AWI

Validation

strategy

in AWI

RQ2: What are the

characteristics of warning

datasets used by ML-

based AWI approaches?

RQ3: What constitutes the

warning dataset preprocessing

stage of ML-based AWI

approaches?

RQ4: What model construction

techniques are used by ML-based

AWI approaches?

RQ5: How are ML-

based AWI approaches

evaluated?

RQ1: How do ML techniques work for AWI?

Typical ML-based AWI workflow

The proposed research questions based on the typical ML-based AWI workflow

Fig. 2. Typical ML-based AWI workflow and the proposed RQs based on such a workflow.

is to select the discriminative warning feature subset from the original warning features. The warning dataset
rebalancing is to alleviate the class imbalance in the well-prepared warnings. In general, for ML-based AWI
approaches, the warning feature extraction is a necessary step, while the remaining two ways are optional steps.

(3) In the AWI model construction stage, diferent ML techniques (e.g., Random Forest) are used to train an AWI
model based on the training set. Generally, this stage involves model category, learning category, AWI model
structure, AWI construction scenario, and AWI model training. The model category (e.g., deep learning) denotes
the category of ML techniques used for AWI. The learning category (e.g., supervised learning) represents how an
ML-based AWI model learns from the training set. The AWI model structure (e.g., the base structure) denotes how
to organize ML techniques to train an AWI model. The AWI construction scenario (e.g., within project) represents
the application scenario of an ML-based AWI model. The AWI model training is responsible for constructing an
optimal ML-based AWI model from the training set.
(4) In the AWI model evaluation stage, the performance of the well-constructed AWI model is evaluated on

the test set by setting the validation strategy and selecting the performance measure. The validation strategy
signiies how the well-prepared warnings are split into the training and test sets. The performance measure
shows how a well-constructed AWI model performs.
Research questions. Inspired by the typical ML-based AWI worklow, we propose ive Research Questions

(RQs) to analyze the existing ML-based AWI studies.

• RQ1: How do ML techniques work for AWI?

• RQ2: What are the characteristics of warning datasets used by ML-based AWI approaches?

• RQ3: What constitutes the warning dataset preprocessing stage of ML-based AWI approaches?

• RQ4: What model construction techniques are used by ML-based AWI approaches?

• RQ5: How are ML-based AWI approaches evaluated?

As described in Fig. 2, RQ1 analyzes the primary studies from a holistic perspective of ML-based AWI, and
RQ2 ∼ RQ5 analyze the primary studies from an atomistic perspective of ML-based AWI. Speciically, RQ1
aims to classify ML-based AWI approaches based on the warning output format, thereby providing an overall
understanding of ML techniques’ application in AWI. RQ2 ∼ RQ5 correspond with the four stages of such a
worklow, which aim to provide insights for the key techniques used in the warning dataset preparation, warning
dataset preprocessing, AWI model construction, and AWI model evaluation, respectively.

ACM Comput. Surv.

8 • X. Ge et al.

4.2 RQ1: How do ML techniques work for AWI?

As shown in Section 3, given a targeted warning in the test set, the well-constructed ML-based AWI model in
the typical ML-based AWI worklow gives an output for this warning. Such an output format could be a binary
value, a continuous value, or both binary and continuous values. Based on the warning output format, ML-based
AWI approaches can be divided into classiication, ranking, and combination approaches. Further, we illustrate the
three categories of approaches along with their strengths and weaknesses, thereby understanding the application
of ML techniques in AWI.
Classiication approach. The classiication approach aims to learn an ML-based AWI classiier based on

historical warnings and use this classiier to classify targeted warnings into actionable and unactionable ones.
That is, given a targeted warning, the output of this classiier is a binary value, which indicates an actionable or
unactionable one. Subsequently, actionable warnings are shown to developers for inspection, while unactionable
warnings are pruned. Thus, the classiication approach can reduce the number of warnings for manual inspection.
However, since the pruned warnings are not guaranteed to be false positives, the classiication approach may
result in false negatives. In the primary studies, 31 studies [3, 5, 14, 15, 18, 27, 31, 32, 39, 41, 46, 47, 51, 62, 63, 78,
85, 93, 94, 102, 105, 107, 109, 110, 112ś114, 117, 118, 122, 123] fall into the classiication approach.
Ranking approach. The ranking approach learns an ML-based AWI sorter from historical warnings and

uses this sorter to prioritize targeted warnings. Instead of a binary value in the classiication approach, this
sorter outputs a continuous value for each targeted warning. This continuous value denotes the probability that
a targeted warning is actionable, and warnings with higher probabilities are ordered up in the list and can be
inspected by developers earlier. Thus, the ranking approach is generally considered a regression problem [42]. As
no warnings are pruned, the ranking approach does not cause false negatives. However, the number of warnings
is not reduced and all reported warnings are still required manual inspection. In the primary studies, 17 studies
[9, 33, 36, 44, 49, 50, 56, 61, 70, 76, 79, 80, 82, 83, 92, 98, 120] fall into the ranking approach.

Combination approach. The combination approach, involving three studies [26, 90, 115], combines classiica-
tion and ranking approaches to identify targeted warnings. Speciically, Yoon et al. [115] irst use the classiication
approach to classify warnings into actionable and unactionable ones, then prune unactionable warnings, and
inally use the ranking approach to prioritize the classiied actionable warnings. It indicates that this study inherits
the weaknesses of the classiication approach (i.e., causing false negatives) and the strengths of the ranking
approach (i.e., helping developers inspect earlier warnings that are more likely to be actionable). Two studies
[26, 90] give binary and continuous values to classify and prioritize targeted warnings. Due to simultaneously
displaying the warning label and warning probability, the two studies can provide more auxiliary information to
help developers inspect warnings in comparison to the classiication or ranking approach. Due to no warning
pruning, the two studies do not result in false negatives, while all reported warnings are still manually inspected.

Summary RQ1: Based on the warning output format, ML-based AWI approaches can be divided into
classiication, ranking, and combination approaches. Particularly, the classiication approach, covering nearly
61% of primary studies, is the most commonly used.

4.3 RQ2: What are the characteristics of warning datasets used by ML-based AWI approaches?

The warning dataset is a basic component in the ML-based AWI approach. Based on the typical ML-based AWI
worklow in Fig. 2, the warning dataset preparation mainly involves the warning dataset acquisition and labeling.
To reveal the warning dataset characteristics, we analyze warning dataset acquisition and labeling techniques
with associated strengths, weaknesses, and distribution across three categories of ML-based AWI approaches,
respectively.

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 9

Table 4. SCA details, including a SCA name with the correspondingly embedded link/reference, commonly supported
languages, the fact whether the project under test is required to be compilable before the usage of a SCA (Comp.), and
mapping studies of a SCA.

No. Name Languages Comp. Studies No. Name Languages Comp. Studies

1 FindBugs (16) Java Yes [18, 26, 27, 39, 41,
56, 79, 85, 94, 102,
105, 107, 109,
110, 112, 123]

15 PMD (1) Java No [56]

2 CppCheck (5) C/C++ No [14, 70, 82, 83, 98] 16 Jlint (1) Java Yes [56]

3 Sparrow (4) Java, C/C++ No [9, 33, 44, 115] 17 Lint4J (1) Java Yes [56]

4 Chord (3) Java Yes [61, 80, 120] 18 DTS[111] (1) C/C++ Yes [122]

5 FindSecBugs (3) Java Yes [46, 47, 113] 19 CBMC (1) C/C++ No [113]

6 Flawinders (2) C/C++ No [70, 98] 20 JBMC (1) Java Yes [113]

7 RATS (2) C/C++, PHP,
Python, Perl

No [70, 98] 21 Rosecheckers (1) C/C++ No [14]

8 WAP (2) PHP No [62, 76] 22 SonarQube (1) Java No [31]

9 Pixy (2) PHP No [62, 76] 23 SCATE (1) Java, C/C++ No [36]

10 Clang (2) C/C++ No [82, 83] 24 RIPS (1) PHP No [76]

11 Frama-C (2) C No [82, 83] 25 phpSAFE (1) PHP No [76]

12 Infer (2) Java, C/C++,
Object-C

No [41, 123] 26 WeVerca (1) PHP No [76]

13 MC[12] (2) C/C++ No [49, 50] 27 phpMiner[88] (1) PHP No [62]

14 Airac (2) C/C++ No [36, 114] 28 Anonymous (12) Java, C/C++,
Solidity,
JavaScript

N/A [5, 14, 15, 32, 51,
63, 78, 90, 92, 93,

117, 118]

4.3.1 Warning dataset acquisition. The warning dataset acquisition is to collect warnings by using SCAs to
automatically scan the source code of a project under test. Thus, the warning dataset acquisition involves the
SCA, the development language of the project, and the project source.
SCA. As shown in Table 4, the most commonly used SCA is FindBugs, followed by CppCheck and Sparrow.

In all, there are 27 known SCAs mentioned in the primary studies. In particular, 12 studies (e.g., [90, 117]) do
not disclose the names of SCAs because these SCAs are only commercially available. Also, some studies (e.g.,
[56, 82]) use multiple SCAs for the warning dataset acquisition. SCAs detect software defects by adopting various
techniques. For example, FindBugs relies on the pattern matching [97] to identify potentially dangerous source
code. CppCheck uses the low-sensitive analysis [43] to reveal undeined program behaviors. Sparrow is designed
to detect defects by using the abstract interpretation technique to approximate program behaviors [10]. SCAs
with various techniques could yield diferent results, especially for the warning category and amount. As such,
the warning dataset acquisition is greatly dependent on a speciic SCA.
Development language of the project. Table 5 shows that most projects focus on Java and C/C++, which

account for 49% (25/51) and 45% (23/51) of primary studies respectively. Also, a few projects, involving a total of
four studies, are PHP, JavaScript, and Solidity. In particular, the study [113] simultaneously pays attention to
Java and C/C++ projects. Combined with Table 4 and Table 5, it is observed that the development languages of
projects are closely related to SCAs. It indicates that diferent development languages of projects are related to
the selection of SCAs, thereby afecting the warning dataset acquisition.
Project source. By analyzing the primary studies, the project source contains real-world and synthetic

categories. The project source determines the category of the acquired warning dataset. Thus, the warning dataset
can be divided into real-world and synthetic categories.

ACM Comput. Surv.

https://findbugs.sourceforge.net/
https://pmd.github.io/
http://cppcheck.sourceforge.net/
http://artho.com/jlint/
https://github.com/ropas/sparrow
http://www.jutils.com/
https://www.slideserve.com/eilis/chord-a-program-analysis-platform-for-java
https://find-sec-bugs.github.io/
https://www.cprover.org/cbmc/
https://dwheeler.com/flawfinder/
https://analysis-tools.dev/tool/jbmc
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://b.d4t.cn/RCBJpT
https://analysis-tools.dev/tool/wap
https://www.sonarqube.org/
https://github.com/oliverklee/pixy
https://github.com/manohar9999/SCATE
https://clang-analyzer.llvm.org/
http://rips-scanner.sourceforge.net/
https://frama-c.com/
https://github.com/JoseCarlosFonseca/phpSAFE
https://fbinfer.com/
https://d3s.mff.cuni.cz/software/weverca/
http://ropas.snu.ac.kr/2005/airac5/

10 • X. Ge et al.

Table 5. Development languages of projects under test with corresponding studies.

Language Studies

Java (25) [18, 26, 27, 31, 39, 41, 46, 47, 56, 61, 78ś80, 85, 90, 94, 102, 105, 107, 109, 110, 112, 113, 115, 120]

C/C++ (23) [3, 5, 9, 14, 15, 32, 33, 36, 44, 49ś51, 63, 70, 82, 83, 98, 113, 114, 117, 118, 122, 123]

PHP (2) [62, 76]

JavaScript (1) [93]

Solidity (1) [92]

The real-world source refers to the warning dataset collected from the real-world project. In the primary studies,
the warning datasets in the majority of primary studies (82%) (i.e., [9, 15, 18, 26, 27, 31ś33, 36, 39, 41, 44, 49ś
51, 56, 61ś63, 70, 76, 79, 80, 85, 90, 92ś94, 98, 102, 105, 107, 109, 110, 112, 114, 115, 117, 118, 120, 122, 123]) are from
the real-world source. Further, as shown in Fig. 3a, 24, 15, 3 studies in the real-world source fall into classiication,
ranking, and combination approaches, respectively. In particular, it is observed that the warning dataset, collected
from 12 open-source Java projects in the study [102], is the most widely used to support ML-based AWI. Currently,
nine studies [18, 39, 79, 94, 105, 107, 109, 110, 112] have adopted the warning dataset from the study [102]. In the
real-world source, the warning dataset can relect the realistic distribution, while facing the imbalance problem
[18] and missing warnings with uncommon categories.

The synthetic source refers that the warning dataset is collected from the artiicially designed projects, including
Juliet1 and OWASP2. Juliet and OWASP focus on C/C++ and Java projects, respectively. As shown in Fig. 3a,
seven studies use the warning datasets from the synthetic source. Of these, ive studies (i.e., [3, 5, 14, 46, 78])
fall into the classiication approach, and two studies (i.e., [82, 83]) fall into the ranking approach. In comparison
to the warning dataset in the real-world source, the warning dataset in the synthetic source can easily remain
balanced and cover warnings with uncommon categories, while not depicting the realistic warning distribution.
As shown in Fig. 3a, two studies [47, 113] separately perform the warning classiication on two categories of

warning datasets, where one warning dataset is from the synthetic source (i.e., OWASP) and the other warning
dataset is from the real-world source. It indicates that the warning datasets in the two studies can inherit the
strengths of real-world and synthetic sources.

4.3.2 Warning dataset labeling. The warning dataset labeling is to assign labels for warnings. In the primary
studies, the warning labeling involves manual, automatic, and hybrid strategies.

Manual strategy. The manual strategy relies on developers’ domain knowledge to label warnings. As shown
in Fig. 3b, the manual strategy involves 22 studies, where 12 [15, 32, 41, 51, 62, 63, 85, 93, 114, 117, 118, 122], 8
[9, 36, 44, 49, 50, 80, 120], and 2 [90, 115] studies fall into classiication, ranking, and combination approaches
respectively. The manual strategy can obtain a small number of valuable warnings. However, the manual strategy
has intrinsic limitations. On the one hand, as illustrated in a study [28], it takes an experienced developer ive
minutes to inspect each warning on average. It indicates that the manual warning labeling strategy is very
time-consuming. Consequently, it is diicult for the manual strategy to quickly gather massive warnings. On the
other hand, developers have diferent levels of experience [21]. Given the same warning inspected by diferent
developers, the label of this warning may be inconsistent. That is, it is error-prone that a warning is manually
inspected by only a developer [39].

Automatic strategy. The automatic strategy performs the warning labeling without any manual intervention.
Fig. 3b presents that most studies adopt the automatic strategy for warning labeling. Speciically, 14 [3, 5, 14,
18, 27, 31, 46, 78, 94, 102, 105, 109, 110, 123], 6 [56, 61, 79, 82, 83, 92], and 1 [26] studies fall into classiication,

1https://samate.nist.gov/SARD/test-suites/112
2https://owasp.org/www-project-benchmark/

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 11

ranking, and combination approaches respectively. Based on diferent core techniques, the automatic strategy
can be further reined into four sub-categories.
First, the warning labels are assigned by judging whether a warning hits the defect-inducing source code.

This sub-category is the most commonly used to label warnings in the synthetic source [3, 5, 14, 46, 78, 82, 83],
because the source code in the synthetic warning dataset has the oracle. That is, if a warning reported by the
SCA hits the defect-inducing source code, this warning is labeled to be actionable. Otherwise, this warning is
labeled to be unactionable. In particular, Liang et al. [56] use this sub-category to label warnings in the real-world
source. However, there is no well-prepared defect-inducing source code in the real-world source. To address this
problem, Liang et al. increase a preliminary step. Speciically, it is observed that SCAs tend to detect generic
defects rather than project-speciic defects. Based on such an observation, the ile modiication times are used to
select generic defect-inducting revisions. Subsequently, the dif-based algorithm [35] is used to identify the defect-
inducing source code from these generic revisions. It is noted that diferent studies use diferent granularities
(i.e., statement, method, or ile levels) to determine whether a warning hits the defect-inducing source code.
For example, Alikhashashneh et al. [3] perform the warning labeling at the method level. That is, a warning is
determined to be actionable once this warning falls into the method containing the detect-inducing source code.
More strictly, in the work of Liang et al. [56], a warning is considered to be actionable only if (1) the source code
lines of this warning hit at least one defect-inducing source code line and (2) this warning in the current revision
disappears in a later revision. The granularity from ile to statement levels generally becomes more ine-grained,
and the obtained warning labels are more reliable.
Second, the warning labels are obtained by the closed warning-based heuristic, which involves 11 studies

[18, 26, 27, 31, 79, 94, 102, 105, 109, 110, 123]. Inspired by the fact that developers are constantly ixing defects in
the program, such a heuristic is to give warning labels by performing the warning matching among revisions
[102]. Speciically, to judge whether two given warnings are identical in diferent revisions, the warning matching
is performed by comparing the warning characteristics (e.g., category and location). Then, there are three cases:
(1) if a warning in the current revision disappears in any later revision, this warning is considered to be ixed
by developers and is labeled to be actionable; (2) if a warning in the current revision is present until the latest
revision, this warning is considered to be ignored by developers and is labeled to be unactionable; and (3) if the
class/method, where a warning is in the current revision, is deleted in a certain later revision, this warning is
labeled to be unknown. However, the current warning matching is severely afected by the warning-irrelevant
source code changes (e.g., the class/method renaming or the code refactoring), thereby making the heuristic
produce many mislabeled warnings [53, 57, 116].
Third, the warning labels are obtained by the voting mechanism. Inspired by an observation that a defect is

identiied exclusively by a single SCA [11, 22], Tran et al. [92] perform the warning labeling based on the results
reported by multiple SCAs. Speciically, if a warning is only reported by one SCA, this warning is labeled to
be unactionable. If a warning is reported by at least two SCAs, this warning is labeled to be actionable. The
reliability of a warning being labeled as actionable/unactionable one could be increased due to aggregating
the defect detection capabilities of multiple SCAs. However, the voting mechanism-based warning labeling
strategy could bring mislabeled warnings. On the one hand, due to the similar or incorrect warning patterns
adopted by SCAs, a warning simultaneously reported by multiple SCAs could be unactionable. On the other
hand, due to the complementarity of techniques adopted by SCAs [54], a warning that is reported by only one
SCA may be actionable. In addition, compared to the number of warnings reported by only one SCA, the voting
mechanism-based warning labeling strategy could report more unactionable warnings because warnings are
merged from multiple SCAs [6].
Fourth, the warning labels are obtained via the k-object-sensitive version [64], which mainly consists of the

object sensitivity and parameterization framework. The object sensitivity is a form of context sensitivity for
low-insensitive points-to analysis. The core idea behind object sensitivity is to separately analyze a method

ACM Comput. Surv.

12 • X. Ge et al.

24

5
2

15

2 0
3

0 0

0

10

20

30

Real-world Synthetic Real-world+

Synthetic

N
o

.
o

f
st

u
d

ie
s

Classification Ranking Combination

(a) Project sources.

12
14

3 2

8
6

3
0

2 1 0 0

0

5

10

15

Manual Automatic Hybrid Manual+

Automatic

N
o

.
o

f
st

u
d

ie
s

Classification Ranking Combination

(b) Warning dataset labeling strategies.

Fig. 3. Distribution of the warning dataset preparation under three categories of ML-based AWI approaches.

for each object name, which represents a runtime object that may invoke this method. The parameterization
framework, controlled by k, is designed for the tradeof between cost and precision in the object sensitivity. For
example, Mangal et al. [61] adopt the k-object-sensitive version (k = 4) to assign labels for warnings reported
by a context-sensitive but object-insensitive SCA called Chord. By leveraging the technique complementarity
between Chord and the k-object-sensitive version, the warning labels can be easily obtained. However, due to
comprising approximations (e.g., low-insensitivity) in the k-object-sensitive version, these warning labels do not
have the absolute ground truth.

Hybrid strategy. The hybrid strategy combines manual and automatic strategies to perform warning labeling.
As shown in Fig. 3b, the hybrid strategy involves six studies [39, 70, 76, 98, 107, 112], which fall evenly into
classiication and ranking approaches. Speciically, two studies [70, 98] manually inspect whether a method
is vulnerable and automatically label warnings by judging whether warnings hit vulnerable methods. Yet, the
obtained warning labels could be noisy because a vulnerability could be caused by the interprocedural method
[70, 98]. Similarly, Pereira et al. [76] adopt the warning dataset in the work of Nunes et al. [72], which automatically
extract the Proof-of-Concept vulnerabilities from CVE3 and manually label warnings by comparing the source
code lines of warnings and the vulnerable source code lines. However, the source code lines between warnings
and vulnerabilities do not correspond perfectly, and there could be mislabeled warnings [76]. In addition, to
alleviate mislabeled warnings caused by the closed warning-based heuristic, Kang et al. [39] rely on the 2-pass
manual inspection to further ensure the reliability of warning labels. Subsequently, the warning dataset collected
by Kang et al. [39] is also adopted by other studies [107, 112]. The warning labels in Kang et al. [39] can be
considered to be ground-truth. However, these ground-truth warnings only occupy a small part of warnings
reported by the SCA because the 2-pass manual inspection resource is limited. In summary, the hybrid strategy
can to some extent mitigate the weaknesses of manual and automatic strategies. However, it is still a tough task
how to combine manual and automatic strategies to improve the warning label quality.
Fig. 3b shows that two studies [47, 113] separately use manual and automatic strategies to label warnings.

Diferent from the hybrid strategy that simultaneously uses manual and automatic strategies to label warnings
on the same warning dataset, the two studies use manual and automatic strategies to label warnings on diferent
warning datasets, respectively. Speciically, the manual strategy is used to perform the warning labeling in the
real-world source, and the automatic strategy is used to perform the warning labeling in the synthetic source.

3https://cve.mitre.org/

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 13

Summary RQ2: The warning dataset preparation stage in the ML-based AWI approaches contains warning
dataset acquisition and labeling. In the warning dataset acquisition, it is observed that (1) FindBugs, the most
commonly adopted SCA, is used as a research target in 31% of primary studies; (2) Java and C/C++ are the
primarily focused development languages of projects; and (3) the warning dataset from the real-world source
occupies 82% of primary studies. In the warning dataset labeling, the manual and automatic strategies are
the most commonly adopted to label warnings, which cover 43% and 41% of primary studies, respectively.

4.4 RQ3: What constitutes the warning dataset preprocessing stage of ML-based AWI approaches?

The warning dataset preprocessing produces the core input for ML-based AWI. Based on the typical ML-based
AWI worklow in Fig. 2, the warning dataset preparation mainly involves warning feature extraction, warning
feature selection, and warning dataset rebalancing. To illuminate the warning dataset preprocessing, we analyze
the techniques used in the three parts, along with strengths, weaknesses, and distribution across three categories
of ML-based AWI approaches.

4.4.1 Warning feature extraction. This section discusses the warning feature extraction from three perspectives,
including extraction sources, extraction ways, and categories of warning features.

Warning feature extraction source. Inspired by the work of Wang et al. [100], the warning feature extraction
in primary studies can be divided into external, internal, and hybrid sources.
The external source is to extract warning features from the SCA report or developer feedback. Fig. 4a shows

that the external source has 11 studies, where 5 [5, 93, 117, 118, 123], 5 [49, 50, 76, 82, 83], and 1 [90] studies
involve classiication, ranking, and combination approaches respectively. The warning reported by SCAs contains
a series of warning characteristics (e.g., category, severity, and location). Many studies (e.g., [93]) extract the
original warning characteristics from the SCA report as warning features. Also, some studies (e.g., [76, 118])
derive some new warning features (e.g., the number of warnings in a class/method) from the original warning
characteristics. In addition, a few studies [102, 117] extract warning features from the developer feedback on
warnings reported by the SCA. The warning features in the external source are obtained by only parsing the SCA
report or the developer feedback. Thus, the warning features are generally easily extracted. However, due to
independent of the warning-related source code, the warning features in the external source only capture the
shallow warning information and fail to reveal the root cause of the warning.
The internal source is to extract warning features from the source code containing warnings. Fig. 4a shows

that the internal source occupies 39% (20/51) of primary studies, where 8 [3, 32, 46, 51, 62, 63, 78, 114], 10
[9, 33, 36, 44, 61, 70, 80, 92, 98, 120], and 2 [26, 115] studies fall into classiication, ranking, and combination
approaches respectively. Given a warning reported by the SCA, the warning location (i.e., the class and method
information containing this warning and warning line numbers) are generally displayed. Based on the warning
location, the source code related to the class, method, and warning line numbers can be obtained. Besides, by
using program analysis techniques (e.g., program slicing [104]), the source code that traces the path leading to
the warning is available. Moreover, based on the software evolution history, the warning-related software change
history can be recorded in terms of class, method, and warning lines. For example, Lee et al. [51] extract features
from the source code surrounding warning line numbers. Some studies [70, 98] use the abstract syntax tree with
control low construction technique to extract features from the source code containing warnings. Compared
to warning features in the external source, the warning features in the internal source could capture deeper
information. However, there are some limitations in the internal warning feature extraction source. On the one
hand, the warning features in the internal source are more diicult to be extracted than those of the external
source. On the other hand, the source code indeed contains rich syntactic and structural information of the
warning, but not all of the source code in the project is related to the warning. Thus, to capture comprehensive

ACM Comput. Surv.

14 • X. Ge et al.

5
8

18

5

10

21 2
0

0

5

10

15

20

External Internal Hybrid

N
o

.
o

f
st

u
d

ie
s

Classification Ranking Combination

(a) Warning feature extraction sources.

23

3 2 3
8 9

0 0
3

0 0 0

0

10

20

30

Manual Automatic Hybrid Manual+

Automatic

N
o

.
o

f
st

u
d

ie
s

Classification Ranking Combination

(b) Warning feature extraction ways.

1 1

5

2
1

8

1

9

1
2

0
2

1 1

8

4

0
1

0 00 0
2

0 0
1

0 0 0 0

0

"

10

Cha Sta Con Seq Str Cha+Sta Cha+Seq Cha+Sta

+Con

Cha+Con

+Seq

Cha+Sta+

Con+Seq

N
o

.
o

f
st

u
d

ie
s

Classification Ranking Combination

(c) Warning feature categories. Cha, Sta, Con, Seq, and Str are characteristic-based, statistical, content-
based, sequential, and structural categories, respectively. Studies that compare the AWI performance
diferences of multiple warning feature categories are merged together (e.g., Cha+Sta).

Fig. 4. Distribution of the warning feature extraction under three categories of ML-based AWI approaches.

warning information while eliminating warning-irrelevant information, it is tough how to appropriately extract
warning features from the internal source.

The hybrid source is to extract warning features from external and internal sources. Fig. 4a presents 20 studies
in the hybrid source, where 18 [14, 15, 18, 27, 31, 39, 41, 47, 85, 94, 102, 105, 107, 109, 110, 112, 113, 122] and
2 [56, 79] studies belong to classiication and ranking approaches respectively. For example, Hegedűs et al.
[31] combine the warning category extracted from the SCA report and the source code surrounding warning
line numbers as warning features. Wang et al. [102] extract eight categories of warning features (e.g., warning
characteristics and software change history) from the SCA report and source code containing the warning. The
hybrid source can represent warnings comprehensively by combining warning features with external and internal
sources. However, the existing studies directly concatenate warning features from external and internal sources
together. Actually, there is a redundancy in the warning features in external and internal sources [107], which
severely hinders the AWI performance. Thus, it is investigated how to reasonably combine warning features
from external and internal sources.

Warning feature extraction way. Based on whether there is manual intervention [86], the warning feature
extraction involves manual, automatic, and hybrid ways.
The manual way is to rely on experts’ domain knowledge for warning feature extraction. Fig. 4b shows that

such a way involves the most studies, where 23 [3, 5, 14, 15, 18, 27, 32, 39, 62, 85, 93, 94, 102, 105, 107, 109, 110,
112, 114, 117, 118, 122, 123], 8 [36, 49, 50, 56, 76, 79, 82, 83], and 3 [26, 90, 115] studies fall into classiication,
ranking, and combination approaches respectively. By the manual way, a small number of meaningful features
can be obtained and be suitable for homogeneous warnings. For example, Zheng et al. [123] assume that the
complex source code (e.g., more condition statements and lines of code) is more likely to be found bugs by the
SCA. Based on this assumption, they manually extract 25 features (e.g., frequency of OR/AND conditions in
the warning trace and length of warning line numbers) to denote the complexity of the warning-related source
code for AWI. However, it is tedious to manually extract warning features. Besides, diferent experts could yield
heterogeneous domain knowledge, thereby causing biased warning features. More fatally, the manually extracted

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 15

warning features become obsolete over time, which makes it diicult to identify newly reported warnings due to
the concept drift [17].
The automatic way is to leverage Deep Learning (DL) or datalog reasoning techniques for warning feature

extraction. Fig. 4b shows 12 studies in the automatic way, where 3 [46, 51, 78] and 9 [9, 33, 44, 61, 70, 80, 92, 98, 120]
studies cover classiication and ranking approaches respectively. Speciically, six studies [46, 51, 70, 78, 92, 98]
represent warnings by using DL techniques (e.g., Word2Vec) to encode the warning-related source code. The
remaining six studies [9, 33, 44, 61, 80, 120] extract the datalog derivation graph from the warning-related source
code via def-use analysis [73] and perform queries for warnings by applying the Bayesian inference algorithm to
such a graph. The DL technique can automatically capture the deep warning information. However, the warning
features obtained by DL could be sparse and high-dimension as well as require a lot of computing power and
massive historical warnings. By contrast, despite maintaining the declarative semantics and logical consistency
based on the lexible rule deinition in the def-use analysis, the datalog reasoning technique sufers from limited
expressiveness in the program with the complex data types and the high computational overhead [65].
The hybrid way is to extract features by combining the manual and automatic ways. Fig. 4b signiies that

two studies [31, 63] related to the classiication approach use the hybrid way for warning feature extraction.
Speciically, Hegedűs et al. [31] manually extract warning characteristics and automatically extract the source
code surrounding the warning line numbers, thereby concatenating warning characteristics and source code as
warning features. Meng et al. [63] irst automatically construct the code property graph from the warning-related
source code and manually extract warning features from this code property graph. Compared to warning features
in the manual way, the warning features in the hybrid way could be more robust for AWI due to embracing the
automatic extraction of warning features. Compared to the warning features in the automatic way, the warning
features in the hybrid way are require additional domain knowledge due to relying on the manual way to extract
warning features.

Fig. 4b signiies that three studies [41, 47, 113] related to the warning classiication separately extract warning
features in manual and automatic ways. For example, Kharkar et al. [41] manually extract identiiers related to
the null dereference and resource leak (e.g., whether return null exists) from the local and non-local warning-
related source code as warning features for AWI. Additionally, they automatically extract the local and non-local
warning-related source code as warning features and apply the DL model to encode these warning features for
AWI. Subsequently, they compare the AWI performance diference under warning features between manual and
automatic ways.
Warning feature category. By analyzing the primary studies, the warning features can be classiied into

characteristic-based, statistical, content-based, sequential, and structural categories. Table 6 shows the details of
diferent warning feature categories.
The characteristic-based category denotes the warning characteristics extracted from the external source,

especially the SCA report. The warning features (e.g., category and severity) in the characteristic-based category
are commonly used by prior studies (e.g., [5, 31, 117]). It is noted that some SCAs (e.g., Infer) report warnings
with associated source code. As such, the warning features (e.g., the source and sink identiiers) extracted from
such the source code [93, 123] are also considered as the characteristic-based category. In addition, a few studies
[102, 117] extract the developer idea (i.e., the developer feedback on warnings reported by the SCA) as the
characteristic-based warning feature. As shown in Fig. 4c, the characteristic-based category involves 28 studies,
where one study [5] only uses the characteristic-based warning features for AWI. The characteristic-based
warning features are easily extracted. However, due to missing a deep understanding of the warning-related
source code, the characteristic-based warning features could lack suiciently discriminative capability when
separately used for AWI.

The statistical category represents the warning statistics information from the SCA report or the source code
containing warnings. The warning features from the SCA report (e.g., the number of warnings in a class/method)

ACM Comput. Surv.

16 • X. Ge et al.

Table 6. Warning feature categories with their associated descriptions, strengths, and weaknesses.

Category Description Strengths Weaknesses

Charac-
teristic

This category denotes the warning characteristics extracted from the external
source, i.e., the SCA report and developer feedback on the reported warnings.

Being easily extracted Lacking suiciently discriminative
capability due to missing a deep

understanding of the
warning-related source code.

Statistical This category denotes the warning statistics information from two aspects.
Features (e.g., the number of warnings in a class) from the SCA report provide
aggregated warning information. Features (e.g., the depth and modiication

times of a class) from the source code containing warnings provide complexity
and evolution information.

Unveiling the hidden mathematical
distribution of warnings, which is
instructive to identify warnings
when there are suicient history

warnings

Requiring intensive computation
power; Being likely to having the
data leak in some warning features

due to the implementation
mistakes

Content This category signiies important identiiers in the source code containing
warnings, e.g., identiiers related to loops. Unlike the characteristic-based

category that focuses on the SCA report, the content-based category focuses on
the source code containing warnings.

Capturing warnings with regular
patterns due to searching important
identiiers from the source code

containing warnings

Heavily relying on domain
knowledge and being

labor-intensive

Sequen-
tial

This category denotes the sequential information of the source code containing
warnings by considering the source code containing warnings as the natural
language text and using DL techniques to encode such the source code. Unlike
the content-based category that extracts the important identiiers from the
source code containing warnings, the sequential category aims to learn the

sequential distribution from the source code containing warnings.

Capturing the sequential information
of warnings

Missing the structural information
of warnings; Being generally

sparse and high-dimension; Being
diicult to interpret

Structural This category embodies the structural information of warnings by mainly
extracting warning features from the abstract syntax tree, control low, or data
low of warnings. Unlike the sequential category that considers the source code

containing warnings as the natural language text, the structural category
considers the source code containing warnings as the tree/graph structure.

Capturing richer information with
the warning syntax and semantics

Being diicult to interpret when
DL techniques are used for AWI;
Enduring limited expressiveness
when the datalog derivation graph

is used for AWI

denote the warning aggregation information [27, 102]. The warning features from the source code containing
warnings (e.g., the depth and modiication times of a method containing warnings) denote the warning complexity
and evolution information [56]. As shown in Fig. 4c, the statistical category involves 28 studies, where three
studies [3, 49, 50] separately adopt the statistical warning features for AWI. The statistical warning features
unveil the hidden mathematical distribution of warnings. When there are suicient history warnings, it is very
instructive to identify newly reported warnings [29, 45, 89, 123]. However, the extraction process of the statistical
warning features requires intensive computation power. Also, it is worthy noting that due to the incorrect or
inappropriate implementation ways, some statistical warning features (e.g., the defect density for warning type)
yield data leakage [39], which could cause exaggeration of the ML-based AWI performance.

The content-based category signiies important identiiers in the source code containing warnings. The main
process to extract the content-based warning features is shown as follows. First, the source code containing
warnings is obtained by establishing the abstract syntax tree [26, 113, 115, 122], code property graph [63], program
dependency graph [47, 113], local/non-local context [41], or loops-related context [32]. Second, the important
identiiers (e.g., identiiers related to loops and library calls [32]) are extracted from the obtained source code. In
general, the irst step is an automatic process, and the second step is a manually designed process. In particular, two
studies [47, 113] automatically extract the content-based warning features for AWI, i.e., applying the Bag-of-Word
model [121] to automatically calculate the frequency or occurrence of each identiier in the source code containing
warnings. Noted, the diference between the characteristic-based and content-based categories is that the former
mainly focuses on the SCA report, and the latter focuses on the source code containing warnings. Fig. 4c presents
that 21 studies fall into the content-based category. Of these, eight studies only adopt the content-based warning
features for AWI, where ive [32, 62, 63, 114, 122], one [36], and two [26, 115] studies are related to classiication,
ranking, and combination approaches respectively. The content-based warning features can capture warnings
with regular patterns due to searching important identiiers from the source code containing warnings, while
heavily relying on domain knowledge and being labor-intensive.
The sequential category denotes the sequential information of the source code containing warnings. The

sequential warning features are extracted in two steps. First, the source code containing warnings is obtained by

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 17

performing the program slicing [46, 47, 113] or extracting the source code surrounding the warning line numbers
[31, 51, 92]. Second, such source code is considered as the natural language text and is encoded into vectors via
DL techniques. Noted, the diference between the content-based and sequential categories is that the former aims
to extract the important identiiers from the source code containing warnings, and the latter aims to learn the
sequential distribution from the source code containing warnings. Fig. 4c describes that there are seven studies in
the sequential category, where three studies [46, 51, 92] separately use the sequential warning features for AWI.
The sequential warning features can capture the sequential information of warnings while missing the structural
information of warnings. Also, the sequential warning features extracted by DL techniques are generally sparse
and high-dimension. Moreover, it is diicult to interpret the role of these warning features in AWI due to the
inherent limitations of DL in terms of explainability [8].
The structural category embodies the structural information of warnings by mainly extracting warning

features from the abstract syntax tree, control low, or data low of warnings. Fig. 4c shows that one study
[78] falls into the classiication approach and eight studies [9, 33, 44, 61, 70, 80, 98, 120] belong to the ranking
approach. Speciically, three studies [70, 78, 98] use DL techniques to automatically learn the structural distribution
information from the program dependency graph and control low-based abstract syntax tree of warnings. Six
studies [9, 33, 44, 61, 80, 120] automatically reason the root cause of warnings by using def-use analysis [73]
to extract the datalog derivation graph. Noted, the diference between the sequential and structural categories
is that the former considers the source code containing warnings as the natural language text, and the latter
considers the source code containing warnings as the tree/graph structure. As such, compared to the sequential
warning features, the structural warning features can capture richer information with the warning syntax and
semantics. However, in the studies [70, 78, 98] that rely on DL techniques to represent warnings for AWI, the
structural warning features face the same limitation as those of the sequential category, i.e., diicult to explain
[8]. In the studies [9, 33, 44, 61, 80, 120] that adopt the datalog reasoning technique to represent warnings for
AWI, the structural warning features endure limited expressiveness when encountering the program with the
complex data types [65].

4.4.2 Warning feature selection. Feature selection is an important but optional process in the ML-based tasks [86].
By analyzing the primary studies, the warning feature selection can be classiied into ilter, wrapper, embedded,
and dimension reduction techniques. The ilter technique independently ranks features by using statistical metrics
without involving any ML model. The wrapper technique measures feature subsets by training and testing a
speciic ML model and uses its performance as the evaluation metric. The embedded technique determines the
best features by integrating feature selection into the model training process. Diferent from the above three
techniques that aim to select a subset of the original features, the dimension reduction technique reduces the
number of features by transforming the feature space.

Filter technique. The ilter technique selects the warning feature subset by calculating the feature importance
or correlation via a certain criterion. Further, based on whether warning labels are required, the warning feature
selection involves unsupervised and supervisedways [107]. As shown in Fig. 5a, four studies [3, 76, 94, 107] attempt
the ilter technique for warning feature selection. For example, Pereira et al. [76] separately use the correlation-
and variance-based feature selection techniques for AWI, where the correlation-based one is supervised and the
variance-based one is unsupervised. In particular, UNEASE [107], the irst unsupervised warning feature selection
technique for AWI, mainly performs the feature clustering and feature ranking to select a warning feature subset
from the original warning feature set. The ilter technique is computationally fast, simple to implement, and
model-independent. However, the determination of the warning feature subset in the ilter technique often
requires manually setting thresholds. Also, due to model independence, the ilter technique could ignore model
biases and cause low AWI performance.

ACM Comput. Surv.

18 • X. Ge et al.

3 2 1 1 2

22

1 1 0 0 0

15

0 0 0 0 0
3

0

5

10

15

20

25

Filter Wrapper Embedded Dimension

reduction

Filter+

Wrapper

None

N
o

.
o

f
st

u
d

ie
s

Classification Ranking Combination

(a) Warning feature selection techniques.

1
5

0 1

24

0 0 1 0

16

0 0 0 0
3

0

10

20

30

Under-

sampling

Over-

sampling

UO UOCE None

N
o

.
o

f
st

u
d

ie
s

Classification Ranking Combination

(b) Warning dataset rebalancing techniques.

Fig. 5. Distribution of the warning feature selection and warning dataset rebalancing techniques under three categories
of ML-based AWI approaches. In Fig. 5b, łUOž is to use undersampling and oversampling for AWI. łUOCEž is to use four
sampling techniques for AWI.

Wrapper technique. The wrapper technique selects the best warning features by evaluating the ML-based
AWI model performance. Fig. 5a shows the wrapper technique in three studies, where two [102, 114] and one [79]
studies fall into classiication and ranking approaches, respectively. For example, Wang et al. [102] use the greedy
backward elimination algorithm for feature selection. Such an algorithm iteratively trains an ML-based AWI
classiier, greedily removes features one by one from the original warning features to maximize the performance
of this classiier, and inally returns the warning feature subset with the best AWI performance. The wrapper
technique can consider dependencies among warning features [86], as it selects the warning feature subset by
training and testing an ML-based AWI model, which inherently relects the interaction among warning features.
Thus, the obtained warning feature subset could achieve good AWI performance. However, compared to the ilter
technique, the wrapper technique is model-dependent and computationally intensive due to the requirement to
train an AWI model multiple times.
Embedded technique. The embedded technique automatically performs the warning feature selection

when constructing the ML-based AWI model. The embedded technique only involves one study [123] with the
classiication approach. Speciically, to explain the role of 25 extracted features in AWI, Zheng et al. [123] calculate
the warning feature importance via Random Forest (RF). Once RF is well-constructed for AWI, the warning
feature importance is obtained. Finally, the root node in RF (e.g., the line number of the error) is dominant for
AWI. The embedded technique can select optimal features in parallel to training the ML-based AWI model. Thus,
the embedded technique mitigates the weaknesses of the ilter and wrapper techniques. However, the embedded
technique is model-speciic and requires an understanding of the model details.
Dimension reduction technique. The dimension reduction technique maps the original warning feature

space to a low-dimensional space via projection. The dimension reduction technique only contains one study
[109], which leverages the fractal-based method [52] to convert the high-dimension warning features into a more
compressed space without the principal information loss. Compared to the typical dimension reduction technique
(i.e., Principal Component Analysis, PCA), Yang et al. [109] consider that the fractal-based method is more
appropriate for AWI due to (1) better handling the increasingly sophisticated and non-linearly decomposable data
and (2) no need for manually setting thresholds. Besides, the dimension reduction technique is computationally
fast because it is model-independent and unsupervised. However, the warning features determined by the
dimension reduction technique are diicult to interpret.
Fig. 5a shows that 11 studies adopt the warning feature selection techniques for AWI, of which two studies

[27, 117] separately use ilter and wrapper techniques for warning feature selection. However, the remaining 40
studies do not adopt any warning feature selection technique for AWI.

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 19

4.4.3 Warning dataset rebalancing. Class imbalance, where the number of positive (i.e., actionable) samples is
much fewer than that of negative (i.e., unactionable) samples, is a common phenomenon in the warning dataset
used for the ML-based AWI model training [18]. To mitigate the above phenomenon, some primary studies adopt
the warning dataset rebalancing technique for AWI. By analyzing these primary studies, the warning dataset
rebalancing technique involves undersampling, oversampling, combined sampling, and ensemble sampling.
Undersampling technique. The undersampling technique mitigates the class imbalance by eliminating

unactionable warnings from the original warning dataset. Fig. 5b describes that only one study [110] related to
the classiication approach adopts the aggressive undersampling to rebalance the warning dataset. Diferent from
the random undersampling [18, 76], the aggressive undersampling throws away unactionable warnings close to
the decision boundary of the ML-based AWI model and accesses actionable warnings until the ratio of actionable
and unactionable warnings is balanced in the training set. The undersampling can easily and quickly obtain the
balanced classes. However, the undersampling could miss potentially valuable information due to throwing away
the majority of unactionable warnings.

Oversampling technique. The oversampling creates a superset of the original warning dataset by generating
actionable warnings. As shown in Fig. 5b, ive studies [3, 31, 62, 105, 112] use the oversampling to rebalance the
warning dataset when performing the warning classiication. The commonly used oversampling technique is
the Synthetic Minority Oversampling technique (SMOTE), which involves four warning classiication studies
[3, 62, 105, 112]. Similar to the undersampling, the oversampling can also easily and quickly rebalance the warning
dataset. However, the oversampling increases the likelihood of overitting in the ML-based AWI model [16].
Combined sampling technique. The combined sampling is constructed by combining oversampling and

undersampling. Only one study [18] attempts two commonly used combined sampling techniques (i.e., EditNear-
estNeighbors and SMOTEENN) to perform the warning rebalancing for AWI. The combined sampling can mitigate
the weaknesses of undersampling and oversampling techniques. However, compared to the undersampling and
oversampling, the combined sampling is more complex and time-consuming.
Ensemble sampling technique. The ensemble sampling solves the class imbalance by embedding the

aforementioned sampling techniques into the ensemble learning models. The commonly used ensemble sampling
is EasyEnsemble, RUSBoost, BalancedBagging, and BalancedRandomForest [18]. In general, ensemble sampling
can help achieve a high AWI performance. However, the ensemble sampling is model-dependent and requires
understanding the model details.
As shown in Fig. 5b, two studies [18, 76] attempt diferent sampling techniques for the warning dataset

rebalancing. Speciically, Pereira et al. [76] separately use undersampling and oversampling to mitigate the
class imbalance, thereby performing the warning ranking. Ge et al. [76] evaluate the impact of the above four
sampling techniques on the ML-based AWI performance. Additionally, 43 studies do not adopt any warning
dataset rebalancing technique for AWI.

SummaryRQ3: The warning dataset preprocessing stage in theML-based AWI approaches contains warning
feature extraction, warning feature selection, and warning dataset rebalancing. Speciically, it is observed in
the warning feature extraction that (1) the main sources are internal and hybrid ones; (2) the manual way is
the most prevalent, which occupies 67% of primary studies; (3) the most commonly used warning features
fall into the characteristic-based and statistical categories. Particularly, 53% of primary studies combine
multiple categories of warning features for AWI. In addition, only 22% and 16% of primary studies attempt
the warning feature selection and warning dataset rebalancing techniques for AWI, respectively.

4.5 RQ4: What model construction techniques are used by ML-based AWI approaches?

The ML-based AWI model construction is the key step to provide the decision support for a newly reported
warning. By following the typical ML-based AWI worklow in Fig. 2, we present the answer to this RQ by enlisting

ACM Comput. Surv.

20 • X. Ge et al.

the techniques used in the model category, learning category, AWI model structure, and AWI construction
scenario, along with associated strengths, weaknesses, and distribution across three categories of ML-based AWI
approaches.

4.5.1 Model category in AWI. The ML categories used for AWI can be divided into Traditional ML (TML), Deep
Learning (DL), statistical inference, and Pre-Trained Model (PTM).

TML model. Fig. 6a shows that 26 studies only use TML models for AWI. Table 7 describes that RF (22/51) are
the most commonly used ML models, followed by DT and SVM.

DL model. Table 7 shows eight DL models used for AWI, where CNN occupies the largest proportion. Fig. 6a
shows that four studies only use DL models for AWI, where one [51] and three [70, 92, 98] studies are related to
classiication and ranking approaches, respectively.
Statistical inference model. Fig. 6a shows that the statistical inference model is adopted by nine studies.

Speciically, six studies [9, 33, 44, 49, 61, 80] convert the datalog derivation graph of warnings into a Bayesian
inference model and utilize the real-time feedback of developers to adjust this model for AWI. Unlike the six
studies, Jung et al. [36] directly construct a Bayesian inference model for AWI without any real-time adjustment.
In addition, Kremenek et al. [50] rank warnings by applying z-test statistics to the number of historical warnings.
Zhang et al. [120] rely on MLN to convert the datalog derivation graph of warnings into a warning prioritization
model for AWI.

PTM. PTM performs the self-supervised training on large-scale and unlabeled corpora and then is customized
for downstream tasks by ine-tuning on a limited number of labeled samples [25]. Unlike TML and DL models
that construct an AWI model from scratch, PTM can be directly used as a starting point. Fig. 6a shows that
two studies [41, 112] attempt PTMs for AWI. Speciically, Kharkar et al. [41] pre-train CodeBERTa [59] on a
newly collected warning dataset and use a well-pre-trained CodeBERTa to classify targeted warnings. Also, they
generate the warning-related source code recommendation to infer the legality of targeted warnings via GPT-C
[91]. Similar to the usage of CodeBERTa in the work of Kharkar et al., Yedida et al. [112] train CodeBERT [13] on
the labeled warnings and use the well-trained CodeBERT for AWI.

As shown in Fig. 6a, 12 studies attempt multiple model categories for AWI. Speciically, 10 studies [31, 46, 47,
62, 76, 78, 90, 94, 109, 113] separately attempt TML and DL models for AWI. One study [41] separately uses TML
model and PTMs for AWI. One study [112] uses TDP for AWI respectively.

4.5.2 Learning category in AWI. Almost all primary studies, except for the work of Tu et al. [94], perform AWI in
a supervised learning manner. That is, these studies train an AWI model in the labeled warnings and use this
model for unlabeled warnings. By contrast, Tu et al. adopt semi-supervised learning for AWI. Speciically, they
rely on an unsupervised learning technique called CLAMI [69] to assign pseudo-labels for warnings via clustering,
select warning features via metric violation score, and determine warning instances for the AWI model training.
However, CLAMI has many hyperparameters, which greatly afect AWI performance. To address this problem,
they search for the optimal hyperparameters on a few labeled warnings. Under the optimal hyperparameters,
they inally use the determined warning instances with the associated pseudo warning labels and the selected
warning features to train a classiier for AWI.

4.5.3 AWI model structure. By analyzing the primary studies, the AWI model involves the base, ensemble,
sequence, and multiple models-based structures.
Base structure. The base structure uses a single ML model for AWI. Fig. 6b describes that 15 studies only

rely on the base structure for AWI, where 3 [32, 51, 85], 11 [9, 33, 36, 44, 49, 50, 56, 61, 70, 80, 120], and 1 [115]
studies fall into classiication, ranking, and combination approaches respectively. The base structure is easy to
implement and deals with massive warnings with high-dimensional features. However, the base structure could
face the overitting problem.

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 21

Table 7. Distribution of the model category. The full names of model abbreviations are shown below: Random Forest (RF),
Decision Tree (DT), Naive Bayes (NB), Support Vector Machine (SVM), Logistical Regression (LR), K-Nearest Neighbor
(KNN), Bayesian Network (BN), KStar (K*), Ensemble (the customized model based on the idea of ensemble learning),

Random Commitee (RC), Random Tree (RT), Others (i.e., PART, Ridor, Conjunctive Rule, ADTree, REPTree, LMT, LWL,

IBK, and Decision Table), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), MultiLayer Perceptron

(MLP), Deep Neural Network (DNN), Bi-directional Gating Recurrent Unit (BiGRU), Gated Graph Neural Network (GGNN),

Bi-directional Long Short-Term Memory (BiLSTM), Artificial Neural Network (ANN), and Markov Logic Network (MLN).

Model

category
Model

Approaches
Studies

Classi-

ication

Ran-

king

Combi-

nation

T
M
L
m
o
d
el

RF(22) 21 0 1 [3, 5, 14, 15, 18, 31, 47, 62, 78, 90, 94, 102, 105, 107, 109, 110,
113, 114, 117, 118, 122, 123]

DT(21) 15 4 2 [5, 18, 26, 27, 31, 47, 62, 76, 79, 82, 83, 90, 93, 102, 105, 107, 109,
110, 112, 113, 117]

SVM(18) 15 1 2 [3, 18, 39, 47, 62, 63, 79, 90, 93, 94, 102, 107, 109, 110, 112, 113,
115]

NB(17) 14 1 2 [18, 26, 27, 31, 46, 47, 62, 63, 78, 79, 90, 93, 102, 107, 113, 114, 117]
LR(13) 12 1 0 [5, 14, 15, 18, 27, 41, 62, 79, 85, 102, 107, 112, 114]
KNN(9) 7 2 0 [3, 18, 39, 56, 62, 63, 78, 79, 107]

Boosting(9) 7 2 0 [14, 15, 18, 63, 82, 83, 102, 114, 123]
BN(6) 5 0 1 [26, 27, 47, 62, 93, 113]
K*(4) 4 0 0 [27, 47, 93, 113]

OneR(3) 3 0 0 [47, 93, 113]
ZeroR(3) 3 0 0 [47, 93, 113]

Ensemble(3) 3 0 0 [118, 122, 123]
RC(2) 2 0 0 [117, 118]

LightGBM(2) 2 0 0 [14, 123]
NDTree(1) 1 0 0 [93]
Ripper (1) 1 0 0 [3]
DTNB(1) 1 0 0 [118]
RT(1) 1 0 0 [62]

Others(1) 1 0 0 [27]

D
L
m
od

el

CNN(6) 4 2 0 [51, 78, 92, 98, 109, 112]
LSTM(4) 4 0 0 [46, 47, 78, 113]
MLP(4) 3 0 1 [47, 62, 90, 113]
DNN(2) 2 0 0 [31, 109]
BiGRU(2) 0 1 0 [98]
GGNN(2) 2 0 0 [47, 113]
BiLSTM(2) 0 2 0 [70, 92]
ANN(3) 2 1 0 [76, 94, 112]

St
at
is
ti
ca
l

in
fe
re
n
ce

m
od

el

Bayesian
inference (7)

0 7 0 [9, 33, 36, 44, 49, 61, 80]

Z-test(1) 0 1 0 [50]
MLN(1) 0 1 0 [120]

P
T
M

CodeBERTa(1) 1 0 0 [41]
CodeBERT(1) 1 0 0 [112]
GPT-C(1) 1 0 0 [41]

ACM Comput. Surv.

22 • X. Ge et al.

20

1

9 8

1 1
4 3

0 1 0 0
2

0 0 1 0 0

0

5

10

15

20

25

TM
L D

L SI

TM
L+D

L

TM
L+P

TM
TD

P

N
o

.
o

f
st

u
d

ie
s

Classification Ranking Combination

(a) Model categories in AWI.

3 3
0

25

11

0
3 3

1 0 0
2

0

5

10

15

20

25

30

Base

Ense
m

ble

Sequence

M
ulti

ple

N
o

.
o

f
st

u
d

ie
s

Classification Ranking Combination

(b) AWI model structures.

21

7

0 1 2

10

4
2 1 01 2
0 0 0

0

5

10

15

20

25

Within Combined Within+

Combined

Within+

Cross

WCC

N
o

.
o

f
st

u
d

ie
s

Classification Ranking Combination

(c) AWI construction scenarios.

Fig. 6. Distribution of model categories in AWI, AWI model structures, and AWI construction scenarios in three categories

of ML-based AWI approaches. SI is the statistical inference. TDP is TML+DL+PTM. WCC is to separately adopt within,

combined, cross projects for construction scenarios for AWI in the same study.

Ensemble structure. The ensemble structure relies on bagging, boosting, or stacking to combine multiple
ML models for AWI. Diferent from the of-the-shelf ensemble learning models (e.g., RF), the ensemble structure
borrows the core idea of ensemble learning and independently designs a new classiier/sorter by combining
multiple ML models. Fig. 6b shows that three studies [118, 122, 123] related to the classiication approach adopt
the ensemble structure for AWI. For example, D2A [123] applies a soft-voting strategy to combine the results
of four ML models for AWI. Compared to the base structure, the ensemble structure can reduce the overitting
problem to some extent, obtain higher AWI performance, and be more stable and reliable. However, the ensemble
structure is slower than the base structure when encountering massive warnings with high-dimensional features
because each ML model in the ensemble structure needs to conduct an AWI model.
Sequence structure. The studies using the sequence structure divide a complex problem into sub-problems

and sequentially solve each problem by using a proper ML model. Fig. 6b shows that three studies [82, 83, 98]
related to the ranking approach use the sequence structure for AWI. For example, given the control low-based
abstract syntax tree and program slice of warnings as input, Vu et al. [98] use CNN to encode these features,
then use BiGRU to further learn the distribution of results encoded by CNN, and inally use dense layers to
prioritize warnings. The sequence structure could identify more complex warnings while being slower than base
and ensemble structures. Also, it requires further exploration about reasonably partitioning the AWI problem
into sub-problems and deliberately selecting proper ML models for sequentially solving each sub-problem.
Multiple models-based structure. The multiple models-based structure uses diferent ML models for AWI

each time, thereby helping search for the optimal AWI performance. Fig. 6b shows that the multiple models-based
structure involves the most studies, where 25 [3, 5, 14, 15, 18, 27, 31, 39, 41, 46, 47, 62, 63, 78, 93, 94, 102, 105, 107,
109, 110, 112ś114, 117], 3 [76, 79, 92], and 2 [26, 90] studies are related to classiication, ranking, and combination
approaches respectively. The multiple models-based structure can help investigate the performance diferences
of multiple ML models for the AWI task. However, since the same task requires repeating multiple times, the
multiple models-based structure is generally more time-consuming than the above three structures.

4.5.4 AWI construction scenario. By analyzing the primary studies, the AWI construction scenario can be
summarized into three categories, including within, combined, and cross projects.

Within project. Thewithin project is that the warning dataset used for themodel construction (i.e., the training
set), and model evaluation (i.e., the test set) is from the same project. It indicates that the training and test sets
have a similar distribution, thereby yielding superior AWI performance. However, the number of the training set is
frequently insuicient. As shown in Fig. 6b, 63% (32/51) of primary studies only use the within project as the AWI
construction scenario. Of these, 21 [3, 5, 14, 15, 18, 27, 39, 46, 63, 78, 85, 94, 105, 107, 109, 110, 112, 117, 118, 122, 123],

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 23

10 [9, 33, 36, 50, 56, 61, 79, 82, 83, 120], and 1 [26] studies fall into the classiication, ranking, and combination
approaches respectively.
Combined project. The combined project merges warnings in multiple projects as a whole and partitions

the merged warning dataset into the training and test sets. Fig. 6b shows that 13 studies separately adopt the
combined project as the AWI construction scenario, where seven [31, 32, 41, 51, 62, 93, 114], four [44, 76, 80, 92],
two [90, 115] studies are related to classiication, ranking, and combination approaches respectively. The diference
between within and combined project-based construction scenarios is that the warning dataset in the former is
from the same project, and the warning dataset in the latter is merged from multiple projects. The combined
project can alleviate the weakness of the within project to some extent, while disrupting the original distribution
of warning dataset in the within project.

Cross project. The cross project is that the warning dataset used for the model construction (i.e., the training
set) and model evaluation (i.e., the test set) is from diferent projects. It indicates that the training and test sets are
heterogeneous. Only two studies [96, 102] separately adopt the cross project as the AWI construction scenario.
The cross project can greatly mitigate the problem of warning dataset sparsity in the within project. However,
due to the heterogeneous distribution in the training and test sets, it is more diicult to obtain the high AWI
performance in the cross project than in the within project.
As shown in Fig. 6b, six studies attempt multiple categories of AWI construction scenarios. Speciically, two

[70, 98], two [49, 102], and two [47, 113] studies separately adopt within and combined projects, within and cross
projects, and WCC projects for AWI.

Summary RQ4: The AWI model construction stage in the ML-based AWI approaches involves model
category, learning category, AWI model structure, and AWI construction scenario. Speciically, ML models
used for AWI are almost based on supervised learning, where the TML model occupies the majority. The
multiple models-based structure is the most commonly used for AWI. The within project is the most prevalent
AWI construction scenario.

4.6 RQ5: How are ML-based AWI approaches evaluated?

The ML-based AWI model evaluation is critical for the practical applicability of ML techniques in AWI. Based
on the typical ML-based AWI worklow in Fig. 2, the AWI model evaluation mainly involves two parts, including
validation strategy and performance measure. To present details in the AWI model evaluation stage, we analyze
the techniques used in the two parts, along with associated strengths, weaknesses, and distribution across three
categories of ML-based AWI approaches.

4.6.1 Validation strategy in AWI. By analyzing primary studies, the validation strategy to evaluate ML-based
AWI performance includes K-fold, HoldOut, Leave P Out, and rolling cross validation.

K-fold cross validation. K-fold cross validation divides the warning dataset into K equally-sized folds. The
ML model is trained and tested K times, where a fold is used for the test set and the remaining K-1 folds are used
for the training set each time. In general, K is set to 10 [18, 27, 79, 105] or 5 [41, 47, 70, 92, 98, 113]. Fig. 7a shows
that 24 studies adopt K-fold cross validation, where 15 [3, 5, 18, 27, 41, 47, 51, 62, 63, 105, 107, 113, 117, 118, 122],
7 [70, 76, 79, 82, 83, 92, 98], 2 [26, 90] studies involve classiication, ranking, and combination approaches
respectively. In K-fold cross validation, the entire warning dataset is used as the training and test sets, which can
mitigate the estimation bias [48]. However, for the imbalanced warning dataset, K-fold cross validation may not
ensure that each fold maintains the same class proportions as the whole warning dataset, thereby biasing the
ML-based AWI performance [86]. Also, due to the iterative nature, K-fold cross validation has high computational
time.

ACM Comput. Surv.

24 • X. Ge et al.

15

11

0

3

0 1

7 6

1
2

0 1
2

0 0 0 1 1

0

2

4

6

8

10

12

14

16

K-fold HoldOut Leave

P Out

Rolling K-fold +

 Leave P

Out

None

N
o

.
o

f
st

u
d

ie
s

Classification Ranking Combination

(a) Validation strategies.

15

17

21

8 2

12

3
1 1 1

7
1

7 1 2 1 1

1

1

1

8

3
2

4 3 3 3

1

2

2

1
1

1

0

5

10

15

20

25

30

A
cc

u
ra

cy

P
re

ci
si

o
n

R
e

ca
ll

F
1

R
O

C

A
U

C

M
C

C

iM
C

C

C
o

st
 o

f
W

F
S

C
o

st
 o

f
W

D
R

C
o

st
 o

f
M

T

R
E

D

P
re

ci
si

o
n

@
K

R
e

ca
ll

@
K

R
a

ti
o

F
P

R

F
N

R

T
N

R

T
P

R

F
P

a
v

g

S
p

e
ci

fi
ci

ty

N
o

.
o

f
F

P

N
o

.
o

f
T

P

T
im

e
s

N
o

.
o

f
s
t
u

d
ie

s

Classification Ranking Combination

(b) Performance measures.

Fig. 7. Distribution of validation strategies and performancemeasures under the three categories ofML-based AWI approaches.

MCC is Mathews Correlation Coeficient. iMCC [18] is the MCC diference between two approaches. Cost for WFS, WDR,

and MT denote the time of warning feature selection, warning dataset rebalancing, and model training, respectively. RED

[107] is the redundancy rate of warning features. Ratio [49, 83] is the performance ratio of the proposed ranking approach

against the random ranking. FP��� is the average cumulative number of unactionable warnings before actionable warnings

are found [49, 79, 82, 83]. Times are the iterations for all discovered bugs in the ML-based AWI ranking approach.

HoldOut cross validation. HoldOut cross validation randomly divides the warning dataset into the training
and sets. The common split ratios in HoldOut cross validation are 70/30 [15, 85] or 80/20 [46, 85, 112]. Fig. 7a
shows that 17 studies adopt HoldOut cross validation, where 11 [14, 15, 31, 46, 85, 93, 94, 109, 112, 114, 123] and 6
[9, 36, 49, 61, 80, 120]) studies are related to classiication and ranking approaches respectively. In comparison to
K-fold cross validation, HoldOut cross validation can inish the AWI model evaluation faster. However, HoldOut
cross validation highly relies on the class distribution and split ratio, which could cause overitting [86].
Leave P Out cross validation. In Leave P Out cross validation, P warnings are left as the test set, and the

remaining warnings are used as the training set. This process is repeated for all possible combinations of leaving
out P samples from the warning dataset. Only one study [44] related to the warning classiication adopts Leave P
Out cross validation. Similar to K-fold cross validation, the entire warning dataset in Leave P Out cross validation
is used for the training and test sets, which can reduce the estimation bias [48]. Compared to HoldOut cross
validation, Leave P Out cross validation is more time-consuming when used for the AWI model evaluation.

Rolling cross validation. Rolling, aka time series-based, cross validation divides the warning dataset into the
training and test sets in chronological order. For example, Wang et al. [39] build an AWI classiier in the warnings
reported from a prior revision and use the warnings reported from a later revision to evaluate the performance of
this classiier. Fig. 7a shows that ive studies adopt the rolling cross validation, where three [39, 102, 110] and two
[33, 56] studies fall into classiication and ranking approaches respectively. Rolling cross validation can relect the
real-world validation scenario, while being incompatible with the above three strategies due to time-sensitivity.
As shown in Fig. 7a, one study [32] separately attempts K-fold and HoldOut cross validation for AWI model

evaluation. In addition, three studies [50, 78, 115] do not clearly mention the validation strategies for AWI model
evaluation.

4.6.2 Performance measure in AWI. As shown in Fig. 7b, 47% (24/51) of primary studies use Recall, followed
by Precision (39%) and Accuracy (31%). Precision@K and FP��� are the most frequently used by the ranking
approach, which involve eight [36, 50, 56, 70, 76, 80, 92, 98] and four [49, 79, 82, 83] studies respectively. Nine
studies use Cost to evaluate the eiciency of sub-parts in the classiication approach, including the warning
feature selection [107], warning dataset rebalancing [18], and model training [46, 47, 85, 102, 109, 110, 113]. In
particular, one study [107] designs RED to evaluate the performance diference among warning feature selection

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 25

techniques. One study [18] uses iMCC, derived fromMCC, to evaluate the MCC diference between two ML-based
AWI approaches. Two studies [49, 83] adopt Ratio to evaluate the performance diference between the proposed
ranking approach and random ranking.

Since diferent studies conduct experimental evaluations on diferent warning datasets, we focus on analyzing
the performance results in 10 studies with the same warning dataset. It is observed that on the same noisy and
duplicate warning samples with data-leaked warning features, the AUC of eight studies [18, 79, 94, 102, 105, 107,
109, 110] almost falls into 70%∼90%. However, on the same clean warning features and samples obtained via the
manual iltering in the work of Kang et al. [39], AUC generally drops to 50%∼70% [39, 107, 112]. This means that
there is the substantial room for AWI performance improvement.

Summary RQ5: The AWI model evaluation stage in the ML-based AWI approaches contains the validation
strategy and performance measure. Speciically, K-fold cross validation occupies the majority, followed
by HoldOut and rolling cross validation. Recall, Precision, and Accuracy are the most commonly used
performance measures in primary studies.

5 Future Research Directions

Based on the above analysis results in primary studies, we highlight research directions for the future ML-based
AWI ield from the perspectives of data improvement and model exploration in the typical ML-based AWI
worklow.

5.1 Research Directions in Data Improvement

(1) Collecting warning datasets with various SCAs and project development languages. As shown
in Section 4.3, most primary studies collect warning datasets from FindBugs and CppCheck as well as Java
and C/C++ projects, respectively. However, few studies focus on SCAs (e.g., the symbolic execution-based SCA
called Klocwork4) and project development languages (e.g., Python) for the warning dataset acquisition. Also,
the analysis results in Section 4.3 indicate that due to SCAs with various techniques and project development
languages, the acquired warning dataset is vastly diverse. Such diversity can help evaluate the generalizability of
the ML-based AWI approach [57, 116]. In addition, it is observed that the warning datasets in only 17 primary
studies are traceable. Speciically, the most commonly used and available real-world warning dataset, collected
from FindBugs and Java projects, has been adopted by 10 studies [18, 39, 79, 94, 102, 105, 107, 109, 110, 112].
However, such a warning dataset contains mislabeled and duplicate samples [39]. The warning datasets used in
two studies [47, 113] can be available. However, the warning datasets contain many synthetic warnings and only
a small part of real-world warnings. In particular, there are only about 400 real-world warnings used for AWI in
the study [113]. The remaining studies [27, 61, 76, 80, 120] either only disclose the real-world projects rather than
the warning dataset corresponding with these projects, or collect warning datasets from the synthetic project
source. Thus, it is essential to collect the diverse and real-world warning dataset and encourage disclosure of the
collected warning dataset to stimulate the ML-based AWI process.
(2) Improving the labeling strategy to construct more reliable warning datasets. It is summarized

in Section 4.3 that the automatic and manual strategies are two main ways to label warnings. The automatic
labeling strategy, especially the closed warning-based heuristic [39], is an important tactic to automatically
construct a large-scale and real-world dataset. However, such a heuristic is extremely sensitive to the warning-
irrelevant source code changes, thereby causing mislabeled warnings [102]. Although some studies [53, 57, 116]
are proposed to improve such a heuristic, there is still much improvement room for the warning labeling accuracy
due to limitations of the warning-irrelevant source code discernment algorithm. It indicates that the current

4https://www.perforce.com/products/klocwork

ACM Comput. Surv.

26 • X. Ge et al.

state-of-the-art heuristic is not still robust enough to label warnings. By contrast, solely performing the warning
labeling via the manual strategy is not easy to scale and may be subject to the bias of an annotator [39]. Despite
combining manual and automatic strategies for warning labeling in the primary studies, the current hybrid
strategy mainly focuses on serialization (i.e., the manual and automatic strategies are used in sequential order
to label warnings) rather than collaboration (i.e., the manual and automatic strategies are used interactively to
label warnings). Such a serialization way results in the inability to fully utilize the role of manual and automatic
strategies in the warning labeling process. Thus, we believe that it could be a promising labeling strategy via the
human-machine collaboration to construct a reliable warning dataset. That is, the heuristic can gather diferent
information (e.g., the source code revision message and the developer activity) to enrich warnings, thereby
helping simplify the manual labeling process for annotators. In turn, the manual annotation could provide domain
knowledge for complex warnings, thereby helping the heuristic obtain more precision warning labels.
(3) Characterizing warnings with more ine-grained features for AWI. First, Section 4.4 shows ive

categories of warning features in the primary studies. A few studies [41, 47, 113] only mention that the sequential
warning features can achieve superior performance in comparison to the characteristic-based and statistical
warning features. However, it is not unclear which of the ive warning feature categories in Section 4.4 shows the
most powerful AWI ability. Further, although some studies (e.g., [102]) attempt diferent categories of warning
features (e.g., characteristic-based, statistical, and content-based) for AWI, these studies are unaware of what
combinations of diferent warning feature categories could maximize AWI performance. Thus, it is necessary to
conduct a comprehensive empirical evaluation on diferent categories of warning features and their combinations,
thereby seeking out more precise and thorough warning features for AWI. Second, in comparison to the other
four categories, the structural category is the most expressive in the root cause of actionable and unactionable
warnings due to being able to grasp the intrinsic information of reported warnings (i.e., syntax and semantics)
[2]. In nine studies related to the structural category, warning features are mainly extracted by using the program
slicing [104] to obtain the program dependency graph of the warning or using the def-use analysis [73] to
construct the datalog derivation graph of the warning. However, due to the limitations of program slicing and
def-use analysis techniques [9, 73, 104], there is still warning-irrelevant or imprecision information in the program
dependency graph and datalog derivation graph. Thus, it is essential to use more precise static analysis (e.g.,
SMT [37]) and more explicit dynamic execution tactics (e.g., fuzzing [38]) for acquiring suiciently structural
information but eliminating irrelevant information, thereby extracting more rigorous and complete warning
features for AWI. Third, the SCA report is one of the important warning feature sources. The warning message
(i.e., a warning characteristic in the SCA report) summarizes the basic warning information, which can provide
auxiliary information for AWI [81]. However, few studies consider the warning message for AWI. In the future, it
could be a useful way to further enrich warnings for AWI by incorporating the warning message into warning
features.

(4) Employing feature selection techniques to enhance the AWI performance. Through the fractal-based
method [52], Yang et al. [109] experimentally prove that the original warning features in the work of Wang
et al. [102] are inherently low-dimension. Similarly, Ge et al. [107] observe that the original warning features
[112] contain irrelevant and redundant features via PCA. Also, the evaluation in ive studies [3, 27, 102, 117, 123]
explicitly reveals that the warning features processed by feature selection techniques are more discriminative
for AWI. In particular, instead of using the of-the-shelf feature selection techniques [3, 27, 102, 117, 123],
UNEASE[107] designs an unsupervised warning feature selection method for AWI, which can obtain the top-
ranked AUC while maintaining low feature selection cost and feature redundancy rate. The above indings
demonstrate that there could be irrelevance and redundancy in the original warning features, and the AWI
performance can be further ampliied after applying feature selection techniques to the original warning features.
However, most primary studies directly adopt the original warning features for AWI, while only 11 studies adopt
feature selection techniques for AWI. Thus, researchers and practitioners should pay more attention to the role

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 27

of feature selection techniques in AWI. Further, it could be useful to employ feature selection techniques for
enhancing AWI performance.

(5) Selecting elaborately class rebalancing techniques to improve the AWI performance. The warning
dataset in the primary studies presents a prevailing phenomenon, i.e., class imbalance. Such a phenomenon limits
the ML-based AWI performance [18, 123]. However, most primary studies (i.e., 43) ignore the class imbalance when
performing ML-based AWI. Only nearly 16% (8/51) of primary studies attempt the class rebalancing technique to
mitigate the class imbalance, thereby performing ML-based AWI. In particular, Ge et al. [18] investigate whether
the of-the-shelf class rebalancing techniques can consistently improve the ML-based AWI performance. The
experimental results describe that most class rebalancing techniques can signiicantly improve ML-based AWI
performance. Surprisingly, a small part of class rebalancing techniques (e.g., KMeans-SMOTE) does not work for
AWI in the imbalanced warning datasets. As such, researchers and practitioners should be concerned about the
impact of class imbalance on AWI performance and further select elaborately the class rebalancing technique to
improve AWI performance.

5.2 Research Directions in Model Exploration

(1) Attempting semi-supervised or unsupervised learning for AWI. The ML paradigm mainly contains
supervised, semi-supervised, and unsupervised learning. As shown in Section 4.5, almost all ML-based AWI
approaches in the primary studies follow supervised learning for AWI, which often requires massive labeled
warnings to achieve high AWI performance. However, as shown in the warning dataset preparation of Section 4.3,
massive reliable and labeled warnings are often hard to gather quickly in practice [39, 53, 57, 116]. By contrast,
semi-supervised learning can use a small portion of labeled samples and lots of unlabeled samples to train
a predictive model, and unsupervised learning can identify patterns in unlabeled samples. Particularly, Tu et
al. [94] is the irst to adopt semi-supervised learning for AWI and achieve superior AWI performance. Thus,
semi-supervised or unsupervised learning is strongly recommended for AWI, so as to help reduce the number of
labeled warnings as many as possible while maintaining high AWI performance.
(2) Exploring AWI via large language models. Large Language Models (LLMs) are PTMs with larger-

scale corpora and more training parameters. Similar to PTMs, LLMs can directly capture the rich sequential,
syntactic, and semantic information from a given source code snippet. This is because the well-designed attention
mechanism in the transformer structure of LLMs has the ability to localize areas of interest, thereby helping
explain the factors contributing to speciic tasks (e.g., vulnerability detection) and efectively boosting their
performance [60, 99]. Besides, pre-training (i.e., training on large-scale and unlabeled corpora) and ine-tuning
(i.e., training on a few labeled samples related to the downstream task) are proved to play critical roles in LLMs
[19]. Currently, LLMs have already exhibited tremendous potential in various software engineering tasks [58].
However, only two studies [41, 112] attempt PTMs for AWI. Despite revealing higher AWI performance in PTMs
compared to TML and DL models, Kharkar et al. [41] only conduct a preliminary study for AWI on two obsolete
PTMs (i.e., CodeBERTa and GPT-C). It indicates that the ability of current LLMs (e.g., ChatGPT45) has not been
fully investigated in the ML-based AWI community. As many state-of-the-art LLMs are proposed and released, an
immediate direction is to conduct systematic experiments to understand the merits and shortcomings of LLMs in
AWI, thereby exploring how to use LLMs for enhancing AWI. In addition, it could be an efective way to enlarge
the beneits of pre-training (e.g., developing domain-speciic LLMs by pre-training the AWI-related task) and
ine-tuning (e.g., enhancing AWI performance by ine-tuning LLMs on massive warning datasets) when applying
LLMs to AWI.

(3) Designing the customized AWI approaches for diferent categories of warnings. Diferent categories
of warnings have diferent characteristics. For example, warnings with cross-site scripting (XSS) generally contain

5https://chat.openai.com/

ACM Comput. Surv.

28 • X. Ge et al.

URI schema, host name, or port number. Once an XSS vulnerability in a project is attacked, the privacy information
of this project is leaked. By contrast, warnings with bad practices are related to the source code writing standards,
which do not necessarily cause software defects. This indicates that an ML-based AWI approach used to identify
one category of warnings could not perfectly it the other category of warnings. However, nearly 65% (33/51) of
primary studies ignore the impact of warning categories on AWI, i.e., adopt a designed ML-based AWI approach
to sweepingly identify all categories of warnings reported by a SCA. Although the remaining 18 primary studies
[3, 9, 14, 15, 32, 33, 41, 44, 49, 51, 61, 62, 70, 76, 80, 92, 98, 120] design the corresponding ML-based AWI approaches
to identify one or several speciic warning categories (e.g., datatrace [80]), these studies ignore the exploration
about the performance diference of the designed ML-based AWI approach on diferent categories of warnings.
In future work, it is necessary to make the cons and pros of diferent ML-based AWI approaches on diferent
categories of warnings, thereby helping select a proper ML-based AWI approach for a given warning category.
Further, it is strongly recommended to design the customized ML-based AWI approach for diferent categories of
warnings, thereby contrapuntally enhancing AWI performance.

(4) Conducting the practical AWI model evaluation via rolling cross validation. As shown in Section
4.6, the common strategy used for the ML-based AWI model evaluation is K-fold and HoldOut cross validation,
which occupy 80% of primary studies. The two validation strategies, especially for K-fold cross validation, often
make the sample distribution between the training and test sets consistent [20]. Conversely, in the real-world
scenario, warnings in the training set should be historically prior to that of the test set. It indicates that warnings
in the test set may be similar to warnings in the training set, contain warnings that are unknown to the training
set, or even be entirely diferent from warnings in the training set. Thus, the two validation strategies ignore the
warning timelines in the real-world scenario, which could result in exaggerating the performance of ML-based
AWI approaches [20, 75]. The rolling cross validation, dividing the warning dataset into the training and test sets
in chronological order, can exactly satisfy the ML-based AWI model evaluation requirement in the real-world
scenario. However, only ive primary studies [33, 39, 56, 102, 110] consider the rolling cross validation as the
ML-based AWI validation strategy. It indicates that the performance of ML-based AWI approaches in most primary
studies could be biased in the real-world scenario. Thus, we recommend adopting the rolling cross validation
to conduct the practical AWI model evaluation, thereby helping reveal the ML-based AWI performance in the
real-world scenario.

6 Threats to Validity

External. The threat to external validity concerns whether the indings of our survey are generalizable beyond
studies in the entire ML-based AWI population. Since all primary studies are collected from the entire ML-based
AWI population, this threat is not applicable.

Internal. The threat to internal validity concerns the problems of data extraction consistency and correctness.
To alleviate the above problems, we conduct a pilot study and double manual veriication in the process of data
extraction (see in Section 2).
Construct. The threat to construct validity concerns whether our collected primary studies are related to

ML-based AWI or miss relevant ML-based AWI studies. To ensure the relevance and completeness of the collected
primary studies, we irst inherit and extend the search keywords from the latest AWI studies [67]. Besides, we
design the selection criteria based on a pilot search and perform the selection of primary studies based on the
2-pass review. Moreover, we conduct the snowballing to help identify relevant studies that could be missed by
the keywords-based search. Thus, we believe that this threat of construct validity can be mitigated in our survey.

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 29

7 Conclusion

In this paper, we conduct a comprehensive survey related to the ML-based AWI approach. We irst perform a
meticulous survey methodology to collect ML-based AWI studies in ive digital libraries from 2000 to 2023, thereby
obtaining 51 primary studies. After that, we describe a typical ML-based AWI worklow, including the warning
dataset preparation, preprocessing, AWI model construction, and evaluation. By following such a worklow,
we rely on the warning output format to classify ML-based AWI approaches into three categories, involving
classiication, ranking, and combination approaches. Besides, we analyze the techniques used in each stage of
such a typical worklow by discussing their strengths and weaknesses as well as presenting their distribution
under the three ML-based AWI approach categories. Finally, we rely on the analysis results to highlight practical
research directions for the ML-based AWI community.

Acknowledgements

We would like to thank the anonymous reviewers for their insightful comments. The work is partly supported
by the National Natural Science Foundation of China (61932012, 62372228, 62141215) and the Program of China
Scholarship Council (Grant No. 202306190140).

References
[1] Jens Grabowski Alexander Trautsch, Stefen Herbold. 2020. A longitudinal study of static analysis warning evolution and the efects of

pmd on software quality in Apache open source projects. Empirical Software Engineering (EMSE) 25 (2020), 5137ś5192.
[2] Artemis Alexiadou, Hagit Borer, and Florian Schäfer. 2014. The syntax of roots and the roots of syntax. Vol. 51. Oxford University Press.
[3] Enas A. Alikhashashneh, Rajeev R. Raje, and James H. Hill. 2018. Using machine learning techniques to classify and predict static sode

snalysis tool warnings. In Proceedings of the 15th IEEE/ACS International Conference on Computer Systems and Applications (AICCSA).
IEEE, Aqaba, 1ś8.

[4] Esben Sparre Andreasen, Anders Mùller, and Benjamin Barslev Nielsen. 2017. Systematic approaches for increasing soundness and
precision of static analyzers. In Proceedings of the 6th ACM SIGPLAN International Workshop on State of the Art in Program Analysis.
ACM, Barcelona, 31ś36.

[5] Maxwell Berman, Stephen Adams, Tim Sherburne, Cody Fleming, and Peter Beling. 2019. Active learning to improve static analysis. In
Proceedings of the 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, Florida, 1322ś1327.

[6] Tim Buckers, Clinton Cao, Michiel Doesburg, Boning Gong, Sunwei Wang, Moritz Beller, and Andy Zaidman. 2017. UAV: warnings
from multiple automated static analysis tools at a glance. In Proceedings of the 24th International Conference on Software Analysis,

Evolution and Reengineering (SANER). IEEE, Klagenfurt, 472ś476.
[7] David Budgen and Pearl Brereton. 2006. Performing systematic literature reviews in software engineering. In Proceedings of the 28th

International Conference on Software Engineering (ICSE). IEEE/ACM, Shanghai, 1051ś1052.
[8] Supriyo Chakraborty, Richard Tomsett, Ramya Raghavendra, Daniel Harborne, Moustafa Alzantot, Federico Cerutti, Mani Srivastava,

Alun Preece, Simon Julier, Raghuveer M Rao, et al. 2017. Interpretability of deep learning models: a survey of results. In IEEE

Smartworld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big

Data Computing, Internet of People and Smart City Innovation (Smartworld/SCALCOM/UIC/ATC/CBDcom/IOP/SCI). IEEE, San Francisco,
1ś6.

[9] Tianyi Chen, Kihong Heo, and Mukund Raghothaman. 2021. Boosting static analysis accuracy with instrumented test executions. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software

Engineering (ESE/FSE). ACM, Singapore, 1154ś1165.
[10] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a uniied lattice model for static analysis of programs by construction

or approximation of ixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages.
ACM, Los Angeles California, 238ś252.

[11] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical review of automated analysis tools on 47,587 ethereum
smart contracts. In Proceedings of the 42rd International Conference on Software Engineering (ICSE). IEEE/ACM, Seoul, 530ś541.

[12] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. 2000. Checking system rules using system-speciic, programmer-written
compiler extensions. In Proceedings of the 4th Conference on Symposium on Operating System Design & Implementation - Volume 4. ACM,
San Diego, 1ś16.

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al.
2020. Codebert: A pre-trained model for programming and natural languages. Findings of the Association for Computational Linguistics

ACM Comput. Surv.

30 • X. Ge et al.

(ACL) 1, 1 (2020), 1536ś1547.
[14] Lori Flynn, William Snavely, and Zachary Kurtz. 2021. Test suites as a source of training data for static analysis alert classiiers. In

Proceedings of the 2rd IEEE/ACM International Conference on Automation of Software Test (AST). ACM, Seoul, 100ś108.
[15] Lori Flynn, William Snavely, David Svoboda, Nathan VanHoudnos, Richard Qin, Jennifer Burns, David Zubrow, Robert Stoddard, and

Guillermo Marce-Santurio. 2018. Prioritizing alerts from multiple static analysis tools, using classiication models. In Proceedings of the

1st International Workshop on Software Qualities and Their Dependencies (SQUADE). IEEE/ACM, Gothenburg, 13ś20.
[16] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and Francisco Herrera. 2012. A review on ensembles for the

class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews) 42, 4 (2012), 463ś484.
[17] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. 2014. A survey on concept drift adaptation.

ACM Computing Surveys (CSUR) 46, 4 (2014), 1ś37.
[18] Xiuting Ge, Chunrong Fang, Tongtong Bai, Jia Liu, and Zhihong Zhao. 2023. An empirical study of class rebalancing methods for

actionable warning identiication. IEEE Transactions on Reliability (TR) (Early Access) 72, 4 (2023), 1ś15.
[19] Xiuting Ge, Chunrong Fang, Quanjun Zhang, Daoyuan Wu, Bowen Yu, Qirui Zheng, An Guo, Shangwei Lin, Zhihong Zhao, Yang Liu,

et al. 2024. Pre-trained Model-based Actionable Warning Identiication: A Feasibility Study. arXiv preprint arXiv:2403.02716 (2024).
[20] Xiuting Ge, Yifan Huang, Zhanwei Hui, Xiaojuan Wang, and Xu Cao. 2021. Impact of datasets on machine learning based methods in

Android malware detection: an empirical study. In Proceedings of the 21st International Conference on Software Quality, Reliability and

Security (QRS). IEEE, Hainan, 81ś92.
[21] Xiuting Ge, Shengcheng Yu, Chunrong Fang, Qi Zhu, and Zhihong Zhao. 2023. Leveraging android automated testing to assist

crowdsourced testing. IEEE Transactions on Software Engineering (TSE) 49, 4 (2023), 2318ś2336.
[22] Asem Ghaleb and Karthik Pattabiraman. 2020. How efective are smart contract analysis tools? evaluating smart contract static analysis

tools using bug injection. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
ACM, Vitual Event USA, 415ś427.

[23] Trisha Greenhalgh and Richard Peacock. 2005. Efectiveness and eiciency of search methods in systematic reviews of complex
evidence: audit of primary sources. Bmj 331, 7524 (2005), 1064ś1065.

[24] Zhaoqiang Guo, Tingting Tan, Shiran Liu, Xutong Liu, Wei Lai, Yibiao Yang, Yanhui Li, Lin Chen, Wei Dong, and Yuming Zhou. 2023.
Mitigating False Positive Static Analysis Warnings: Progress, Challenges, and Opportunities. IEEE Transactions on Software Engineering

(TSE) 49, 12 (2023), 5154ś5188.
[25] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao, Ao Zhang, Liang Zhang, et al. 2021.

Pre-trained models: Past, present and future. AI Open 2 (2021), 225ś250.
[26] Quinn Hanam, Lin Tan, Reid Holmes, and Patrick Lam. 2014. Finding patterns in static analysis alerts: improving actionable alert

ranking. In Proceedings of the 11th Working Conference on Mining Software Repositories (MSR). ACM, Hyderabad, 152ś161.
[27] Sarah Heckman and Laurie Williams. 2009. A model building process for identifying actionable static analysis alerts. In Proceedings of

the 2rd International Conference on Software Testing Veriication and Validation (ICST). IEEE, Dublin, 161ś170.
[28] Sarah Heckman and Laurie Williams. 2011. A systematic literature review of actionable alert identiication techniques for automated

static code analysis. Information and Software Technology (IST) 53, 4 (2011), 363ś387.
[29] Sarah Smith Heckman. 2007. Adaptively ranking alerts generated from automated static analysis. XRDS: Crossroads, The ACM Magazine

for Students 14, 1 (2007), 1ś11.
[30] Sarah Smith Heckman and Laurie Ann Williams. 2008. A measurement framework of alert characteristics for false positive mitigation

models. North Carolina State University, Depth of Computer Science 1 (2008), 1ś6.
[31] Péter Hegedűs and Rudolf Ferenc. 2022. Static code analysis alarms iltering reloaded: a new real-world dataset and its ml-based

utilization. IEEE Access 10 (2022), 55090ś55101.
[32] Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. 2017. Machine-learning-guided selectively unsound static analysis. In Proceedings of the

39th International Conference on Software Engineering (ICSE). IEEE/ACM, Buenos Aires, 519ś529.
[33] Kihong Heo, Mukund Raghothaman, Xujie Si, and Mayur Naik. 2019. Continuously reasoning about programs using diferential

bayesian inference. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
ACM, Copenhagen, 561ś575.

[34] Apirak Hoonlor, Boleslaw K Szymanski, and Mohammed J Zaki. 2013. Trends in computer science research. Communiccations of the

ACM 56, 10 (2013), 74ś83.
[35] James W. Hunt and Thomas G. Szymanski. 1977. A fast algorithm for computing longest common subsequences. Commun. ACM 20, 5

(1977), 350ś353.
[36] Yungbum Jung, Jaehwang Kim, Jaeho Shin, and Kwangkeun Yi. 2005. Taming false alarms from a domain-unaware c analyzer by a

bayesian statistical post analysis. In Proceedings of the 12th International Conference on Static Analysis (SAS). ACM, Berlin, 203ś217.
[37] Maximilian Junker, Ralf Huuck, Ansgar Fehnker, and Alexander Knapp. 2012. SMT-based false positive elimination in static program

analysis. In Proceeding of the 14th International Conference on Formal Engineering Methods (ICFEM). IEEE, Kyoto, 316ś331.

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 31

[38] Ashwin Kallingal Joshy, Xueyuan Chen, Benjamin Steenhoek, and Wei Le. 2021. Validating Static Warnings via Testing Code Fragments.
In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). ACM, Denmark, 540ś552.

[39] Hong Jin Kang, Khai Loong Aw, and David Lo. 2022. Detecting false alarms from automatic static analysis tools: how far are we?. In
Proceedings of the 44th IEEE/ACM International Conference on Software Engineering (ICSE). IEEE/ACM, Pittsburgh, 698ś709.

[40] Stafs Keele et al. 2007. Guidelines for performing systematic literature reviews in software engineering.
[41] Anant Kharkar, Roshanak Zilouchian Moghaddam, Matthew Jin, Xiaoyu Liu, Xin Shi, Colin Clement, and Neel Sundaresan. 2022.

Learning to reduce false positives in analytic bug Detectors. In Proceedings of the 44th International Conference on Software Engineering

(ICSE). IEEE/ACM, Pittsburgh, 1307ś1316.
[42] Jack Kiefer and Jacob Wolfowitz. 1959. Optimum designs in regression problems. The annals of mathematical statistics 30, 2 (1959),

271ś294.
[43] Gary A. Kildall. 1973. A uniied approach to global program optimization. In Proceedings of the 1st Annual ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages (POPL). ACM, Boston, 194ś206.
[44] Hyunsu Kim, Mukund Raghothaman, and Kihong Heo. 2022. Learning probabilistic models for static analysis alarms. In Proceedings of

the 44th International Conference on Software Engineering (ICSE). IEEE/ACM, Pittsburgh, 1282ś1293.
[45] Sunghun Kim and Michael D. Ernst. 2007. Which warnings should i ix irst?. In Proceedings of the 6th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering (ESEC/FSE). ACM,
Dubrovnik, 45ś54.

[46] Ugur Koc, Parsa Saadatpanah, Jefrey S. Foster, and Adam A. Porter. 2017. Learning a classiier for false positive rrror reports emitted
by static code analysis tools. In Proceedings of the 1st ACM SIGPLAN International Workshop on Machine Learning and Programming

Languages (MAPL). ACM, Barcelona, 35ś42.
[47] Ugur Koc, Shiyi Wei, Jefrey S. Foster, Marine Carpuat, and Adam A. Porter. 2019. An empirical assessment of machine learning

approaches for triaging reports of a java static analysis tool. In Proceedings of the 12th IEEE Conference on Software Testing, Validation

and Veriication (ICST). IEEE, Xi’an, 288Ð99.
[48] Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 2rd

of International Joint Conference on Artiicial Intelligence, Vol. 14. IEEE, Montreal, 1137ś1145.
[49] Ted Kremenek, Ken Ashcraft, Junfeng Yang, and Dawson Engler. 2004. Correlation exploitation in error ranking. In Proceedings of

the 12th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering

(ESE/FSE). ACM, California, 83ś93.
[50] Ted Kremenek and Dawson Engler. 2003. Z-Ranking: using statistical analysis to counter the impact of static analysis approximations.

In Proceedings of the 10th International Conference on Static Analysis (SAS). ACM, California, 295ś315.
[51] Seongmin Lee, Shin Hong, Jungbae Yi, Taeksu Kim, Chul-Joo Kim, and Shin Yoo. 2019. Classifying false positive static checker alarms in

continuous integration using convolutional neural networks. In Proceedings of the 12th IEEE Conference on Software Testing, Validation

and Veriication (ICST). IEEE, Xi’an, 391ś401.
[52] Elizaveta Levina and Peter Bickel. 2004. Maximum likelihood estimation of intrinsic dimension. Advances in Neural Information

Processing Systems 17 (2004), 1ś8.
[53] Junjie Li. 2021. A better approach to track the evolution of static code warnings. In Proceedings of the 43rd International Conference on

Software Engineering: Companion Proceedings (ICSE-Companion). IEEE/ACM, Madrid, 135ś137.
[54] Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei Liu, Yang Liu, and Yixiang Chen. 2024. Comparison and Evaluation

on Static Application Security Testing (SAST) Tools for Java. In Proceedings of the 31st ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, Brazil, 921ś933.
[55] Kaituo Li, Christoph Reichenbach, Christoph Csallner, and Yannis Smaragdakis. 2014. Residual investigation: Predictive and precise

bug detection. ACM Transactions on Software Engineering and Methodology (TOSEM) 24, 2 (2014), 1ś32.
[56] Guangtai Liang, Ling Wu, Qian Wu, Qianxiang Wang, Tao Xie, and Hong Mei. 2010. Automatic construction of an efective training set

for prioritizing static analysis warnings. In Proceedings of the 25th International Conference on Automated Software Engineering (ASE).
IEEE/ACM, Antwerp, 93ś102.

[57] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Shin Yoo, and Yves Le Traon. 2021. Mining ix patterns for indBugs violations. IEEE
Transactions on Software Engineering (TSE) 47, 1 (2021), 165ś188.

[58] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2023. Pre-train, prompt, and predict: a
systematic survey of prompting methods in natural language processing. ACM Computing Surveys (CSUR) 55, 9 (2023), 1ś35.

[59] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv:1907.11692 (2019), 1ś13.

[60] Wei Ma, Shangqing Liu, Menjie Zhao, Xiaofei Xie, WenhanWang, Qiang Hu, Jie Zhang, and Yang Liu. 2024. Unveiling Code Pre-Trained
Models: Investigating Syntax and Semantics Capacities. ACM Transactions on Software Engineering Methodology (TOSEM) (2024). Just
Accepted.

ACM Comput. Surv.

32 • X. Ge et al.

[61] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. 2015. A user-guided approach to program analysis. In Proceedings of the 10th

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, Bergamo, 462ś473.

[62] Ibéria Medeiros, Nuno F. Neves, and Miguel Correia. 2014. Automatic detection and correction of web application vulnerabilities using
data mining to predict false positives. In Proceedings of the 23rd International Conference on World Wide Web (WWW). ACM, Seoul,
63ś74.

[63] Qingkun Meng, Chao Feng, Bin Zhang, Chaojing Tang, et al. 2017. Assisting in auditing of bufer overlow vulnerabilities via machine
learning. Mathematical Problems in Engineering 2017 (2017), 1ś14.

[64] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized object sensitivity for points-to analysis for java. ACM
Transaction Software Engineering Methodology (TOSEM) 14, 1 (jan 2005), 1ś41.

[65] Boris Motik and Ulrike Sattler. 2006. A comparison of reasoning techniques for querying large description logic aboxes. In Proceedings

of the 11th International Conference on Logic for Programming Artiicial Intelligence and Reasoning (LPAR). Springer, Cambodia, 227ś241.
[66] Tukaram Muske and Alexander Serebrenik. 2016. Survey of approaches for handling static analysis alarms. In Proceedings of the 16th

International Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE, North Carolina, 157ś166.
[67] Tukaram Muske and Alexander Serebrenik. 2022. Survey of approaches for postprocessing of static analysis alarms. ACM Computing

Survey (CSUR) 55, 3 (2022), 1ś39.
[68] Tukaram B Muske, Ankit Baid, and Tushar Sanas. 2013. Review eforts reduction by partitioning of static analysis warnings. In

Proceedings of the 13th International Working Conference on Source Code Analysis and Manipulation (SCAM). ACM, Eindhoven, 106ś115.
[69] Jaechang Nam and Sunghun Kim. 2015. Clami: Defect prediction on unlabeled datasets. In Proceedings of the 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE). IEEE, USA, 452ś463.
[70] Kien-Tuan Ngo, Dinh-Truong Do, Thu-Trang Nguyen, and Hieu Dinh Vo. 2021. Ranking warnings of static analysis tools using

representation learning. In Proceedings of the 28th Asia-Paciic Software Engineering Conference (APSEC). Taibei, IEEE, 327ś337.
[71] Paulo Nunes, Ibéria Medeiros, José Fonseca, Nuno Neves, Miguel Correia, and Marco Vieira. 2017. On combining diverse static analysis

tools for web security: an empirical study. In Proceedings of 13th European Dependable Computing Conference (EDCC). ACM, Pisa,
121ś128.

[72] Paulo Nunes, Ibéria Medeiros, José C. Fonseca, Nuno Neves, Miguel Correia, and Marco Vieira. 2018. Benchmarking static analysis
tools for web security. IEEE Transactions on Reliability (TR) 67, 3 (2018), 1159ś1175.

[73] Hemant D. Pande, William A Landi, and Barbara G. Ryder. 1994. Interprocedural def-use associations for c systems with single level
pointers. IEEE Transactions on Software Engineering (TSE) 20, 5 (1994), 385ś403.

[74] Sebastiano Panichella, Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. 2015. Would static analysis tools help
developers with code reviews?. In Proceeding of the 22nd IEEE International Conference on Software Analysis, Evolution, and Reengineering

(SANER). IEEE, Montreal, 161ś170.
[75] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo Cavallaro. 2019. {TESSERACT}: Eliminating

experimental bias in malware classiication across space and time. In Proceedings of the 28th USENIX Security Symposium. USENIX
Association, USA, 729ś746.

[76] Jose D’Abruzzo Pereira, João R. Campos, and Marco Vieira. 2019. An exploratory study on machine learning to combine security
vulnerability alerts from static analysis tools. In Proceedings of the 9th Latin-American Symposium on Dependable Computing (LADC).
IEEE, Fortaleza, 1ś10.

[77] José D’Abruzzo Pereira, João R Campos, and Marco Vieira. 2021. Machine learning to combine static analysis alerts with software
metrics to detect security vulnerabilities: An empirical study. In Proceedings of the 2021 17th European Dependable Computing Conference

(EDCC). ACM, Pisa, 1ś8.
[78] Meiyuan Qian, Jun Luo, Yu Ge, Chen Sun, Xiuting Ge, and Wanmin Huang. 2021. Semantic-based false alarm detection approach via

machine learning. In 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE,
Guangzhou, 60ś66.

[79] Mingshuang Qing, Xiang Feng, Jun Luo, Wanmin Huang, Jingui Zhang, Ping Wang, Yong Fan, Xiuting Ge, and Ya Pan. 2021. A machine
learning-based static analysis warning prioritization. In Proceedings of the 21st International Conference on Software Quality, Reliability

and Security Companion (QRS-C). IEEE, Guangzhou, 685ś690.
[80] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018. User-guided program reasoning using bayesian inference.

In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM, Pennsylvania,
722ś735.

[81] Sarah Rastkar, Gail C Murphy, and Gabriel Murray. 2014. Automatic summarization of bug reports. IEEE Transactions on Software

Engineering (TSE) 40, 4 (2014), 366ś380.
[82] Athos Ribeiro, Paulo Meirelles, Nelson Lago, and Fabio Kon. 2018. Ranking source code static analysis warnings for continuous

monitoring of loss repositories. In Open Source Systems: Enterprise Software and Solutions. Springer, Athens, 90ś101.

ACM Comput. Surv.

Machine Learning for Actionable Warning Identification: A Comprehensive Survey • 33

[83] Athos Ribeiro, Paulo Meirelles, Nelson Lago, and Fabio Kon. 2019. Ranking warnings from multiple source code static analyzers via
ensemble learning. In Proceedings of the 15th International Symposium on Open Collaboration (OpenSym). ACM, Skövde, 10 pages.

[84] Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their decision problems. Journal of Symbolic Logic 74, 2 (1953),
358ś366.

[85] Joseph R. Ruthruf, John Penix, J. David Morgenthaler, Sebastian Elbaum, and Gregg Rothermel. 2008. Predicting accurate and actionable
static analysis warnings: an experimental approach. In Proceedings of the 30th International Conference on Software Engineering (ICSE).
IEEE/ACM, Leipzig, 341ś350.

[86] Bushra Sabir, Faheem Ullah, M. Ali Babar, and Raj Gaire. 2021. Machine learning for detecting data exiltration: a review. ACM

Computing Survey (CSUR) 54, 3 (2021), 1ś47.
[87] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. 2018. Lessons from building static analysis

tools at Google. Communications of the ACM, 61, 4 (2018), 58ś66.
[88] Lwin Khin Shar and Hee Beng Kuan Tan. 2012. Mining input sanitization patterns for predicting sql injection and cross site scripting

vulnerabilities. In Proceedins of the 34th International Conference on Software Engineering (ICSE). IEEE/ACM, Zurich, 1293ś1296.
[89] Haihao Shen, Jianhong Fang, and Jianjun Zhao. 2011. EFindBugs: efective error ranking for indBugs. In Proceedins of the 4th IEEE

International Conference on Software Testing, Veriication and Validation (ICST). IEEE, Valencia, 299ś308.
[90] Miltiadis Siavvas, Ilias Kalouptsoglou, Dimitrios Tsoukalas, and Dionysios Kehagias. 2021. A self-adaptive approach for assessing

the criticality of security-related static analysis alerts. In Proceedings of the 21st Computational Science and Its Applications (ICCSA).
Springer, Cagliari, 289Ð-305.

[91] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020. Intellicode compose: Code generation using transformer.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (ESE/FSE). ACM, USA, 1433ś1443.
[92] Kien T. Tran and Hieu Dinh Vo. 2022. SCAR: smart contract alarm ranking. In Proceedings of the 29th Asia-Paciic Software Engineering

Conference (APSEC). ACM, Japan, 447ś451.
[93] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Aravkin. 2014. ALETHEIA: improving the usability of static security

analysis. In Proceedings of the 22rd ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM, Denver Colorado,
762ś774.

[94] Huy Tu and Tim Menzies. 2021. FRUGAL: Unlocking semi-supervised learning for software analytics. In Proceedings of the 36th

IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE/ACM, Chicago, 394ś406.
[95] Yuki Ueda, Takashi Ishio, and Kenichi Matsumoto. 2021. Automatically customizing static analysis tools to coding rules really followed

by developers. In Proceedings of the 28th IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
Honolulu, 541ś545.

[96] Akshay Utture, Shuyang Liu, Christian Gram Kalhauge, and Jens Palsberg. 2022. Striking a balance: pruning false-positives from static
call graphs. In Proceedings of the 44th International Conference on Software Engineering (ICSE). IEEE/ACM, Pittsburgh, 2043ś2055.

[97] John Viega, J. T. Bloch, Tadayoshi Kohno, and Gary McGraw. 2002. Token-based scanning of source code for security problems. ACM
Transactions on Information and System Security 5, 3 (2002), 238ś261.

[98] Thanh Trong Vu and Hieu Dinh Vo. 2022. Using multiple code representations to prioritize static analysis warnings. In Proceedings of

the 14th International Conference on Knowledge and Systems Engineering (KSE). IEEE, Nha Tran, 1ś6.
[99] Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. 2022. What do They Capture? A Structural Analysis of

Pre-Trained Language Models for Source Code. In Proceedings of the 44th International Conference on Software Engineering (ICSE).
IEEE/ACM, Pittsburgh, 2377ś2388.

[100] Han Wang, Min Zhou, Xi Cheng, Guang Chen, Ming Gu, Lei Bu, and Yingfei Xiong. 2018. Which defect should be ixed irst? semantic
prioritization of static analysis report. In Software Analysis, Testing, and Evolution (SATE). Springer, Shenzhen, 3ś19.

[101] Junjie Wang, Yuchao Huang, Song Wang, and Qing Wang. 2022. Find bugs in static bug inders. In Proceedings of the 30th International

Conference on Program Comprehension (ICPC). IEEE/ACM, Online, 516ś527.
[102] Junjie Wang, Song Wang, and Qing Wang. 2018. Is there a "golden" feature set for static warning identiication? an experimental

evaluation. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM).
ACM, Oulu, Article 17, 10 pages.

[103] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2017. OASIS: prioritizing static analysis warnings for android apps based on app user
reviews. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (FSE). ACM, New York, 672ś682.

[104] Mark Weiser. 1984. Program slicing. IEEE Transactions on Software Engineering (TSE) 4 (1984), 352ś357.
[105] Yu Yu Win and Naw Lay Wah. 2023. Actionable static analysis code warnings identiication with smote-based classiication. In

Proceedings of the 21st IEEE Conference on Computer Applications (ICCA). IEEE, Yango, 44ś49.
[106] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings

of the 18th International Conference on Evaluation and Assessment in Software Engineering (EASE). ACM, Copenhage, 1ś10.

ACM Comput. Surv.

34 • X. Ge et al.

[107] Ge Xiuting, Fang Chunrong, Liu Jia, Qing Mingshuang, Li Xuanye, and Zhao Zhihong. 2023. An unsupervised feature selection
approach for actionable warning identiication. Expert Systems with Applications 227 (2023), 120152.

[108] Xiuting et al. 2024. Reposiroty for my survey. https://github.com/xiaomoqi123/AWISurvey.
[109] Xueqi Yang, Jianfeng Chen, Rahul Yedida, Zhe Yu, and Tim Menzies. 2021. Learning to recognize actionable static code warnings (is

intrinsically easy). Empirical Software Engineering (EMSE) 26 (2021), 1ś24.
[110] Xueqi Yang, Zhe Yu, Junjie Wang, and Tim Menzies. 2021. Understanding static code warnings: an incremental ai approach. Expert

Systems with Applications 167 (2021), 114134.
[111] Zhao Hong Yang, Yun Zhan Gong, Qing Xiao, and Ya Wen Wang. 2008. DTS - a software defects testing system. In Proceedings of the

8th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE, Limassol, 269ś270.
[112] Rahul Yedida, Hong Jin Kang, Huy Tu, Xueqi Yang, David Lo, and Tim Menzies. 2023. How to ind actionable static analysis warnings:

a case study with indBugs. IEEE Transactions on Software Engineering (TSE) 49, 4 (2023), 2856ś2872.
[113] Sai Yerramreddy, Austin Mordahl, Ugur Koc, Shiyi Wei, Jefrey S Foster, Marine Carpuat, and Adam A Porter. 2023. An empirical

assessment of machine learning approaches for triaging reports of static analysis tools. Empirical Software Engineering (EMSE) 28, 2
(2023), 28.

[114] Kwangkeun Yi, Hosik Choi, Jaehwang Kim, and Yongdai Kim. 2007. An empirical study on classiication methods for alarms from a
bug-inding static c analyzer. Information Processing letters 102 (2007), 118ś123.

[115] Jongwon Yoon, Minsik Jin, and Yungbum Jung. 2014. Reducing false alarms from an industrial-strength static analyzer by svm. In
Proceedings of the 21st Asia-Paciic Software Engineering Conference (APSEC), Vol. 2. IEEE, Jeju, 3ś6.

[116] Ping Yu, Yijian Wu, Xin Peng, Hahjia Peng, Jian Zhang, Peicheng Xie, and Wenyun Zhao. 2023. ViolationTracker: building precise
histories for static analysis violations. In Proceedings of the 45th International Conference on Software Engineering (ICSE). IEEE/ACM,
Melbourne, 1ś12.

[117] Ulas Yüksel and Hasan Sözer. 2013. Automated classiication of static code analysis alerts: a case study. In Proceedings of the 29th IEEE

International Conference on Software Maintenance (ICSM). IEEE, Eindhoven, 532ś535.
[118] Ulaş Yüksel, Hasan Sözer, and Murat Şensoy. 2014. Trust-based fusion of classiiers for static code analysis. In Proceedings of the 17th

International Conference on Information Fusion (FUSION). IEEE, South Carolina, 1ś6.
[119] Huaien Zhang, Yu Pei, Junjie Chen, and Shin Hwei Tan. 2023. Statier: automated testing of static analyzers via semantic-preserving

program transformations. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE). ACM, New York, 237ś249.
[120] Xin Zhang, Xujie Si, and Mayur Naik. 2017. Combining the logical and the probabilistic in program analysis. In Proceedings of the 1st

ACM SIGPLAN International Workshop on Machine Learning and Programming Languages (MAPL). ACM, Barcelona, 27ś34.
[121] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. 2010. Understanding bag-of-words model: a statistical framework. International Journal of

Machine Learning and Cybernetics 1 (2010), 43ś52.
[122] Yuwei Zhang, Ying Xing, Yunzhan Gong, Dahai Jin, Honghui Li, and Feng Liu. 2020. A variable-level automated defect identiication

model based on machine learning. Soft Computing 24 (2020), 1045ś1061.
[123] Yunhui Zheng, Saurabh Pujar, Burn Lewis, Luca Buratti, Edward Epstein, Bo Yang, Jim Laredo, Alessandro Morari, and Zhong Su. 2021.

D2A: a dataset built for ai-based vulnerability detection methods using diferential analysis. In Proceedings of the 43rd International

Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). ACM, Madrid, 111ś120.

Received 29 November 2023; revised 24 August 2024; accepted 12 September 2024

ACM Comput. Surv.

https://github.com/xiaomoqi123/AWISurvey

	Abstract
	1 Introduction
	2 Survey Methodology
	3 Background and Related Work
	4 Detailed Analysis of ML-based AWI
	4.1 Typical ML-based AWI Workflow and Research Questions
	4.2 RQ1: How do ML techniques work for AWI?
	4.3 RQ2: What are the characteristics of warning datasets used by ML-based AWI approaches?
	4.4 RQ3: What constitutes the warning dataset preprocessing stage of ML-based AWI approaches?
	4.5 RQ4: What model construction techniques are used by ML-based AWI approaches?
	4.6 RQ5: How are ML-based AWI approaches evaluated?

	5 Future Research Directions
	5.1 Research Directions in Data Improvement
	5.2 Research Directions in Model Exploration

	6 Threats to Validity
	7 Conclusion
	References

