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Automated program repair (APR) aims to fix software bugs automatically and plays a crucial role in software

development and maintenance. With the recent advances in deep learning (DL), an increasing number of APR

techniques have been proposed to leverage neural networks to learn bug-fixing patterns from massive open-

source code repositories. Such learning-based techniques usually treat APR as a neural machine translation

(NMT) task, where buggy code snippets (i.e., source language) are translated into fixed code snippets (i.e.,
target language) automatically. Benefiting from the powerful capability of DL to learn hidden relationships

from previous bug-fixing datasets, learning-based APR techniques have achieved remarkable performance.

In this paper, we provide a systematic survey to summarize the current state-of-the-art research in the

learning-based APR community. We illustrate the general workflow of learning-based APR techniques and

detail the crucial components, including fault localization, patch generation, patch ranking, patch validation,

and patch correctness phases. We then discuss the widely adopted datasets and evaluation metrics and

outline existing empirical studies. We discuss several critical aspects of learning-based APR techniques,

such as repair domains, industrial deployment, and the open science issue. We highlight several practical

guidelines on applying DL techniques for future APR studies, such as exploring explainable patch generation

and utilizing code features. Overall, our paper can help researchers gain a comprehensive understanding

about the achievements of the existing learning-based APR techniques and promote the practical application

of these techniques. Our artifacts are publicly available at the repository: https://github.com/iSEngLab/

AwesomeLearningAPR.
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1 INTRODUCTION
Modern software systems continuously evolve with inevitable bugs due to the deprecation of

old features, adding of new functionalities, and refactoring of system architecture [194]. These

inevitable bugs have been widely recognized as notoriously costly and destructive, such as costing

billions of dollars annually across the world [20, 202]. The recorded quantity of bugs is increased

at a tremendous speed due to the increasing scale and complexity of software systems [53]. It is

an extremely time-consuming and error-prone task for developers to fix detected bugs manually

in the software development and maintenance process. For example, previous reports show that

software debugging accounts for over 50% of the cost in software development [21]. Considering

the promising future in relieving manual repair efforts, automated program repair (APR), which

aims to automatically fix software bugs without human intervention, has been a very active area in

academia and industry.

As a promising research area, APR has been extensively investigated in the literature and hasmade

substantial progress on the number of correctly-fixed bugs [135]. A living APR review [136] reports

that a growing number of papers get published each year with various exquisitely implemented APR

tools being released. Over the past decade, researchers have proposed a variety of APR techniques

to generate patches [108] [13] [195], including heuristic-based, constraint-based and pattern-based.
Among these traditional techniques, pattern-based APR employs pre-defined repair patterns to

transform buggy code snippets into correct ones and has been widely recognized as state-of-the-

art [107, 208, 209]. However, existing pattern-based techniques mainly rely on manually designed

repair templates, which require massive effort and professional knowledge to craft in practice.

Besides, these templates are usually designed for specific types of bugs (e.g., null pointer exception)
and thus are challenging to apply to unseen bugs, limiting the repair effectiveness.

Recently, inspired by the advance of deep learning (DL), a variety of learning-based APR tech-

niques have been proposed to learn the bug-fixing patterns automatically from large corpora of

source code [184]. Compared with traditional APR techniques, learning-based techniques can be

applied to a wider range of scenarios (e.g., multi-languages [209] and multiple multi-hunks [28])

with pairs of the buggy and corresponding fixed code snippets. For example, CIRCLE [228] is able to

generate patches across multiple programming languages with multilingual training datasets. These

learning-based techniques handle the program repair problem as a neural machine translation

(NMT) task [73, 115, 208, 209, 228], which translates a code sequence from a source language (i.e.,
buggy code snippets) into a target language (i.e., correct code snippets). Existing NMT repair models

are typically built on the top of the encoder-decoder architecture [187]. The encoder extracts the
hidden status of buggy code snippets with the necessary context, and the decoder takes the encoder’s
hidden status and generates the correct code snippets [70, 98, 111]. Thanks to the powerful ability

of DL to learn hidden and intricate relationships from massive code corpora, learning-based APR

techniques have achieved remarkable performance in the last couple of years.

The impressive progress of learning-based APR has shown the substantial benefits of exploiting

DL for APR and further revealed its promising future in follow-up research. However, a mass

of existing studies from different organizations (e.g., academia and industry) and communities

(e.g., software engineering and artificial intelligence) make it difficult for interested researchers to

understand state-of-the-art and improve upon them. More importantly, compared with traditional

techniques, learning-based techniques heavily rely on the quality of code corpora and model

architectures, posing several challenges (e.g., code representation and patch ranking) in developing

mature NMT repair models. For example, most learning-based techniques adopt different training

datasets, and there exist various strategies available to process the code snippets (e.g., the code
context, abstraction, and tokenization). Besides, researchers design different code representations
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(e.g., sequence, tree, and graph) to extract code features, which require corresponding encoder-

decoder architectures (e.g., RNN, LSTM, and transformer) to learn the transformation patterns.

Furthermore, execution-based (e.g., plausible and correct patches) and match-based (e.g., accuracy
and BLUE) metrics are adopted in different studies. Such multitudinous design choices hinder

developers from conducting follow-up research on the learning-based APR direction.

In this paper, we summarize existing work and provide a retrospection of the learning-based APR

field after years of development. Community researchers can have a thorough understanding of the

advantages and limitations of the existing learning-based APR techniques. We illustrate the typical

workflow of learning-based APR and discuss different detailed techniques that appeared in the

papers we collected. Based on our analysis, we point out the current challenges and suggest possible

future directions for learning-based APR research. Overall, our work provides a comprehensive

review of the current progress of the learning-based APR community, enabling researchers to

obtain an overview of this thriving field and make progress toward advanced practices.

Contributions. To sum up, the main contributions of this paper are as follows:

• Survey Methodology. We conduct a detailed analysis of 112 relevant studies that used DL

techniques in terms of publication trends, distribution of publication venues and languages.

• Learning-based APR. We describe the typical framework of leveraging advances in DL tech-

niques to repair software bugs and discuss the key factors, including fault localization, data

pre-processing, patch generation, patch ranking, patch validation and patch correctness.

• Dataset and Metric. We perform a comprehensive analysis of the critical factors that impact

the performance of DL models in APR, including 53 collected datasets and evaluation metrics

in two categories.

• Empirical studies. We detail existing empirical studies performed to better understand the

process of learning-based APR and facilitate future studies.

• Some Discussions. We discuss some other crucial areas (e.g., security vulnerability and syntax

error) where learning-based APR techniques are applied, as well as certain known industrial

deployments. We demonstrate the trend of employing pre-trained models on APR recently.

We list the available learning-based tools and reveal the essential open science problem.

• Outlook and challenges.We pinpoint open research challenges of using DL in APR and provide

several practical guidelines on applying DL for future learning-based APR studies.

Comparison with Existing Surveys. Gazzola et al. [53] present a survey to organize the

repair techniques published up to January 2017. Monperrus et al. [135] present a bibliography of

behavioral and state repair papers. Unlike existing surveys mainly covering traditional techniques,

our work focuses on the learning-based APR, particularly the integration of DL techniques in the

repair phase (e.g., patch generation and correctness), repair domains (e.g., vulnerability and syntax

errors), and challenges. Besides, our survey summarizes the existing studies until Nov 2022.

Paper Organization. The remainder of this paper is organized as follows. Section 2 presents

the research methodology about how we collect relevant papers from several databases following

specific keywords. Section 3 introduces some common concepts encountered in the learning-based

APR field. Section 4 presents the typical workflow of learning-based APR and discusses the vital

components of the workflow in detail, as well as some representative approaches across different

repair domains. Section 5 focuses on pre-trained model-based APR, which is the recent hot topic

in the learning-based APR community. Section 6 extends the discussion on the empirical evalua-

tion, including common datasets, standard evaluation metrics, and existing empirical studies of

learning-based APR techniques. Section 7 details some discussions, including industrial deploy-

ments, traditional APR equipped with learning-based techniques, and the crucial open science

problem. Section 8 provides some practical guidelines. Section 9 draws the conclusions.
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Google Scholar
ACM Digital Library
IEEE Digital Library

Group1 
repair related keywords

Group2
DL related keywords

discussion and selection

program repair; bug fix; … deep; learning; machine; …

Automated Search

filter by year
342 papers

filter by pages
(remove duplications)

283 papers

add missed citations
112 papers

filter irrelevant papers
87 papers

Snowballing

Figure 1. General workflow of the paper collection

Availability. All artifacts of this study are available in the following public repository:

https://github.com/iSEngLab/AwesomeLearningAPR

2 SURVEY METHODOLOGY
In this section, we present details of our systematic literature review methodology following

Petersen et al. [153] and Kitchenham et al. [82].
Search Process. For this survey, we select papers bymainly searching the Google Scholar repository,

ACM Digital Library, and IEEE Explorer Digital Library at the end of November 2022. Following

existing DL for SE surveys [193, 220], we divide the search keywords used for searching papers into

two groups: (1) an APR-related group containing some commonly used keywords related to program

repair; and (2) a DL-related group containing some keywords related to deep learning or machine

learning. Considering a significant amount of relevant papers from both SE and AI communities,

following Zhang et al. [230], we first try to collect some papers from the community-driven website
1

and the living review of APR by Monperrus [136], and then conclude some frequent words in the

titles of these papers. The search strategy can capture the most relevant studies while achieving

better efficiency than a purely manual search. Finally, we identify a search string including several

DL-related terms frequently appearing in APR papers that make use of DL techniques, listed as

follows.

(“program repair” OR “software repair” OR “automatic repair” OR “code repair” OR “bug repair”
OR “bug fix” OR “code fix” OR “automatic fix” OR “patch generation” OR “fix generation” OR
“code transformation” OR “code edit” OR “fix error”) AND (“neural” OR “machine” OR “deep” OR
“learning” OR “transformer/transformers” OR “model/models” OR “transfer” OR “supervised”)

Study selection. Once the potentially relevant studies based on our search strategy are collected,

we perform a filtering and deduplication phase to exclude papers not aligned with the study goals.

We first attempt to filter out the papers before 2016, considering that Long et al. [111] propose the
first learning-based APR study in 2016. We then filter out any paper less than 7 pages and duplicated

papers, resulting in 283 papers in total. We then scrutinize the remaining papers manually to decide

1
http://program-repair.org/bibliography.html
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whether they are relevant to the learning-based APR field. We obtained 87 papers at last. To ensure

that the collected papers are as comprehensive as possible, we further perform the common practice

snowballing to manually include other relevant papers that are missed in our search process [200].

In particular, we look at every reference within the collected papers and determine if any of those

references are relevant to our study. For example, the title of SampleFix [60] does not contain any

keywords we mention above in the two groups, but it is an APR approach targeting syntax errors,

so we include it in our survey. We manually analyzed all these cited papers by scanning the papers

and finally collected 112 papers in our survey. The general workflow of how we collected papers is

shown in Figure 1.
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Figure 2. Collected learning-based APR papers from
2016 to 2022
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Figure 3. Paper distribution on programming lan-
guages

Trend Observation. Figure 2 shows the collected papers from 2016 to 2022. It is found that the

number of learning-based APR papers has increased rapidly since 2020, indicating that more re-

searchers are considering DL as a promising solution to fixing software bugs. One reason behind this

phenomenon is that traditional APR techniques have reached a plateau [115, 218] and researchers

hope to find a brand-new way to address the problem. Another non-negligible reason is that DL has

proved its potential in various tasks, including natural language translation, which is similar to bug

fixing to some extent. Figure 3 presents an overview of the programming languages targeted by

learning-based APR techniques in our survey. We can find Java occupies a large proportion, which

is understandable as Java is widely adopted in modern software systems nowadays and the most

targeted language in existing mature datasets (e.g., Defects4J [76]). We also find that the collected

papers cover a wide range of programming languages (i.e., Java, JavaScript, Python, C, and C++).

For example, there exist several papers [115, 228] involving multiple programming language repair.

The probable reason may be that learning-based APR techniques usually regard APR as an NMT

problem, independent of programming languages.

3 BACKGROUND AND CONCEPTS
In this section, we will introduce some background information and common concepts in the

learning-based APR field.

3.1 Automated Program Repair
The primary objective of APR techniques is to identify and fix software bugs without human

intervention. In the software development and maintenance process, after a designed functionality

is implemented, developers usually write some test suites (e.g., Junit test cases) to check the

functionality. If there exist test suites that make the functionality fail, developers adopt the failing

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 1. Publication date: 2023.
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repair strategy test suite

correct patch plausible patch developer

generated patch

overfitting patch

suspicious codefault localization

deployment

Localization Phase Repair Phase

buggy program

Verification Phase

Figure 4. Overview of APR

test suites to analyze the symptoms and the root cause of the bug, and attempt to fix the bug

by making some changes to suspicious code elements. More generally, according to Nilizadehet
al. [144], we can give the following definition.

Definition 3.1. ✍ APR: Given a buggy program 𝑃 , the corresponding specification 𝑆 that 𝑃 does

not satisfy, the transformation operators 𝑂 and the allowed maximum edit distance 𝜖 , APR can

be formalized as a function 𝐴𝑃𝑅(𝑃, 𝑆,𝑂, 𝜖). 𝑃𝑇 is the set of its all possible program variants by

enumerating all operators𝑂 on 𝑃 . The problem of APR is to find a program variant 𝑃 ′ (𝑃 ′ ∈ 𝑃𝑇 )
that satisfies 𝑆 and the changes satisfies 𝜖 (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃, 𝑃 ′) ≤ 𝜖).

The specification 𝑆 denotes a relation between inputs and outputs and most APR techniques

usually adopt a test suite as a specification. In other words, APR aims to find a minimal change to 𝑃
that passes all available test suites. The maximum edit distance 𝜖 limits the range of changes based

on the competent programmer hypothesis [147], which assumes that experienced programmers are

capable of writing almost correct programs and most bugs can be fixed by small changes. For

example, if 𝜖 is set to 0, 𝐴𝑃𝑅(𝑃, 𝑆,𝑂, 0) becomes a program validation problem that aims to identify

if 𝑃 satisfys 𝑆 . On the contrary, if 𝜖 is set to ∞, 𝐴𝑃𝑅(𝑃, 𝑆,𝑂, 𝜖) becomes a program synthesizing

problem that aims to synthesize a program to satisfy 𝑆 .

The typical workflow of APR techniques is illustrated in Figure 4, which is usually composed

of three parts: (1) off-the-shelf fault localization techniques are applied to outline the buggy code

snippets [1] [9]; (2) these snippets are modified based on a set of transformation rules or patterns to

generate new various program variants (i.e., candidate patches); (3) the original test suite is adopted
as the oracle to verify all candidate patches. Specifically, a candidate patch passing the original

test suite is called a plausible patch. A plausible patch, which is also semantically equivalent to the

developer patch, denotes a correct patch.
However, such specifications (i.e., test suites) are inherently incomplete as programs have infinite

domains. It is fundamentally challenging to ensure the correctness of the plausible patches (i.e.,
overfitting issue) due to the weak test suites in practice. Existing studies have demonstrated that

manually identifying the overfitting patches is time-consuming and may harm the debugging

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 1. Publication date: 2023.
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performance of developers [170, 177]. The overfitting issue is a critical challenge in both traditional

and learning-based APR techniques. We will discuss the issue in Section 4.7.

3.1.1 Patch Generation Techniques. In the literature, numerous traditional APR techniques have

been proposed to generate patches from different aspects, which can be categorized into three

classes. We list them as follows.

• Heuristic-based repair techniques. These techniques usually apply heuristic strategies (e.g.,
genetic algorithm) to build search space from previous patches and generate valid patches by

exploring the search space [93, 123, 229]. For example, SimFix [70] builds an abstract search

space from existing patches and a concrete search space from similar code snippets in the

buggy project. SimFix then utilizes the intersection of the above two search spaces to search

the final patch by basic heuristics (e.g., syntactic distance).
• Constraint-based repair techniques. These techniques usually focus on a single conditional

expression and employ advanced constraint-solving or synthesis techniques to synthesize

candidate patches [44, 124, 129]. For example, Nopol [215] relies on an SMT solver to solve

the condition synthesis problem after identifying potential locations of patches by angelic

fault localization and collecting test execution traces of the program. Besides, Cardumen [124]

synthesizes candidate patches at the level of expressions with its mined templates from the

program under repair to replace the buggy expression.

• Pattern-based repair techniques. These techniques usually design certain repair templates by

manually analyzing specific software bugs and generating patches by applying such templates

to buggy code snippets [85, 106, 107]. For example, TBar [107] revisits the effectiveness of

pattern-based APR techniques by systematically summarizing a variety of repair patterns

from the literature.

In addition to the above traditional APR techniques, researchers attempt to fix software bugs

enriched by DL techniques due to the large-scale open-source source code repositories [184, 242].

Such learning-based techniques have demonstrated promising results and are getting growing

attention recently, which is the focus of our work (introduced in Section 3.2).

3.2 Neural Machine Translation
Sequence-to-sequence (Seq2Seq) is an advanced DL framework widely used in some NLP tasks (e.g.,
machine translation [74] and text summarization [138]). A Seq2Seq model usually consists of two

components (i.e., an encoder and a decoder) to learn mappings between two sequences. Inspired by

the success of Seq2Seq models in text generation tasks, program repair can be formulated as an

NMT task. The learning-based APR problem is formally defined as follows:

Definition 3.2. ✍ Learning-based APR: Given a buggy code snippet 𝑋𝑖 = [𝑥1, . . . , 𝑥𝑛] with
𝑛 code tokens and a fixed code snippet 𝑌𝑖 = [𝑦1, . . . , 𝑦𝑚] with𝑚 code tokens, the problem of

program repair is formalized to maximize the conditional probability (i.e., the likelihood of 𝑌

being the correct fix): 𝑃 (𝑌 | 𝑋 ) = ∏𝑚
𝑖=1 𝑃 (𝑦𝑖 | 𝑦1, . . . , 𝑦𝑖−1;𝑥1, . . . , 𝑥𝑛).

In other words, the objective of an NMT repair model is to learn the mapping between a buggy

code snippet 𝑋 and a fixed code snippet 𝑌 . Then the parameters of the model are updated by using

the training dataset, so as to optimize the mapping (i.e., maximizing the conditional probability 𝑃 ).

In the literature, recurrent neural network architecture (RNN) is widely used in existing learning-

based APR techniques [27, 58, 183, 184]. Besides, researchers use long short-term memory (LSTM)

architecture to capture the long-distance dependencies among code sequences [23, 130]. Recently,

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 1. Publication date: 2023.
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Figure 5. Detailed workflow of Learning-based APR

as a variant of the Seq2Seq model, Transformer [187] has been considered the state-of-the-art NMT

repair architecture due to the self-attention mechanism [28, 31, 51].

4 LEARNING-BASED APR
In this section, we will discuss the workflow of learning-based APR tools and introduce some

popular learning-based APR techniques with several examples.

4.1 Overall Workflow
Figure 5 illustrates the typical framework of existing learning-based APR techniques. The framework

can be generally divided into six phases: fault localization, data pre-processing, input encoding, output
decoding, patch ranking, patch validation, and patch correctness assessment. We now discuss the

phases in detail as follows.

① In the fault localization phase, a given buggy program is taken as the input and a list of

suspicious code elements (e.g., statements or methods) is returned [204], detailed in Section 4.2.

② In the data pre-processing phase, a given software buggy code snippet (e.g., buggy state-

ment) is taken as the input and the processed code tokens are returned. According to existing

learning-based APR studies [28, 31], there generally exist three potential ways to pre-process

the buggy code: code context, abstraction, and tokenization. First, code context information

refers to other correlated non-buggy lines within the buggy program [139]. Previous work

has demonstrated that NMT-based repair models reveal diverse code changes to fix bugs

under different contexts [27]. Second, code abstraction renames some special words (e.g.,
string and number literals) to a pool of predefined tokens, which has been proven to be an

effective method in reducing the vocabulary size [184]. Third, code tokenization splits source

code into words or subwords, which are then converted to ids through a look-up table [51].

These pre-processing methods are detailed in Section 4.3.

③ In the patch generation phase, the processed code tokens are first fed into a word embed-

ding stack to generate representation vectors, which can capture the semantic meaning of

code tokens and their position within a buggy code. Then an encoder stack is implemented

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 1. Publication date: 2023.
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to derive the encoder’s hidden state, which is further passed into a decoder stack. Similar

to the encoder stack, a decoder stack is implemented to take the hidden states provided by

the encoder stack and previously generated tokens as inputs, and returns the probability

distribution of the vocabulary. There exist two training paradigms to learn bug-fixing patterns

automatically, i.e., unsupervised learning [32, 184] and self-supervised learning [223, 226],

detailed in Section 4.4.

④ In the patch ranking phase, after the NMT-based repair model is well-trained, a rank

strategy (e.g., beam search) is leveraged to prioritize the candidate patches as prediction

results based on the probability distribution of the vocabulary [170]. Particularly, beam

search [7, 27, 228] is a common practice to select several most high-scoring candidate patches

by iteratively ranking top-𝑘 probable tokens based on their estimated likelihood scores,

detailed in Section 4.5.

⑤ In the patch validation phase, the generated candidate patches are then verified by the

available program specification, such as functional test suites or static analysis tools [14],

detailed in Section 4.6.

⑥ In the patch correctness assessment phase, the plausible patches (i.e., passing the ex-

isting specification) are assessed to predict their correctness (i.e., whether the plausible are
overfitting) [195], which are finally manually checked by developers for deployment in the

software pipeline, detailed in Section 4.7.

4.2 Fault Localization
Fault localization aims to diagnose buggy program elements (e.g., statements and methods) without

human intervention and has been extensively studied to facilitate the program repair process [204].

As a crucial start in the learning-based APR pipeline, fault localization provides the repair model

with information about where a software bug is and directly influences the performance of the

repair model. For example, the repair accuracy under normal fault localization is usually lower

than the circumstance under perfect fault localization.

In the literature, fault localization techniques often leverage various static analysis or dynamic

execution information to compute suspiciousness scores (i.e., probability of being faulty) for each

program element. Program elements are then ranked in descending order of their suspiciousness

scores, based on which APR techniques can further be applied. Researchers have proposed a variety

of fault localization techniques, such as spectrum-based [152, 233], mutation-based [96, 148],

slicing-based [12, 120] and learning-based [97, 112] techniques. Among them, spectrum-based fault

localization (SBFL) has been extensively utilized as a general mechanism to localize the statements

that are likely to be faulty in the APR literature.

4.2.1 Localization Techniques. Similar to traditional APR techniques, some learning-based APR

techniques rely on existing SBFL fault localization approaches to localize the revealed bug. For

example, DLFix [98] adopts Ochiai algorithm to identify a buggy line and extracts all AST nodes

(including intermediate ones) related to that buggy line as a replaced subtree for patch generation.

Recoder [242] also assumes the faulty location of a bug is unknown to APR tools and uses Ochiai al-

gorithm with GZoltar [162], which is widely used in existing APR tools, such as RewardRepair [227]

and AlphaRepair [209]. Such SBFL techniques exploit runtime information to recognize the program

elements that are likely to be faulty when the buggy program is executed by the available test suite.

The crucial insight is that (1) the program elements executed by more failing test suites and fewer

passing test suites are likely to be faulty; and (2) the program elements executed by more passing

test suites and fewer failing suites are likely to be correct. In particular, SBFL produces a list of
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program elements ranked according to their likelihood of being faulty based on the analysis of the

program entities covered by passing and failing tests (e.g., Ochiai and Tarantula [105]).

However, Liu et al. [105] have demonstrated that the fault localization techniques may introduce

a significant bias in the evaluation of APR techniques. The vast majority of learning-based APR

techniques consider repairing software bugs under perfect-based fault localization techniques.

Perfect-based fault localization techniques assume that the genuine localization of the bug is

known. Thus, perfect-based fault localization can provide a fair assessment of APR techniques

and the assessment is independent of the localization techniques. For example, CoCoNut [115]

manually checks the bug-fixing pairs in Defects4J benchmark and extracts the changed statements

as inputs to the repair model. Subsequently, recent learning-based APR techniques adopt the same

or similar processing method to conduct perfect localization, such as CIRCLE [228], CURE [73],

SelfAPR [226] and AlphaRepair [209].

Besides, there exist some techniques attempting to perform fault localization on their own. For

example, DeepFix [58] proposes an end-to-end approach in which the network reports a ranked list

of potentially erroneous lines with a beam search mechanism. Similarly, Prophet [111] designs a

fault localization algorithm to return a ranked list of program candidate lines to modify by analyzing

dynamic execution traces of the test suite. Szalontai et al. [172] first localize the nonidiomatic

code snippets by LSTM networks and predict the nonidiomatic pattern by a feed-forward neural

network, which is fixed by a high-quality alternative. Recently, Meng et al. [130] build a novel fault

localization technique based on deep semantic features and transferred knowledge, which is further

fed to a fix template prioritization model and a template-based APR technique TBar [107].

4.2.2 Localization Granularity. APR techniques consider program elements of different granulari-

ties, thus determining the scope of the fault localization. In other words, APR and fault localization

usually work at the same granularity level. For example, if APR techniques focus on repairing

buggy statements (or methods), the fault localization also works at the level of program statements

(or methods). In the literature, a majority of fault localization techniques adopted in learning-based

APR techniques usually record the line of a buggy code snippet [73, 98, 99, 115, 228, 242]. There

also exists little work considering other granularity. For example, Tufano et al. [184] adopt the
NMT-based repair model to learn the translation from buggy to fixed code at the method level.

✎ Summary ▶ As a preceding step in the learning-based APR workflow, fault localization

has a significant impact on the performance of the patch generation, which cannot generate

a correct patch with a wrong suspicious code element. Most learning-based APR techniques

follow the common practice in the traditional APR field to generate patches by integrating

spectrum-based fault localization techniques. There are also some repair techniques that are

starting to use perfect localization (i.e., the ground-truth buggy code element), to avoid the

noise introduced by the off-the-shelf fault localization techniques. Besides, thanks to the code

comprehension capabilities of DL models, some learning-based APR techniques can generate

patches with coarse-grained fault localization, e.g., only the buggy method is provided. ◀

4.3 Data Pre-processing
Data pre-processing phase aims to analyze and parse the identified buggy code snippets, which are

then passed into neural networks for training and inference. In the data pre-processing phase, a

given software buggy code snippet (e.g., a buggy function) is taken as the input and the processed

code tokens are returned. According to existing learning-based repair studies [28, 31], the data

pre-processing phase generally consists of three parts: code context, code abstraction and code
tokenization.
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4.3.1 Code Context. Code context generally refers to other correct statements around the buggy

lines. In the manual repair scenario, the context of the buggy code plays a significant role in

understanding faulty behaviors and reasoning about potential repairs. Developers usually identify

the buggy lines, and then analyze how they interact with the rest of the method’s execution, and

observe the context (e.g., variables and other methods) in order to come up with the possible repair

and pick several tokens from the context to generate the fixed line [83]. In learning-based APR, the

NMT model mimics this process by extracting the code context and the buggy line into a certain

code representation to preserve the necessary context that allows the model to predict the possible

fixes.

Existing learning-based APR techniques typically consider the surrounding source code relevant

to the buggy statement as context. These techniques typically employ context in various ways,

such as extracting code near the buggy statement within the buggy method, class, and even file.

On the one hand, a broad context contains plenty of essential fix ingredients, while such a large

vocabulary size introduces noise that negatively affects the repair performance of the NMT model

due to the tricky long-term dependency problem in NMT models [27]. In particular, long-term

dependency refers to the situation that the meaning of a token depends on another token that is

far apart from it in a code snippet [187]. As a result, NMT repair models often struggle to capture

long-term dependencies when dealing with tokens that appear over long code snippets [228]. On

the other hand, a narrow context contains too little information to capture the proper semantics of

the buggy statement and leads to incorrect patches generation due to a lack of necessary vocabulary.

There seems to be a trade-off relationship between vocabulary size and context size. Our survey

concludes the code context of existing learning-based APR studies into four granularities: context-

free, line-level context, method-level context, and class-level context.

• Context-free. This granularity refers to the scenario where NMT repair modes only take

buggy statements without any additional code snippets as inputs [40, 63, 125]. For example,

Mashhadi et al. [125] consider single statement bugs from the ManySStuBs4J dataset and

extract the buggy statement as a source side and the fixed statement as a target side from

bug-fixing commits. Ding et al. [40] provide NMT models with a single program line that

contains a buggy statement. However, previous work demonstrates that fixing nearly 90%

of bugs requires new vocabulary relative to the buggy code. Therefore, NMT repair models

suffer from capturing enough information from the buggy statements alone.

• Statement-level context. This granularity refers to the scenario where NMT repair models

take the buggy statements and several statements that the buggy code and some surrounding

correct statements as inputs [15, 31]. For example, TFix [15] extracts the two neighboring

statements of the buggy code as the code context. Chi et al. [31] extract statement-level

code changes by the “git diff” command and employ data-flow dependencies to capture more

critical information around the context.

• Method-level context. This granularity refers to the scenario where NMT modes take

the whole method to which the buggy statements belong as inputs [115, 184, 228]. It is the

most commonly used type of context in literature as it often contains enough information

for repairing the bug, such as the type of variables and the function of this method. For

example, Tufano et al. [183] focus on the method-level context since (1) the functionality to be

fixed is usually implemented in program methods; (2) the methods provide neural networks

with meaningful abundant context information, such as literals and variables. Similarly,

CoCoNuT [23] extracts the entire method of the buggy code as context, which is encoded as

a separate input.
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int GetMaxCommonDivisor(int m, int n){
int r;
while (n!=0){

r=m%n;
m=n;
n=r;

}
return n;

}

raw buggy code(a) raw buggy code raw fixed code

int GetMaxCommonDivisor(int m, int n){
int r;
while (n!=0){

r=m%n;
m=n;
n=r;

}
return m;

}

(b) raw fixed code

TYPE_1 METHOD_1(TYPE_1 VAR_1, TYPE_1 VAR_2){
TYPE_1 VAR_3;
while (VAR_2!=NUMBER_1){

VAR_3=VAR_1%VAR_2;
VAR_1=VAR_2;
VAR_2=VAR_3;

}
return VAR_2;

}

abstracted buggy code(c) abstracted buggy code abstracted fixed code

TYPE_1 METHOD_1(TYPE_1 VAR_1, TYPE_1 VAR_2){
TYPE_1 VAR_3;
while (VAR_2!=NUMBER_1){

VAR_3=VAR_1%VAR_2;
VAR_1=VAR_2;
VAR_2=VAR_3;

}
return VAR_1;

}

(d) abstracted fixed code

Figure 6. A simple example of code abstraction

• Class-level context. This granularity refers to the scenario where NMT repair models

take the class to which the buggy statements belong to as inputs. It is a relatively broad

context, while it can provide the model with rich information. For example, SequenceR [27]

considers the class-level context and conducts abstract buggy context from the buggy class,

which captures the most important context around the buggy source code and reduces the

complexity of the input sequence to 1,000 tokens. Hoppity [39] takes the whole buggy file as

the context with a length limit of 500 nodes in the AST.

4.3.2 Code Abstraction. Code abstraction aims to limit the number of words the NMT models need

to process by renaming raw words (e.g., function names and string literals) to a set of predefined

tokens. Previous work demonstrates that it is challenging for NMT models to learn bug-fixing

transformation patterns due to the huge vocabulary of source code [184]. In particular, NMTmodels

usually employ a beam-search decoding strategy to output repair candidates by a probability

distribution over all words. The search space can be extremely large with many possible words in

the source code, resulting in inefficient patch generation.

In our survey, a considerable number of learning-based papers we collect employ the abstracted

source code to tackle this problem. Such abstraction operation means the original source code

is not directly fed into the NMT model. Benefiting from the abstracted code, we can (1) reduce

the size of vocabulary significantly and the frequency of specific tokens; (2) filter out irrelevant

information and improve the efficiency of the NMT model. Generally, the natural elements (e.g.,
identifiers and literal) in the source code are renamed, while the core semantic information (e.g.,
idioms) should be preserved. For example, Tufano et al. [184] propose the first code abstraction
approach in the learning-based APR field by (1 ) adopting a lexer to tokenize the raw source code

as a stream of tokens based on Another Tool for Language Recognition (ANTLR) [151]; (2) passing

the stream of tokens into a parser to identify the role of each identifier and literals (e.g., whether
it represents a variable, method, or type name); (3) replacing each identifier and literal with a

unique ID to generate the abstracted source code. Besides, they extract the idioms (i.e., tokens that
appear many times) and keep their original textual tokens in the abstraction process because such
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idioms contain beneficial semantic information. The typical code abstraction example is presented

in Figure 6. Similarly, CoCoNut [115] and CURE [73] only abstract string and number literals

except for the frequent numbers (e.g., 0 and 1). DLFix [98] adopts a novel abstraction strategy to

alpha-rename the variables, so as to learn the fix between methods with similar scenarios while

having different variable names. DLFix also keeps the type of the variable to avoid accidental

clashing names and maintains a mapping table to recover the actual names. Recoder [242] abstracts

infrequent identifiers with placeholders to make the neural network learns to generate placeholders

for these identifiers.

Although a variety of learning-based APR techniques adopt the code abstraction strategy (such

as Tufano et al. [184]) to limit the vocabulary size and make the transformer concentrate on learning

common patterns from different code changes, we still find some repair techniques prefer raw

source code [228, 242] because it contains semantic information. For example, developers may

name one function as SetHeightValue to indicate that this function can set the value of height as

they want. If this name is abstracted directly as func_1, the critical semantic information would be

missed, resulting in suboptimal repair training. Thus, instead of renaming rare identifiers through

a custom abstraction process, SequenceR [27] utilizes the copy mechanism to generate candidate

patches with a large set of tokens. During programming, developers are not restricted by a set

vocabulary (e.g., English) when defining names for variables or methods, resulting in an extremely

large vocabulary with many rare tokens. The copy mechanism seeks to copy some rare input tokens

to the output and is effective in reducing the required vocabulary size [27]. Besides, Chen et al. [28]
adopt the raw source code as they think abstracted code may hide valuable information about the

variable that can be learned by word embedding. A strategy that is similar to Chen et al. [28] is
also implemented in other learning-based APR techniques, such as in CODIT [23], CIRCLE [228]

and TFix [15].

4.3.3 Code Tokenization. Code tokenization aims to split source code into a stream of tokens,

which are then converted to ids through a look-up table
2
. These id numbers are in turn used

by the repair models for further processing and training. A simple tokenization approach can be

conducted by dividing the source code into individual characters. The core concept of this char-level

tokenization is that although the source code has many different words, it has a limited number of

characters. This approach is straightforward and leads to an exceeding small vocabulary. However,

it leads to a relatively long tokenized sequence with the splitting of each world into all characters.

More importantly, it is pretty difficult for repair models to meaningful input representations as

characters alone do not have semantic meaning. Generally, there exist two main granularities of

code tokenizers used in existing learning-based APR techniques: word-level tokenization [51] and

subword-level tokenization [31].

The word-level tokenization means that a sentence is divided according to its words (e.g., space-
separated), which is widely used in NLP tasks [158]. However, different from natural language (e.g.,
English dictionary), words (e.g., variable and method names) in programming languages can be

created by developers arbitrarily. As a result, there may exist some rare words not available in the

vocabulary (i.e., the out-of-vocabulary problem), resulting in unknown tokens in patch generation.

To address this issue, VRepair [28] employs a word-level tokenization to tokenize C source code and

the copy mechanism to deal with the out-of-vocabulary problem. Similarly, CoCoNut [115] designs

a code-aware space-separated tokenization algorithm that is specific to programming languages

by (1) separating operators from variables as they might not be space-separated; (2) considering

underscores, camel letters, and numbers as separators as many words are composed of multiple

words without separation (e.g., SetHeightValue); (3) introducing a new token <CAMEL> to mark

2
https://huggingface.co/Salesforce/codet5-base/blob/main/vocab.json
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where the camel case split occurs to regenerate source code from the list of tokens generated

correctly.

The subword-level tokenization splits rare tokens into multiple subwords instead of directly

adding full tokens into the vocabulary. Besides, the frequent words should not be split into smaller

subwords. This kind of granularity can reduce the vocabulary size significantly and is widely

used in the learning-based APR field. Technically, there exist several subword-level tokenization

techniques, such as byte-pair encoding (BPE), byte-level byte-pair encoding (BBPE) [168] and

SentencePiece [87], listed as follows.

(1) BPE tokenizer generally needs to be trained upon a given dataset by (1) leveraging a pre-

tokenizer to splits the dataset into words by space-separated tokenization; (2) creating a

set of unique words and counting the frequency of each word in the dataset; (3) building a

base vocabulary with all symbols that occur in the set of unique words and learning merge

rules to form a new symbol from two symbols of the base vocabulary; (4) repeating the

above process until the vocabulary is reduced to a reasonable size, which is a pre-defined

hyperparameter, before training the tokenizer. For example, VulRepair [51] employs a BPE

algorithm to train a subword tokenizer on eight different programming languages (i.e., Ruby,
JavaScript, Go, Python, Java, PHP, C, C#) [197] and is suitable for tokenizing source code. In

the learning-based APR literature, a majority of repair studies adopt BPE as the tokenization

technique, such as CURE [73], CoCoNut [115], SeqTrans [31]. The results have demonstrated

the effectiveness of BPE in reducing vocabulary size and mitigating the OOV problem by

extracting the most frequent subwords and merging the most frequent byte pair iteratively.

(2) BBPE refines BPE by employing bytes as the base vocabulary, ensuring that every base

character is included with a proper vocabulary size. For example, AlphaRepair [209] builds a

BBPE-based tokenizer to reduce the vocabulary size by breaking uncommon long words into

meaningful subwords.

(3) SentencePiece contains the space in the base vocabulary and utilizes the existing BPE al-

gorithm (e.g., BPE) to create the desired vocabulary by regarding the source code as a raw

input stream. In the literature, before entering source code into the neural network, sev-

eral learning-based APR techniques use SentencePiece to divide words into a sequence of

subtokens, such as SelfAPR [226], RewardRepair [227] and CIRCLE [228].

✎ Summary ▶ Data preprocessing is responsible for processing the code snippets into a

suitable format and feeding it to the NMT repair models for training. Different learning-based

APR techniques employ diverse data pre-processing methods, learning to complex experimental

settings in the literature. For example, code abstraction involves raw code or abstracted code;

code context involves context-free, statement-level, method-level and class-level context; code
tokenization involves BPE, BBPE and SentencePiece tokenizers. On the one hand, these different

configurations may introduce bias to the evaluation of existing learning-based APR techniques.

On the other hand, the optimal combination of these configurations requires further exploration,

and it is also important to consider their interactions with other factors, such as the model

architectures and the types of software bugs being fixed. ◀

4.4 Patch Generation
In the learning-based APR context, to apply NMT repair models to high-level programming lan-

guages, the code snippets need to be converted to embedding vectors. Then an NMT repair model

is built on top of the encoder-decoder architecture [187] to learn the repair patterns automatically.

Finally, the mapping from buggy code to fixed code is optimized by updating the parameters of the

designed model. Thus, it is crucial to determine (1) how to represent the source code (with which
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format) as input for word embedding, referred to as code representation; and (2) how to design the

specific architecture (with which neural network) as encoder-decoder for repair transformation

learning, referred to as model architecture.
In the literature, various strategies have been proposed to represent the source code as the input

for NMT repair models, which can be categorized into three classes: sequence-based, tree-based and

graph-based representation.

4.4.1 Sequence-based Generation. These techniques divide the textual source code as a sequence
of tokens and treat APR as a token-to-token translation task based on a Seq2Sep model.

Code Representation. Considering the buggy lines and the context, there generally exist four

different ways to sequence the textual code tokens.

(1) Raw representation.
Similar to NMT,which translates a sentence from one source language (e.g., English) to another
target language (e.g., Chinese), most sequence-based techniques directly feed the model with

the buggy code snippet [184]. For example, Tufano et al. [184] extract the buggy method

and train an NMT model for method-to-method translation. The size of this code snippet

depends on the choice of the buggy code and code context. However, the raw representation

is unaware of the difference between the buggy code and the code context, as these two parts

are sent into the encoder together. As a result, the transformation rules may be applied in

some correct lines, limiting the repair performance.

(2) Context representation.
The context representation splits the buggy code and the code context, then feeds them

into two encoders separately. Under this circumstance, the model is aware of the difference

between buggy code and the corresponding context. For example, Lutellier et al. [73, 115]
attempt to encode these two parts separately and then merge the encoding vectors. However,

it is challenging to merge the two separated encoding vectors and eliminate the semantic

gaps between the two encoders.

(3) Prompt representation.
The prompt representation refers to a text-in-text-out input format and can effectively

concatenate different input components with some prefixed prompt [158]. The prefixed

prompt is a piece of tokens inserted in the input, so that the original task can be formulated

as a language modeling task. For example, Yuan et al. [228] employs manually designed

prompt template to convert buggy code and corresponding context into a unified fill-in-the-

blank format. In particular, they employ “Buggy line:” and “Context:” to denote the buggy

code and code context, and then employ “The fixed code is:” to guide the NMT model to

generate candidate patches according to the previous input. This mechanism has been proven

effective in bridging the gap between pre-trained tasks and the downstream task, facilitating

fine-tuning pre-trained models for APR.

(4) Mask representation.
The mask representation replaces the buggy code with mask tokens and queries NMT models

to fill the masks with the correct code lines. This mechanism views the APR problem as a

cloze task and usually adopts the pre-trained model as the query model in the learning-based

APR. For example, Xia et al. [209] transform the original buggy code into a comment and

generate multiple mask lines with templates. The input is represented by comment buggy

code, context before buggy code, mask lines and context after buggy code. In particular, the

buggy code is masked randomly from one token to the whole line, and researchers expect to

generate every possible patch for different situations within a limited candidate patch size.

Compared with the above three representation strategies, the mask representation can adopt
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pre-trained models to predict randomly masked tokens to perform cloze-style APR without

any additional training on the bug-fixing dataset.

Model Architecture. Sequence-based techniques usually treat the source code as a sequence of

tokens and adopt existing sequence-to-sequence architectures in the NLP field instead of designing

new network architectures. For example, CoCoNut [115] adopts two fully convolutional (FConv)

encoders to represent the buggy lines and the context separately. One common encoder architecture

is long short-term memory (LSTM), and it resolves the long-term dependency problem of the RNN

module by introducing the gate mechanism and ensures that short-term memory is not neglected.

For example, SequenceR [27] is based on an LSTM encoder-decoder architecture with copy mech-

anism. As a powerful kind of DL architecture, the transformer can model global dependencies

between input and output effectively thanks to the attention mechanism and has been adopted in

existing APR studies, such as Bug-Transformer [221], SeqTrans [31] and VRepair [28].

Recently, the usage of pre-trained models has gradually attracted the attention of researchers in

the learning-based APR community. Such models are first pre-trained by self-supervised training on

a large-scale unlabeled corpus (e.g., CodeSearchNet [69]), and then transferred to benefit multiple

downstream tasks by fine-tuning on a limited labeled corpus. For example, Mashhadi et al. [125]
employ CodeBERT, a bimodal pre-trained language model for both natural and programming lan-

guages, to fix Java single-line bugs by fine-tuning on the ManySStuBs4J small and large datasets [92].

CURE [73] applies a pre-trained GPT model to further revise an NMT-based APR architecture (i.e.,
CoCoNut). CIRCLE [228] proposes a T5-based program repair framework equipped with continual

learning ability across multiple languages. We will discuss the application of pre-trained models in

Section 5.

4.4.2 Tree-based Generation. Sequence-based APR techniques usually adopt Seq2Seq models for

patch generation. However, these techniques ignore code structure information because they are

designed for NLP, which is significantly different from programming language with strict syntactic

and grammatical rules. The generated patches of these techniques may suffer from syntax errors

that cause compilers to fail. As a result, researchers recently propose various tree-based generation

techniques by considering the syntactic structure of source code. These techniques treat the APR

problem as a tree transformation learning task.

Code Representation. A common solution is to parse the source code into an AST and adopt a

tree-aware model to perform patch generation, i.e., structure-aware representation. For example,

given a bug-fixing method pair𝑀𝑏 and𝑀𝑓 representing the buggy and fixed method, DLFix [98]

first extracts a buggy AST for𝑀𝑏 (i.e.,𝑇𝑏 ), a fixed AST for𝑀𝑓 (i.e.,𝑇𝑓 ), a buggy sub-AST (i.e,𝑇 𝑠
𝑏
) and

a fixed sub-AST (i.e., 𝑇 𝑠
𝑓
) between 𝑇𝑏 and 𝑇𝑓 . DLFix then adopts an existing summarization model

to encode 𝑇 𝑠
𝑏
as a single node 𝑆𝑠

𝑏
. Finally, the buggy method 𝑀𝑏 can be represented as a context

tree by replacing 𝑇 𝑠
𝑏
in 𝑇𝑏 with 𝑆𝑠

𝑏
and a sub-changed tree 𝑇 𝑠

𝑏
. The fixed method𝑀𝑓 is represented

in a similar way.

As tree-based representation contains the structure information, which cannot be directly de-

ployed to sequence-based neural models. Thus, an additional code representation strategy is utilized

to parse the tree representation as a sequential traverse sequence, i.e., sequential-traverse repre-
sentation. For example, Tang et al. [176] parse the source code into AST representation, which is

further translated into a sequence of rules. The sequence of rules can be processed by the vanilla

transformer [187] while capturing the grammar and syntax information. Similarly, CODIT [23]

first represents code snippets as AST by (1) identifying the edited AST nodes (i.e., the inserting,
deleting, and updating); (2) selecting the minimal subtree of each AST and (3) collecting the edit

context by including the nodes that connect the root of the method to the root of the changed tree.
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CODIT then employs a tree-based model to learn the structural changes in the form of a sequence

of grammar, which is finally used to predict the fixed code sequence with a standard Seq2Seq model.

Model Architecture.Most NMT-based APR models treat patch generation as a machine translation

from buggy code to a fixed one. However, such models could not capture the information of code

structures and suffer from handling the context of the code. Tree-based encoders consider the

structure features of source code, such as AST. For example, DLFix [98] represents source code

as ASTs and employs tree-based RNN models to encode the context tree and sub-changed trees.

Besides, Devlin et al. [38] encode the AST with a sequential bidirectional LSTM by enumerating a

depth-first traversal of the nodes.

4.4.3 Graph-based Generation. These techniques transform source code into graph representations

with contextual information and frame the APR problem in terms of learning a sequence of graph

transformations based on graph-basedmodels. Instead of directlymanipulating the source code, such

graph-based APR techniques aim to learn a sequence of transformations on the graph representation

that would correspond to a corrected version of the original code.

Code Representation. To capture the neighbor relations between AST nodes, Recoder [242] treats

AST as a directional graph where the nodes denote AST nodes and the edges denote the relationship

between each node and its children and left sibling. Besides, Xu et al. [214] consider the context
structure by data and control dependencies captured by a data dependence graph (i.e., DDG) and a

control dependence graph (i.e., CDG).
Model Architecture. Existing graph-based APR techniques usually design graph neural networks

and their variants to capture graph representation and perform patch generation. For example,

Hoppity [39] adopts a gated graph neural network (GGNN) to treat the AST as a graph, where a

candidate patch is generated by a sequence of predictions, including the position of graph nodes

and corresponding graph edits. Besides, Xu et al. [214] design a graph neural network (GNN) for

obtaining a graph representation by first converting DDG and CDG into two graph representations

and then fusing them.

✎ Summary ▶ As the most crucial phase in the repair workflow, a majority of existing

learning-based APR techniques focus on patch generation. These patch generation techniques

typically can be divided into two parts: code representation and the corresponding model

architecture. The key research question lies in how to appropriately represent code snippets

and determine the model architecture that can effectively learn the transformation relationship

between buggy code and correct code. Inspired by NLP, incipient repair techniques usually

represent the source code as a sequence of tokens, and transform an APR problem into an

NMT task on top of a sequence-to-sequence model. The follow-up techniques represent the

source code as a tree or graph representation and adopt tree-aware models (e.g., tree-LSTM)

or graph-aware models (e.g., GGNN) to perform patch generation. The literature does not

demonstrate which code representation or model architecture exhibits the best performance.

An in-depth controlled experiment can be conducted to investigate the performance between

different code representations and the corresponding model architectures. ◀

4.5 Patch Ranking
The patch generation is a search process for the maximum in the combinatorial space. Given the

max output length l and the size of vocabulary V, the total number of candidate patches that the

decoder can generate reaches 𝑉 𝑙
, all of which it is impossible to validate in practice. Developers

may spend a considerable amount of effort to assess the correctness of the generated candidate

patches manually. In such a scenario, only inspecting fewer repair candidates (e.g., Top-1 and Top-5)
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that have a high probability of being correct is more practical and reduces the valuable manual

effort. As a result, a patch ranking strategy is crucial to ensure the inference efficiency of the model

and relieve the burden of patch validation.

Beam search is an effective heuristic search algorithm to rank the outputs in previous NMT

applications [197] and is the most common patch ranking strategy in learning-based APR studies,

such as CIRCLE [228], SelfAPR [226], RewardRepair [227] and Recoder [242]. In particular, at each

iteration, the beam search algorithm selects the 𝑘 most probable tokens (corresponding to beam

size 𝑘) and ranks them according to the likelihood estimation score of the next 𝑑 prediction steps

(corresponding to search depth 𝑑). The iteration repeats until a stopping condition is met, such as

reaching a certain sequence length or all sequences ending with an end-of-sequence token. Finally,

the top 𝑘 high-scoring candidate patches are generated and ranked for further validation in the

next procedure of the overall learning-based APR workflow. Beam search provides a great trade-off

between repair accuracy versus inference cost via its flexible choice of beam size.

However, the vanilla beam search considers only the log probability to generate the next token

while ignoring the code-related information, such as variables. Thus, it may generate high-score

patches with unknown variables, leading to uncompilable candidate patches. In addition to directly

applying the existing beam search strategy, researchers design some novel strategies to filter out

low-probability patches. For example, CURE [73] designs a code-aware beam search strategy to

generate more compilable and correct patches based on valid-identifier check and length control

components. The code-aware strategy first performs static analysis to identify all valid tokens

used for sequence generation and then prompts beam search to generate sequences of a similar

length to the buggy line. DLFix [98] first derives the possible candidate patches by program analysis

filtering and ranks the list of possible patches by a CNN-based binary classification model. The

classifier adopts a Word2Vec model as the encoder stack at the char level, followed by a CNN stack

as the learning stack (containing a Convolutional layer, pooling, and fully connected layers), and a

softmax function as the classification stack. Then DLFix ranks the given list of patches based on

their possibilities of being a correct patch. Further, DEAR [99] applies a set of filters to verify the

program semantics and ranks the candidate patches in the same manner as DLFix does.

In addition to the widely-used beam search and their variants, there are also some self-designed

patch ranking methods as a component in the patch generation. As early as 2016, Long et al. [111]
propose Prophet, which trains a ranking model to assign a high probability to correct patches based

on designed features (detailed in Section 7.2). Recently, AlphaRepair [209] designs a patch ranking

strategy based on a masked language model. In particular, given a candidate patch, AlphaRepair

calculates its priority score by (1) extracting all generated tokens; (2) masking out only one of the

tokens; (3) querying CodeBERT to obtain the conditional probability of that token; (4) repeating

the same process for all other previous mask tokens; and (5) computing the joint score which is an

average of the individual token probabilities.

✎ Summary ▶ Patch ranking seeks to prioritize candidate patches with a higher probability

of being correct in the search space. As a greedy strategy, beam search is widely adopted in

existing learning-based APR techniques to keep 𝑘 optimal tokens at every iteration according

to the likelihood estimation score. Besides, some advanced patch ranking strategies (e.g., a
code-aware beam search strategy to consider valid identifiers) are proposed to identify high-

probability while low-quality patches, such as uncompilable candidate patches. Overall, a

majority of existing learning-based APR techniques follow the vanilla beam search strategy

and the literature fails to see systematic research to delve into the impact of patch ranking

strategies on repair performance. As a guideline for future work, after summarizing existing
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patch ranking works, we recommend that a reasonable patch ranking technique needs to

consider three aspects: ①effectiveness, i.e., it should have a sufficiently large search space to

encompass the correct patches; ②efficiency, i.e., it should have a fast retrieval speed to find the

correct patch in a reasonable amount of time; and, ③priority, i.e., it should prioritize the patch

that is more likely to be correct higher based on additional code information, such as code

syntactic and semantic features. ◀

4.6 Patch Validation
Patch validation takes a ranked list of candidate patches generated by NMT models as the input

and returns the plausible patches for deployment, which is a crucial phase in the learning-based

APR pipeline. However, developers may spend a considerable amount of effort to inspect the

candidate patches manually. Thus, researchers usually recompile the buggy program with the

generated patch to check if it can pass the available test suite. In such a scenario, hundreds or even

thousands of candidate patches can be filtered automatically (e.g., 1000 candidate patches per bug
in CIRCLE [228]), which may benefit its adoption in practice.

Similar to traditional APR techniques, most learning-based techniques adopt a test-based vali-

dation strategy (i.e., executing available test suites against each candidate patch) to assess patch

correctness [73, 98, 99, 115, 228, 242]. For example, CIRCLE [228] filters out the candidate patches

that do not compile or do not pass available test suites. There generally exist two criteria for the

validation process: (1) the passing test suites that make the buggy program pass should still pass

on the patched program; and (2) the fault-triggering test suites that fail on the buggy program

should pass on the patched program. All candidate patches are checked until a plausible patch (i.e.,
a patch passing all test suites) is found. Finally, CIRCLE stops the validation process and reports the

plausible patch for manual investigation. Similar test-based validation strategies are also employed

by other learning-based APR appraoches, such as Recoder [242], CoCoNut [115] and CURE [73].

However, it can be extremely time-consuming to compile a large number of candidate patches

and repeat all test executions to identify plausible patches. For example. CURE [73] generates

10,000 candidate patches per bug and validates the top 5,000 ones considering the overhead time.

Similarly, AlphaRepair [209] returns at most 5,000 candidate patches for each bug. To reduce the

validation cost, some learning-based APR techniques return an acceptable amount of candidate

patches. For example, RewardRepair configures the beam size as 200 and outputs the 200 best

patches per bug. Similarly, SelfAPR adopts a beam search size of 50 and Recoder generates 100 valid

candidate patches for validation. Besides, similar to traditional APR techniques [70, 107], there

exist several learning-based ones limiting maximum time for validation. For example, DEAR [99]

and DLFix [98] set a 5-hour running-time limit for patch generation and validation.

In addition to the above strategies in patch validation, the learning-based APR community benefits

from some optimizations to speed up the dynamic execution. For example, AlphaRepair [209] adopts

the UniAPR [25] tool to validate the candidate patches on-the-fly. For example, Inspired by the

PraPR work [54], Chen et al. [25] present UniAPR as the first unified on-the-fly patch validation

framework to speed up APR techniques for JVM-based languages at both the source and byte-code

levels. They leverage the JVM HotSwap mechanism and Java Agent technology to implement

this framework. Besides, they apply the JVM resetting technique based on the ASM byte-code

manipulation framework. Since previous work shows that on-the-fly patch validation can be

imprecise, they reset the JVM state right after each patch execution to address such an issue.

Orthogonal to UniAPR, Bento et al. [14] introduce SeAPR, the first self-boosted patch validation

tool. Based on the idea that patches similar to earlier high-quality/low-quality patches should

be promoted/degraded, they leverage the patch execution information on its similarity with the
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executed patches to update each patch’s priority score. The evaluation shows that SeAPR can

substantially speed up the studied APR techniques and its performance is stable under different

formulae for computing patch priority. Besides, the literature has seen the emergence of several

patch validation studies. For example, as early as 2012, Qi et al. [155] propose WAutoRepair, a

repair system that combines Genprog with a recompilation technique called weak recompilation to

reduce time cost and make program repair more efficient. WAutoRepair views a program as a set of

components and for each candidate patch, only one component is modified. After that, the changed

component is compiled to a shared library to reduce the time cost. In 2013, inspired by regression

test prioritization, Qi et al. [156] propose TrpAutoRepairto prioritize test case execution based on the
faults information in the repair process. Although these works have achieved commendable results,

most of them have all been applied to traditional APR techniques, e.g., GenProg [93]. However,

considering that the patch validation phase is designed to compile and execute the candidate patch,

which is independent of the specific patch generation techniques, such patch validation techniques

have the potential to be extended to learning-based repair techniques in the future.

✎ Summary ▶ Dynamic execution is a common practice to automatically validate the

code’s compilability and functional correctness of programs in the SE community. However,

it is time-consuming to compile and execute such programs, especially in the field of APR

where thousands of candidate patches and a mass of functional test cases are involved. Most

learning-based APR techniques rely on a test-based validation strategy to identify plausible

patches, which is a standard step in both traditional and learning-based APR communities.

Besides, recently there have been some advanced techniques proposed specifically to validate

these candidate patches more quickly, such as JVM HotSwap. Currently, there is no distinct

differentiation in patch validation research between the traditional and learning-based APR

communities. The possible reason lies in that, the patch validation phase aims to identify high-

quality patches that pass the available test cases. This objective can be achieved by directly

executing the test cases, without concerning whether the patches come from traditional or

learning-based APR techniques. We encourage more research on patch validation that is specific

to learning-based APR techniques, discussed in Section 8. ◀

4.7 Patch Correctness
Patch correctness is an additional phase for developers to further filter out overfitting patches after

patch validation, so as to improve the quality of returned patches. As discussed in Section 4.6, a

majority of existing learning-based APR techniques usually leverage the developer-written test

suites as the program specification to assess the correctness of the generated patches. However,

the test suite is an incomplete specification as it only describes a part of the program’s behavioral

space. As a result, it is fundamentally difficult to achieve high precision for returned patches due

to the incomplete program specification [90]. The plausible patch passing the available test suites

may not generalize to other potential test suites, leading to a long-standing challenge of APR (i.e.,
the overfitting issue) [90, 234].

For example, Qi et al. [157] have demonstrated that a majority of the overfitting patches generated

by previous APR approaches (e.g., GenProg [93]) for 105 C language bugs are equivalent to a single

modification that deletes the buggy functionality and does not actually fix the detected bugs. Under

the circumstances, it takes enormous time and effort to manually filter out the overfitting patches,

even resulting in a negative debugging performance [177, 238]. Different from some traditional

APR techniques that guide the repair process to generate patches with a high probability of being

correct, DL techniques lead to an end-to-end repair mechanism and the patches are generated in a

black-box manner. The overfitting issue in learning-based APR is more significant and severe [198].
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In the literature, researchers have proposed a mass of automated patch correctness assessment

(APCA) techniques to identify whether a plausible patch is indeed correct or overfitting [179].

Xiong et al. [212] propose PATCH-SIM to identify correct patches based on the similarity of test

case execution traces on the buggy and patched programs. PATCH-SIM has been acknowledged

as a foundational work in this field [179], providing crucial guidance for the conception and

development of follow-up works [217, 224]. There are usually two types of traditional APCA

techniques based on the employed patch features: static and dynamic [195]. The former focuses

on the transformation patterns or the static syntactic similarity (e.g., Anti-pattern [174]), while

the latter relies on the dynamic execution outcomes by additional test suites from automated test

generation tools (e.g., PATCH-SIM [212]). Recently, inspired by large-scale patch benchmarks being

released, some learning-based APCA techniques have been proposed to predict patch correctness

with the assistance of DL models [178, 179, 224]. In general, such learning-based APCA techniques

extract the code features (e.g., static representation or dynamic execution traces) and build a

classifier model to directly perform patch correctness prediction. We view patch correctness as an

essential component of the learning-based APR pipeline and focus on such APCA techniques that

employ DL models.

Table 1. A summary and comparison of learning-based APCA studies

Year Approach Language Feature Dataset Repository

2020 Csuvik et al. [34] Java Code Representation QuixBugs [103]

https://github.com/AAI-

USZ/APR-patch-

correctness-IBF2020

2020 Tian et al. [179] Java Code Representation

Defects4J [76],Bears [117],

Bugs.jar [165], ManySStubBs4J [78],

QuixBugs [103],RepairThemAll [43]

https://github.com/TruX-

DTF/DL4PatchCorrectness

2021 Csuvik et al. [35] JavaScript Code Representation BugsJS [59]

https://github.com/AAI-

USZ/JS-patch-exploration-

APR2021

2021 ODS [224] Java Engineered Feature

Defects4J [76],

Bears [117],Bugs.jar [165]

https://github.

com/SophieHYe/

ODSExperiment

2021 CACHE [102] Java Code Representation

Defects4J [76],ManySStuBs4J [78],

RepairThemAll [43]

https://github.com/

Ringbo/Cache

2022 Tian et al. [180] Java

Code Representation

Engineered Feature

Defects4J [76],Bears [117],

Bugs.jar [165],ManySStubBs4J [78],

QuixBugs [103],RepairThemAll [43]

https://github.com/

HaoyeTianCoder/Panther

2022 BATS [178] Java Test Specification Defects4J [76]

https://github.com/

HaoyeTianCoder/BATS

2022 QUATRAIN [181] Java Bug Report

Defects4J [76],

Bears [117],Bugs.jar [165]

https://github.com/

Trustworthy-Software/

Quatrain

2022 Shibboleth [55] Java

Textual similarity

Execution Trace

Code coverage

Defects4J [76]

https://github.com/ali-

ghanbari/shibboleth

2022 Crex [216] C Execution Trace CodeFlaws [173]

https://github.com/

1993ryan/crex

Table 1 presents a summary of existing learning-based techniques to predict patch correctness

automatically in the literature. The first and second columns list the APCA technique and the time

of publication. The third column lists the targeted programming languages. The fourth column lists

the features adopted by the APCA technique. The remaining columns list the employed datasets

and the public repositories. Now, we discuss and summarize these individual approaches as follows.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 1. Publication date: 2023.

https://github.com/AAI-USZ/APR-patch-correctness-IBF2020
https://github.com/AAI-USZ/APR-patch-correctness-IBF2020
https://github.com/AAI-USZ/APR-patch-correctness-IBF2020
https://github.com/TruX-DTF/DL4PatchCorrectness
https://github.com/TruX-DTF/DL4PatchCorrectness
https://github.com/AAI-USZ/JS-patch-exploration-APR2021
https://github.com/AAI-USZ/JS-patch-exploration-APR2021
https://github.com/AAI-USZ/JS-patch-exploration-APR2021
https://github.com/SophieHYe/ODSExperiment
https://github.com/SophieHYe/ODSExperiment
https://github.com/SophieHYe/ODSExperiment
https://github.com/Ringbo/Cache
https://github.com/Ringbo/Cache
https://github.com/HaoyeTianCoder/Panther
https://github.com/HaoyeTianCoder/Panther
https://github.com/HaoyeTianCoder/BATS
https://github.com/HaoyeTianCoder/BATS
https://github.com/Trustworthy-Software/Quatrain
https://github.com/Trustworthy-Software/Quatrain
https://github.com/Trustworthy-Software/Quatrain
https://github.com/ali-ghanbari/shibboleth
https://github.com/ali-ghanbari/shibboleth
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex


1:22 Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen

As early as 2020, inspirited by the similarity-based strategy in state-of-the-art traditional APCA

techniques (e.g., the behavior similarity of execution traces in PATCH-SIM [212]), Csuvik et al. [34]
present the first study to explore the nature of similarity-based approach based on static code

representation for patch correctness assessment. They leverage embedding models (i.e., Doc2vec
and BERT) to calculate the similarity between the buggy and patched code snippets and classify

patch correctness by a pre-defined similarity threshold. The experimental results on the QuixBugs

dataset show that the proposed approach successfully filters out 45% (16/35) of the incorrect

patches. In 2021, Csuvik et al. [35] further adapt the similarity-based method based on static code

representation to JavaScript with quantitative and qualitative analysis in depth.

However, the study of Csuvik et al. [34] is preliminary and small-scale, only with a single

BERT model on 40 one-line bugs. Tian et al. [179] further conduct a more large-scale empirical

study to investigate the feasibility of code representation learning to encode the properties of

patch correctness. They consider different representation learning techniques (i.e., Doc2Vec, BERT,
code2vec, and CC2Vec) to get embedding vectors for code changes, including pre-trained models

and the retraining of models. They also investigate the discriminative power of learned features in

a classification training pipeline (i.e., Decision tree, Logistic regression, and Naive Bayes) for patch

correctness. Overall, this work demonstrates the promising future of representation learning in

patch correctness assessment, and is valuable fo follow-up works [102, 180]. Later, Tian et al. [180]
further extend their previous work [179] by examining the effectiveness of code representation,

engineered features, and their combination for predicting patch correctness. They first introduce

Leopard, a classification training pipeline to investigate the discriminative power of learned em-

beddings by training machine learning classifiers to predict correct patches. The experimental

results demonstrate the potential of Leopard to reason about patch correctness based on represen-

tation learning models and supervised learning algorithms, e.g., BERT associated with XGBoost

on 2,147 labeled patches achieves an AUC value of about 0.803, outperforming state-of-the-art

APCA techniques PATCH-SIM. They then introduce Panther, an upgraded version of Leopard to

explore the combination of the learned embeddings and the engineered features to improve the

performance of identifying patch correctness with more accurate classification. Panther is proven

to outperform Leopard with higher scores in terms of AUC, +Recall and -Recall by combining deep

learned embeddings and engineered features.

In 2021, different from Tian et al. [179] focusing on code representation, Ye et al. [224] propose
ODS, a learning-based approach to identify overfitting patches based on hand-crafted features

and supervised learning. ODS first defines and extracts a set of 202 static code features from the

AST to represent a candidate patch. ODS then adopts gradient boosting with the captured code

features and patch correctness labels to train a classifier for patch correctness classification. They

conduct on three benchmarks (i.e., Defects4J, Bugs.jar and Bears) and the results show that ODS

achieves an accuracy of 71.9% in detecting overfitting patches from 26 projects, and outperforms

other state-of-the-art techniques, e.g., PATCH-SIM [212].

Despite promising, Tian et al. [179] only focus on the buggy and patched statements while

ignoring the surrounding context information. In 2021, Lin et al. [102] propose CACHE, a context-
aware code change embedding technique for the patch correctness task. CACHE leverages context

information of unchanged code and captures the code structure information with the AST path

technique. CACHE then trains a deep learning-based classifier to predict the correctness of the

patch based on several pre-defined heuristics. The experimental results on three benchmarks

(i.e., Defects4J [76], ManySStuBs4J [78] and RepairThemAll [43]) show that CACHE achieves

significantly better performance than both previous representation learning techniques (i.e., Tian et
al. [179]) and traditional APCA techniques (e.g., dynamic-based PATCH-SIM [212] and static-based

Anti-patterns [174]).
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In 2022, unlike previous studies [179, 224] only considering buggy and patched code snippets,

Tian et al. [178] introduce BATS, an unsupervised learning-based approach to predict patch correct-

ness based on failing test specifications. BATS first constructs a search space of historical patches

with failing test cases. Given a plausible patch, BATS identifies similar failing test cases in the

search space. BATS then calculates the similarity of historical patches and the plausible patch

based on the failing test cases. The plausible patch is predicted as correct if the similarity score is

larger than a predefined threshold; otherwise, it is predicted as incorrect. After collecting plausible

patches from 32 APR tools to construct a large dataset, they evaluate the performance of BATS on

Defects4J benchmarks with some standard classification metrics (e.g., recall). BATS outperforms

existing techniques in identifying correct patches and filtering out incorrect patches.

Besides, Tian et al. [181] attempt to formulate the patch correctness assessment problem as a

question-answering problem, which can assess the semantic correlation between a bug report

(question) and a patch description (answer). They introduce QUATRAIN, a supervised learning

approach that exploits a deep NLP model to predict patch correctness based on the relatedness

of a bug report with a patch description. QUATRAIN first mines bug reports for bug datasets

automatically and generates patch descriptions by existing commit message generation models.

QUATRAIN then leverages an NLP model to capture the semantic correlation between bug reports

and patch descriptions. They evaluate QUATRAIN on a large dataset of 9135 patches from three

Java datasets (i.e., Defects4j, Bugs.jar, and Bears). The results demonstrate that QUATRAIN achieves

comparable or better performance against other state-of-the-art dynamic and static techniques,

such as PATCH-SIM [212] and BATS [178]. Besides, QUATRAIN is proven practical in learning the

relationship between bug reports and code change descriptions for the patch prediction task.

Different from most existing studies focusing on Java programs, Yan et al. [216] propose Crex to
predict patch correctness in C programs based on execution semantics. They first leverage transfer

learning to extract semantics from micro-traces in buggy C code on the function level. They then

perform semantic similarity computation to denote patch correctness. They evaluate Crex on a set

of 212 patches generated by the CoCoNut APR tool on CodeFlaws programs. The experimental

results indicate that Crex can achieve high precision and recall in predicting patch correctness.

At the same time, considering that previous studies [179, 224] training a patch prediction classifier

with static features (e.g., code representation or hand-crafted features), Ghanbari et al. [55] propose
Shibboleth, a hybrid learning-based technique by considering static and dynamic measures from

both production and test code to assess the correctness of the patches. Shibboleth measures

the impact of the patches by static syntactic feature (i.e., token-level textual similarity), dynamic

semantic feature (i.e., execution traces similarity) on production code, and code coverage on test code

(i.e., branch coverage of the passing test cases). Shibboleth then assesses the correctness of patches

via both ranking (i.e., prioritizing the patches that are more likely to be correct before the ones that

are less likely to be correct) and classification (i.e., categorizing patches into two classes of likely

correct and likely incorrect) modes. The experimental results show that Shibboleth outperforms

existing patch ranking (e.g., an Ochiai-based sterategy [204]) and classification techniques, such as

ODS [224] and PATCH-SIM [212].

✎ Summary ▶ The overfitting issue has become a key focus in the field of APR, which has led

to the emergence and rapid development of recent APCA techniques. DL techniques have been

gradually used to predict the correctness of patches by learning features from historical corpora.

Compared to traditional dynamic and static APCA, learning-based APCA has shown impressive

performance in prediction accuracy and recall. We provide a summary of the existing learning-

based APCA techniques in Table 1. In the literature, most existing APCA techniques employ
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a two-component pipeline, i.e., the feature extractor and the classifier. The former extracts

the features from the source code of patches, e.g., hand-crafted features, static representation

features and dynamic execution features, while the latter trains a classifier to perform binary

prediction, e.g., Random Forest and Decision tree. Despite increasing research efforts being put

into this phase and encouraging progress being made, the problem of patch overfitting still

hinders the application and deployment of repair techniques in practice. Therefore, the APR

community needs more advanced APCA techniques to improve the correctness of returned

patches, e.g., patch-aware feature extraction and more powerful pre-trained models. ◀

4.8 State-of-the-Arts
In the learning-based APR field, semantic error (i.e., test-triggering error) has attracted considerable
attention from researchers, which is the most general application of repair techniques discussed in

the previous sections. A living review [136] summarizes and categorizes existing APR techniques

into different repair scenarios during software development, including static errors, concurrency

errors, etc. In this section, we attempt to summarize existing representative learning-based APR

techniques across different scenarios where learning-based APR is most applied.

Table 2 presents a summary of existing representative learning-based APR techniques. The first

and second columns list the investigated repair techniques and the time when these techniques are

presented. The third and fourth columns list the targeted bug types and programming languages.

The fifth column lists the adopted fault localization technique. The sixth, seventh, and eighth

columns list the detailed data pre-processing methods, i.e., code context, code abstraction and code

tokenization. The ninth and tenth columns list the detailed code representation and employed

models. The last column lists the employed patch ranking strategy. In the following, we discuss

these learning-based APR techniques according to the repair scenarios.

4.8.1 Semantic error repair. Semantic errors usually refer to any case where the actual program

behavior is not expected by developers, and can be detected by functional test cases. Considering

that the vast majority of existing learning-based studies are concentrated in this field of semantic

error, we group them based on the form of code representation. In the following, we discuss and

summarize existing individual learning-based APR techniques that focus on semantic bugs in detail.

❶ Sequence-based Approaches.
As early as 2019, Tufano et al. [183] conduct this first attempt to investigate the ability of NMT

models to learn code changes during pull requests. They first mine pull requests from three large

Gerrit repositories and extract the method pairs before and after the pull requests, where each pair

serves as an example of a meaningful change. They then map the identifiers and literals in the

source code to specific IDs (i.e., code abstraction) to reduce the vocabulary size. Finally, they train

NMT models to translate the method before the pull request into the one after the pull request, to

emulate the actual code change. The experimental results show that NMT models can generate the

same patches for 36% pull requests Overall, this study demonstrates the potential of NMT models

in learning a wide variety of meaningful code changes, especially refactorings and bug-fixing

activities. Further, Tufano et al. [184] perform an empirical study to investigate the potential of

NMT models in generating bug-fixing patches in the wild, which is discussed in Section 6.3.

At the same time, Chen et al. [27] propose SequenceR, an end-to-end approach based on sequence-
to-sequence learning. They combine LSTM encoder-decoder architecture with a copy mechanism

to address the problem of a large vocabulary. First, they apply state-of-the-art fault localization

techniques to identify the buggy method and the suspicious buggy lines. Then, they perform a

novel buggy context abstraction process that intelligently organizes the fault localization data

into a suitable representation for the deep learning model. Finally, SequenceR generates multiple

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 1. Publication date: 2023.
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patches for the buggy code. Although their approach can only be applied to single-line buggy code,

this model outperforms the APR tool of Tufano et al. on Defects4J benchmarks. Moreover, they

prove that the copy mechanism can improve the accuracy of generated patches.

However, Tufano et al. [184] and SequenceR [27] represent both the buggy line and its context as

one input for NMTmodels, making it difficult to extract long-term relations between code tokens. In

2020, Lutellier et al. [115] propose CoCoNut, a context-aware NMT approach that separately inputs

the buggy line and method context. In particular, CoCoNut applies CNN (i.e., FConv architecture) in
the context-aware NMT architecture, which is able to better extract hierarchical features of source

code compared with LSTM used in Tufano et al. [184] and SequenceR [27]. Besides, CoCoNuT

trains multiple NMT models to capture the diversity of bug fixes with ensemble learning. CoCoNut

is evaluated on six well-known benchmarks across four programming languages, i.e., Defects4J of
Java, QuixBugs of Java, CodeFlaws of C, ManyBugs of C, QuixBugs of Python and BugAID of JS.

The experimental results show that CoCoNut is capable of fixing 509 bugs on the six benchmarks,

309 of which have not been fixed by previous APR tools, such as DLFix, Prophet and TBar. At

the same time, different CoConut only considering patch generation, Yang et al. [219] propose
a sequence-basd technique for both fault localization and patch generation. They first employ a

CNN-based autoencoder to rank suspicious buggy code by extracting various information from bug

reports and the program source code. They then convert the program source code into multiple

lines with tokens and apply the SeqGAN model to generate the candidate patches.

In 2021, on top of CoCoNut, Jiang et al. [73] propose CURE, an NMT-based APR technique to

fix Java bugs. Compared with CoCoNut, the novelty of CURE mainly coms from three aspects.

First, to better learn developer-like source code, CURE pre-trains a programming language model

on a large corpus and combines it with the CoCoNut context-aware architecture. Second, CURE

designs a code-aware beam search strategy to avoid uncompilable patches during patch generation.

Third, to address the OOV problem, CURE introduces a new sub-word tokenization technique to

tokenize compound and rare words. The experimental results demonstrate that CURE is able to fix

57 Defects4J bugs and 26 QuixBugs bugs, outperforming existing learning-based APR approaches

under different beam search sizes, such as SequenceR and CoCoNut.

In 2022, unlike Tufano et al. [184] without considering semantic and lexical scope information

of code tokens, Yao et al. [221] propose Bug-Transformer, a transformer-based APR technique to

fix buggy code snippets. It is equipped with a token pair encoding (TPE) algorithm and a rename

mechanism to preserve crucial information. First, Bug-Transformer designs a TPE algorithm to

reduce vocabulary size by compressing code structure while preserving structural and semantic

information. Second, Bug-Transformer employs a rename mechanism to abstract code tokens (i.e.,
identifiers and literals) with consideration of their semantic and lexical scope knowledge. Third,

Bug-Transformer trains a transformer-based model to learn the structural and semantic information

of code snippets and predicts patches automatically. The experimental results on BPF [184] datasets

show that Bug-Transformer outperforms baseline models, e.g., Tufano et al. [184].
Existing learning-based APR techniques are usually limited by the generation of lots of low-

quality (e.g., non-compilable) patches, due to the employed static loss function based on token

similarity. In 2022, Ye et al. [227] introduce RewardRepair based on a mixed loss function that

considers program compilation and test execution information. In particular, RewardRepair defines

a discriminator to discriminate good patches from low-quality ones based on dynamic execution

feedback, rather than static token similarity between the generated patch and the human-written

ground truth patch. The discriminator computes a reward value to gauge the patch quality, and

this value is subsequently utilized to update the weights of the patch generation model during

the backpropagation process. A higher reward indicates a higher quality of generated patch that

is compilable and passes the test cases, while a lower reward suggests potentially unsatisfactory

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 1. Publication date: 2023.
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patch quality, such as a non-compilable patch. Thanks to the compilation and test execution results

during training, RewardRepair is able to fix 207 bugs on four benchmarks, i.e., Defects4J-v1.2,

Defects4J-v2.0, Bugs.jar and QuixBugs, 121 of which are not repaired by previous approaches, e.g.,
DLFix, CoCoNut and CURE. More importantly, RewardRepair achieves a compilable rate of up to

45.3% among Top-30 candidate patches, an improvement over the 39% by CURE, demonstrating the

potential to generate high-quality patches.

Besides, previous learning-based APR approaches are dominantly founded on supervised training

with massive open-source code repositories, resulting in a lack of project-specific knowledge. In

parallel with RewardRepair, Ye et al. [226] also propose, SelfAPR, a self-supervised training approach
with test execution diagnostics based on a transformer neural network. SelfAPR consists of two

well-designed components, i.e., training sample generator and neural network optimization. The

first part generates perturbed programs with a perturbing model and tests it to capture compile

errors and execute failures information. The second part is fed with the previous information and

outputs 𝑛 best candidate patches with beam search. The experimental results show that SelfAPR

is capable of repairing 65bugs from Defects4J-v.12 and 45 bugs from Defects4J-v2.0, 10 of which

have never been repaired by the previous supervised neural repair models, such as CoCoNut [115]

and CURE [73]. More importantly, SelfAPR highlights the potential and power of self-supervised

training and project-specific knowledge in the learning-based APR community.

❷ Tree-based Approaches.
As early as 2020, Chakraborty et al. [23] propose a tree-based neural network, CODIT to learn

code changes by encoding code structures from the wild and generate patches for software bugs.

CODIT transforms the correct (or buggy) code snippet into the parse tree and generates the deleted

(or added) subtree. CODIT then predicts the structural changes using a tree-based translation model

among the subtrees and employs token names to concrete the structure using a token generation

model. The former tree-based model takes the previous code tree structure and generates a new

tree with the maximum likelihood, while the latter token generation model takes tokens and

types of tokens in the code and generates new tokens with the help of LSTM. To evaluate CODIT,

Chakraborty et al. [23] construct a real-world bug-fixing benchmark from 48 open-source projects

and also employ two well-known benchmarks, Pull-Request-Data [27] and Defects4J [76]. The

experimental results on these three benchmarks illustrate CODIT outperforms existing sequence-

based models (e.g., SequenceR [27]), highlighting the potential of the tree-based models in APR.

Despite the tree structure being considered, CODIT mainly employs a sequence-to-sequence

NMT model to learn code changes from ASTs, which can still be regarded as an NMT task. In 2021,

Li et al. [98] propose DLFix, a two-layer tree-based APR model to learn code transformations on the

AST level. In particular, DLFix first employs a tree-based RNN model to learn the contexts of bug

fixes, which is passed to another tree-based RNNmodel to learn the bug-fixing code transformations.

Besides, a CNN-based classification model is built to re-rank possible patches. The experimental

results on three benchmarks (i.e., Defects4J, Bugs.jar and BigFix) demonstrate that DLFix is able

to outperform previous learning-based APR approaches (e.g., Tufano et al. [184] and achieve

comparable performance against pattern-based APR approaches (e.g., Tbar [107]). Overall, DLFix
demonstrates that it is promising and valuable to treat the APR problem as a code transformation

learning task over the tree structure rather than an NMT task over code tokens.

In 2022, considering that DLFix is able to only fix individual statements at a time, Li et al. [99]
propose DEAR, a learning-based approach for multi-hunk multi-statement fixes. On top of DLFix,

DEAR is designed with three key contributions. First, DEAR introduces an FL technique to acquire

multi-hunks that need to be fixed together based on traditional SBFL and data flow analysis. Second,

DEAR develops a compositional approach to generate multi-hunk, multi-statement patches by a

divideand-conquer strategy to learn each subtree transformation in ASTs. Third, DEAR improves
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the mode architecture of DLFix by designing a two-tier tree-based LSTM with an attention layer

learn proper code transformations for fixing multiple statements. The experimental results on three

benchmarks (i.e., Defects4J, BigFix, and CPatMiner) demonstrate that DEAR fixes 164 more bugs

than DLFix, 61 of which are multi-hunk/multi-statement bugs.

❸ Graph-based Approaches.
As early as 2020, Dinella et al. [39] introduce HOPPITY, an end-to-end graph transformation

learning-based approach for detecting and fixing bugs in JS programs. HOPPITY first represents

the buggy program as a graph representation by paring source code into an AST and connecting

the leaf nodes. HOPPITY then performs graph transformation to generate patches by making a

sequence of predictions including the position of bug nodes and corresponding graph edits. The

experimental results on a self-constructed benchmark show that HOPPITY outperforms existing

repair approaches (e.g., SequenceR [27]) with or without the perfect FL results.

In parallel with HOPPITY, Yasunaga et al. [222] propose DrRepair to repair C/C++ bugs based

on a program feedback graph. They parse the buggy source code into a joint graph representation

with diagnostic feedback that captures the semantic structure. The graph representation takes all

identifiers in the source code and any symbols in the diagnostic feedback as nodes, and connects

the same symbols as edges. They then design a GNN model for learning the graph representation.

Besides, they apply a self-supervised learning paradigm that can generate extra patches by cor-

rupting unlabeled programs. They also discover that pre-training on unlabeled programs improves

accuracy. The experimental results on DeepFix and SPoC datasets demonstrate that DrRepair

outperforms three compared APR approaches, i.e., DeepFix [58], RLAssist [57] and SampleFix [60].

Inspired by HOPPITY, Nguyen et al. [142] propose GRAPHIX, a graph edit model that is pre-

trained with deleted sub-tree reconstruction for program repair. On top of HOPPITY, GRAPHIX

enhances the encoder with multiple graph heads to capture diverse aspects of hierarchical code

structures. Besides, GRAPHIX introduces a novel pre-training task (i.e., deleted sub-tree recon-

struction) tolearn implicit program structures from unlabeled data. Finally, GRAPHIX is trained

with both abstracted and concrete code to learn both structural and semantic code patterns. The

experimental results GRAPHIX is evaluated on the Java benchmark from Tufano et al. [184] and
it turns out that GRAPHIX is as competitive as large pre-trained models (e.g., PLBART [2] and

CodeT5 [197]) and outperforms the previous learning-based APR approaches (e.g., HOPPITY [39]

and Tufano et al. [184]).
In 2021, Zhu et al. [242] propose Recoder, a syntax-guided edit decoder that uses a novel

provider/decider architecture based on an AST-based graph. Recoder takes a buggy statement and

its context as input and generates edits as output by (1) embedding the buggy statement and its

context by a code reader; (2) embedding the partial AST of the edits by an AST reader; (3) embed-

ding a path from the root node to a non-terminal node by a tree path reader; and (4) producing a

probability of each choice for expanding the non-terminal node based on previous embeddings. In

particular, Recoder treats an AST as a directional graph, with its nodes representing AST nodes

and its edges connecting a node to its children and its immediate left sibling. The AST-based graph

is then embedded in the form of an adjacency matrix using a Graph Neural Network (GNN) layer.

The authors evaluate Recoder on four widely adopted Java benchmarks: Defects4J v1.2 with 395

bugs, Defects4J v2.0 with 420 bugs, QuixBugs with 40 bugs, and IntroClassJava with 297 bugs. The

results show that Recoder correctly repairs 53 bugs on Defects4J v1.2, 11 bugs more than TBar [107]

and 19 bugs more than SimFix [70]. Besides, Recoder correctly repairs 19 bugs on Defects4J v2.0, 35

bugs on IntroClassJava and 17 bugs QuixBugs, respectively. More importantly, Recoder is the first

learning-based APR technique that outperforms existing traditional techniques (e.g., TBar [107]
and SimFix [70]) on these four Java benchmarks.
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Meanwhile, in 2021, Tang et al. [175] propose Grasp, an end-to-end graph-to-sequence learning-

based approach for repairing buggy Java programs. Grasp represents the source code as a graph to

retain structural information and applies a graph-to-sequence model to capture information from

the graph, overcoming the problem of missing information. The experimental results on Defects4J

show that GrasP is able to generate compilable patches for 75 bugs, 34 of which are correct. Besides,

GrasP achieves better performance than the baseline approach SequenceR with two more correct

patches and 11 more plausible patches.

In 2022, Xu et al. [214] introduce M3V, a new multi-modal multi-view graph-based context

embedding approach to predict repair operators for buggy Java code. Different from previous

studies performing patch generation and validation, M3V focuses on repair operator selection.

M3V first applies a GNN with multi-view graph-based context structure embedding to capture

data and control dependencies. M3V also employs a tree-LSTM model with tree-based context

signature embedding for capturing high-level semantics. The evaluation experiment is conducted

on 20 open-source Java projects with two common types of bugs: null pointer exceptions and index

out of bounds. The results show that M3V is effective in predicting repair operators, achieving

71.45%∼75.60% accuracy on both types of bugs, highlighting the future of context embedding in

APR.

4.8.2 Syntax error repair. Most existing learning-based APR techniques usually expect that the

programs under repair are syntactically correct and these techniques are not applicable for syntax

errors. Novice programmers are more likely to make syntax errors (e.g., replacing a “∗” with an

“𝑥”) that make compilers fail. Previous studies have indicated the long-term challenge from a wide

range of syntax mistakes, consuming a lot of time for novices and their instructors. Recently, the

release of high-quality novice error data and the emergence of trustworthy deep learning models

have raised the possibility of designing and training DL models to fix syntax errors automatically.

Now, we list and summarize the recent learning-based APR studies that focus on syntax errors

as follows.

As early as 2017, Gupta et al. [58] propose a sequence-based approach, DeepFix to fix common

programming errors. DeepFix is regarded as the first end-to-end solution using a sequence-to-

sequence model for localizing and fixing errors. In particular, DeepFix applies an RNN-based

encoder-decoder with gated recurrent units (GRUs) to serve as the Seq2Seq model. Beside, DeepFix

attempts to fix multiple errors iteratively by repairing one bug each time and using an oracle to

decide whether to accept the patch or not. The evaluation experiment is conducted on 6971 C

erroneous programs written by students for 93 different programming tasks in an introductory

programming course. More importantly, as the pioneering end-to-end sequence-based approach in

this field, DeepFix demonstrates the potential of Seq2Seq models in fixing syntax errors and serves

as a catalyst for follow-up works, detailed in the following paragraphs.

In 2018, different from DeepFix focusing on C program, Santos et al. [167] propose to leverage

language models for repairing syntax errors in Java programs. They compare n-gram with LSTM

models trained on a large corpus of Java projects from GitHub about localizing bugs and repairing

them. Besides, their methodology does not rely on buggy code from the same domain as the

training data. Evaluation results show that their improved LSTM configuration outperforms n-

gram considerably. Thus, this tool can localize and suggest corrections for syntax errors, and it is

especially useful to novice programmers.

Meanwhile, Bhatia et al. [17] propose a Neuro-symbolic approach to repair programs committed

by students based on neural networks with constraint-based reasoning. They first apply an RNN

to repair syntax errors and then formalize the problem of syntax corrections in programs as a

token sequence prediction problem. They further leverage the constraint-based technique to find
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minimal repairs for the semantic correctness of syntactically-fixed programs. This approach is

then evaluated on a Python dataset and results show that their approach outperforms the n-gram

baseline model, demonstrating the potential of RNNs with constraint-based reasoning in repair

syntax errors.

In 2019, unlike DeepFix targeting syntax errors in C from small student programs, Mesbah et
al. [132] propose DeepDelta to repair the most costly classes of build-time compilation failures in

Java programs from real-world developer-written programs. They perform a large-scale study of

compilation errors and collect a large dataset from logs in Google. They further classify different

compilation errors and target repairing these errors following specific patterns learned from the AST

diff files in the dataset. DeepDelta is then evaluated on two most prevalent and costly classes of Java

compilation errors: missing symbols and mismatched method signatures. The experimental results

demonstrate that DeepDelta generates over half of the correct patches for unseen compilation

errors.

Meanwhile, different from DeepFix employing fully supervised learning, Gupta et al. [57] propose
RLAssist, a deep reinforcement learning-based technique to address the problem of syntactic error

repair in student programs. RLAssist is able to learn syntactic error repair directly from raw source

code through self-exploration,i.e., without any supervision. They leverage reinforcement learning

and train the model using Asynchronous Advantage Actor-Critic (A3C) [133]. A3C uses multiple

asynchronous parallel actor-learner threads to update a shared model, stabilizing the learning

process by reducing the correlation of an agent’s experience. After they evaluate RLAssist on the C

benchmark from DeepFix [58], results show that this model outperforms the APR tool DeepFix [58]

without using any labeled data for training, showing the potential to help novice programmers.

In 2020, unlike most existing techniques that use Seq2Seq models, Wu et al. [205] propose GGF,
a graph-based eep supervised learning model to localize and fix syntax errors. They first parse

the erroneous code into ASTs. Since the parser may crash in the parsing process due to syntax

errors, they create a so-called sub-AST and build the graph based on it. To tackle the problem

of isolated points and some error edges in the generated graph, they treat the code snippet as a

mixture of token sequences and graphs. Thus, GGF utilizes a mixture of the GRU and the GGNN as

the encoder module and a token replacement mechanism as the decoder module. The evaluation

shows that GGF is able to fix 50.12% of the erroneous code, outperforming DeepFix [58]. Besides,

the ablation study proves that the architecture used in GGF is quite helpful for the programming

language syntax error correction task.

However, most of the existing APR techniques employ supervised learning to train repair models

with labeled bug-fixing datasets, and their performance may be limited by the quantity and quality

of labeled data. In 2021, Yasunaga et al. [223] propose an unsupervised learning-based approach,

Break-It-Fix-It (BIFI) to fix syntax errors. BIFI first uses a fixer to generate patched code for buggy

code and uses a critic to check the patched code. BIFI then trains a breaker with real-world bug-

fixing code pairs to generate more realistic buggy code. Different from previous approaches, BIFI is

capable of turning raw unlabeled data into usable paired data with the help of a critic, which is

then used to train the fixer continuously. The experimental results on both Python and C language

benchmarks show that BIFI outperforms the previous repair approach DeepFix [58].

At the same time, considering that previous approaches (e.g., DeepFix [58]) usually ignore the

true intend of the programmer during the patch generation process, Hajipour et al. [60] propose
SampleFix, an efficient method to fix common programming errors by learning the distribution over

potential patches. To encourage the model to generate diverse fixes even with a limited number of

samples, they propose a novel regularizer that aims to increase the distance between the two closest

candidate fixes. They prove that this approach is capable of generating multiple diverse fixes with

different functionalities for 65% of repaired programs. After evaluating the approach on real-world
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datasets, they show that this approach outperforms previous APR tools such as DeepFix [58] and

RLAssist [57].

4.8.3 Security vulnerability repair. Software vulnerability generally refers to the security flaws in

the concrete implementation of hardware, software, or protocols. Malicious attackers can exploit

unresolved security vulnerabilities to get access to the system without authorization or even

paralyze the system. Such vulnerabilities open a range of threats to cyber security, resulting in

severe economic damage and fatal consequences. For example, the Log4Shell vulnerability (CVE-

2021-44228) from Apache Log4j library
3
allows attackers to run arbitrary code on any affected

system
4
and is widely recognized as the most severe vulnerability in the last decade (e.g., 93% of

the cloud enterprise environment are vulnerable to Log4Shell5). Nowadays, the number of exposed

security vulnerabilities recorded by the National Vulnerability Database (NVD)
6
has been increasing

at a striking speed, affecting millions of software systems annually.

However, it is incredibly time-consuming and labor-intensive for security experts to repair such

security vulnerabilities manually due to the strikingly increasing number of detected vulnerabilities

and the complexity of modern software systems [52, 240]. For example, previous studies report

that the average time for repairing severe vulnerabilities is 256 days
7
and the life spans of 50% of

vulnerabilities even exceed 438 days [95]. It is incredibly time-critical to patch reported security

vulnerabilities, as a belated vulnerability repair could expose software systems to attack [100, 104],

posing enormous risks to millions of users around the globe and costing billions of dollars in

financial losses [86]. Given the potentially disastrous effect when software vulnerabilities are

exploited, a mass of learning-based studies has recently been conducted on automated software

vulnerability repair [28, 51].

We list and summarize the recent learning-based vulnerability repair studies in detail as follows.

As early as 2017, Ma et al. [116] introduce a learning-based vulnerability repair tool, VuRLE, to

automatically detect and repair vulnerabilities in Java programs. In the learning phase, it generates

templates by analyzing edits from repair examples. First, it extracts edit blocks by performing AST

diff. Then, it compares each edit block with the other edit blocks, and produces groups of similar edit

blocks. Finally, for each edit group, VuRLE generates a repair template for each pair of edit blocks

that are adjacent to each other. In the repairing phase, VuRLE detects and repairs vulnerabilities

by selecting the most appropriate template. It applies repair templates in order of their matching

score until it detects no redundant code. Evaluation results on real-world vulnerabilities show that

VuRLE successfully repaired 101 vulnerabilities, achieving an accuracy of 55.19%.

In 2018, to get rid of the previous work’s dependence on labeled datasets, Harer et al. [62] propose
a GAN-based approach to automatically repair security vulnerabilities based on adversarial learning

without requiring labeled code samples. They first apply an NMT model as the generator and

employ two novel generator loss functions instead of the traditional negative likelihood loss. They

then design a discriminator to distinguish the output generated by the NMT model and oracle

output. This approach can be used in the absence of paired bug-fixing datasets, thus reducing the

requirements of datasets. The authors evaluate the proposed approach on the SATE IV dataset and

prove the promising results in fixing vulnerabilities compared with the original Seq2Seq model.

3
https://logging.apache.org/log4j/2.x/

4
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2022/01/ftc-warns-companies-remediate-log4j-security-

vulnerability

5
https://www.wiz.io/blog/10-days-later-enterprises\-halfway-through-patching-log4shell

6
https://www.nist.gov/

7
https://www.securitymagazine.com/articles/95929-average-time-to-fix-severe-vulnerabilities-is-256-days
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Besides, the proposed approach is proven to be applicable to other repair tasks, such as grammatical

error correction.

In 2022, based on the transformer and transfer learning, Chen et al. [28] propose VRepair, a
learning-based approach to repair security vulnerabilities . VRepair is first trained on a large bug-

fixing dataset and is then transferred to a relatively small vulnerability-fixing dataset. VRepair uses

a transformer neural network model to generate potential patches that are likely to be correct based

on the training data. The results show that VRepair trained on a bug-fixing dataset already fix some

vulnerabilities. Besides, they demonstrate the knowledge learned from the program repair task can

be transferred to the vulnerability repair task. In particular, VRepair with the transfer learning

gains a better repair performance than that only trained on a vulnerability-fixing or bug-fixing

dataset.

Different from VRepair focusing on C code, Chi et al. [31] propose SeqTrans, a learning-based
approach to provide suggestions for automatically repairing Java vulnerability. SeqTrans first uses

Gumtree to search for differences between different commits and then traverses the whole AST

to label the variables. SeqTrans then traverses up the leaf nodes, localizes the statement with

vulnerability and generates code change pairs, which is fed into the NMT model. As SeqTrans

requires a massive amount of training data, SeqTrans is first trained on a bug-fixing dataset (i.e.,
source domain) and fine-tuned on a vulnerability-fixing dataset (i.e., target domain). SeqTrans is

proven to achieve better repair accuracy than existing techniques (e.g., SequenceR) and performs

very well in certain kinds of vulnerabilities (e.g., CWE-287).

However, previous approaches [28, 31] usually only consider source code while ignoring the

valuable vulnerability characteristics. Zhou et al. [241] propose an attention-based approach SFVP

for automatically fixing vulnerabilities by capturing the security property. SPVF first extracts

the security properties from NL descriptions of the vulnerabilities (e.g., CWE category). SPVF

then designs the pointer generator network to combine the AST representation and the security

properties. The authors evaluate SPVF on two public C/C++ and Python vulnerability-fixing datasets

and results show that it outperforms existing vulnerability repair technique SeqTrans [31].

4.8.4 Programming error repair. With the emergence of programming competition websites (e.g.,
LeetCode), developers frequently submit solutions, resulting in a vast amount of source code. A

portion of solutions contain flaws that prevent developers from solving the programming challenges

successfully. These programming flaws are usually simple types of errors, e.g., fail to compile and

execute due to syntax errors, or pass the corresponding test cases due to semantic errors. In the

following, we discuss and summarize existing individual learning-based APR techniques that focus

on programming errors in detail.

As early as 2016, since previous works fail to parse ASTs for student programs with syntax errors,

Bhatia et al. [18] present a technique to apply RNN for repairing syntax errors in student programs.

They first train the model with syntactically correct programs. Then, they query the trained model

with student submissions with syntax errors and feed the model with the prefix token sequence.

Finally, the model would predict suffix tokens and repair the syntax error. Evaluation on a dataset

obtained from a MOOC course shows that this approach outperforms the baseline models (e.g.,
RNN and LSTM with different configurations) and can provide automated feedback on syntax

errors for students.

In 2017, considering previous approaches focusing on static program representation, Wang et
al. [191] present dynamic program embeddings that learn from runtime execution traces to predict

error patterns that students would make in their online programming submissions. They define

three program embedding models: 1) variable trace model to obtain a sequence of variables;

2) state trace model to embed each program state as a numerical vector and feed all program
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state embeddings as a sequence to another RNN encoder; 3) dependency enforcement model to

combine the advantages of the previous two approaches. They conduct experiments to prove htat

dynamic embeddings overcome critical problems with syntax-based program representations and

significantly outperform the syntactic program embeddings based on token sequences and AST.

At the same time, on top of dynamic program embeddings, Wang et al. [192] further propose
Sarfgen, a high-level data-driven framework to fix student-submitted programs for introductory

programming exercises. They develop novel program embeddings and the associated distance

metric to efficiently and precisely identify similar programs and compute program alignment. They

also conduct an extensive evaluation of Sarfgen on thousands of student submissions on 17 different

programming exercises from the Microsoft DEV204-.1x edX course and the Microsoft CodeHunt

platform. Results show that Sarfgen is effective and it improves existing systems automation,

capability, and scalability.

In 2018, with the aim of offering more informative error messages that would aid programmers

in easier diagnoses, Ahmed et al. [6] introduce TRACER to generate targeted repairs for novice

programmers in C programming courses. They leverage buggy student programs in Prutor and

conduct experiments on single-line and multi-line bugs. TRACER first localizes the buggy line, then

abstracts the program, and finally converts it into fixed code. Evaluation on the dataset collected

from IIT-K shows that TRACER achieves high accuracy up to 68% and outperforms DeepFix [58],

proving to be a student-friendliness repair tool.

In 2022, different from previous works using a basic transformer, Zhang et al. [231] propose
MMAPR, a pre-trained model-based repair approach to repair both semantic and syntactic bugs

in Python programming assignments. MMAPR applies a large language model trained on code

(i.e., Codex) for introductory Python programming assignments. In particular, MMAPR leverages

multimodal prompts, iterative querying, test-case-based few-shot selection, and program chunking

to repair bugs in students’ committed programs. The experimental results on 18 assignments

demonstrate MMAPR is able to outperform a transformer-based syntax repair tool BIFI [223], and

a re-factoring-based semantics repair tool Refactory [65].

In addition to the above-mentioned studies, the community has also seen an increasing number

of pre-trained model-based APR studies. Considering the growing popularity and potential impact

of pre-trained models on the learning-based APR community, we deserve a separate section to

thoroughly discuss such stat-of-the-arts for a more comprehensive insight, detailed in Section 5.

✎ Summary ▶ Overall, learning-based APR is generally applicable to different types of bugs

thanks to the end-to-end black-box NMT training, including semantic bugs, syntax bugs, and

security vulnerabilities. On top of encoder-decoder architecture, the APR problem can be

abstracted as an MMT task, which translates a buggy code snippet into a correct one. Thus,

researchers can train NMT models to learn code transformations automatically from a mass

of bug-fixing code pairs without considering the specific bug types. For example, CodeT5 is

fine-tuned to repair semantic bugs [208], syntax bugs [15], and security vulnerabilities [51],

respectively. Despite its high scalability, the learning-based APR is currently mostly focused on

the aforementioned typical domains. Future work can be conducted to explore the performance

of the learning-based APR in more repair scenarios, e.g., API misuse, detailed in Section 8. ◀

5 PRE-TRAINED MODEL-BASED REPAIR
Pre-trainedmodels have significantly improved performance across awide range of natural language

processing (NLP) and code-related tasks, such as machine translation, defect detection and code

classification [56, 113]. Typically, the models are pre-trained to derive generic vector representation

by self-supervised training on a large-scale unlabeled corpus and then are transferred to benefit
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multiple downstream tasks by fine-tuning on a limited labeled corpus [37]. The application of

existing pre-trained models to program repair is usually divided into two categories: universal and
specific pre-trained model-based APR techniques. The former aims to propose universal pre-trained

models for multiple code-related tasks (including program repair), while the latter only focuses on

program repair by designing a novel APR technique based on pre-trained models.

5.1 Universal Pre-trained Model-based APR Techniques
Existing pre-trained models generally adopt the encoder-decoder transformer architecture, which

can be classified into three types: encoder-only, decoder-only, and encoder-decoder models. Encoder-

only models (e.g., CodeBERT [49]) usually pre-train a bidirectional transformer where tokens can

attend to each other. Encoder-only models are good at understanding tasks (e.g., code search),

but their bidirectionality nature requires an additional decoder for generation tasks. Decoder-

only models (e.g., CodeGPT [22]) are pre-trained using unidirectional language modeling that

only allows tokens to attend to the previous tokens and themselves to predict the next token.

Decoder-only models are good at auto-regressive tasks like code completion, but the unidirectional

framework is sub-optimal for understanding tasks. Encoder-decoder models (e.g., CodeT5 [158])
often make use of denoising pre-training objectives that corrupt the source input and require

the decoder to recover them. Compared to encoder-only and decoder-only models that favor

understanding and auto-regressive tasks, encoder-decoder models can support generation tasks

like code summarization.

Inspired by the success of pre-trained models in NLP, many recent attempts have been adopted

to boost numerous code-related tasks (such as program repair) with pre-trained models (e.g.,
CodeBERT) [49, 56]. In the context of APR, an encoder stack takes a sequence of code tokens as

input to map a buggy code 𝑋𝑖 = [𝑥1, . . . , 𝑥𝑛] into a fixed-length intermediate hidden state, while

the decoder stack takes the hidden state vector as an input to generate the output sequence of

tokens 𝑌𝑖 = [𝑦1, . . . , 𝑦𝑛]. Researchers treat the APR problem as a generation task, and consider

encoder-decoder or encoder-only (with an additional decoder) pre-trained models, which are usually

evaluated by the BFP dataset from Tufano et al. [184].
We summarize existing pre-trained models involving the program repair task as follows.

The most commonly used model type is the T5-like encoder-decoder architecture, which can

naturally support the program repair task as a code generation problem. For example, in 2021,

Wang et al. [197] present a pre-trained encoder-decoder model (i.e., CodeT5) that considers the code
token type information based on T5 architecture. CodeT5 employs a unified framework to support

code understanding (e.g., clone detection) and generation tasks (e.g., program repair) and allows for

multi-task learning. The most crucial feature of CodeT5 is that the code semantics of identifiers are

taken into consideration. Assigned by developers, identifiers often convey rich code semantics and

thus a novel identifier-aware objective is added to the training of CodeT5.

In 2022, Mastropaolo et al. [126] propose a pre-trained text-to-text transfer transformer (T5) to

address four code-related tasks, namely automatic bug fixing, injection of code mutants, generation

of assert statements in test methods, and code summarization. They apply BFP small and BFP

medium datasets to train and evaluate the bug-fixing task, and then compare other learning-

based APR tools on the same benchmark. Moreover, they have done single-task fine-tuning and

multi-task fine-tuning to fully evaluate the function of the pre-trained T5 model. Although multi-

task fine-tuning does not improve the result of code-related tasks, single-task fine-tuning does

prove that this model outperforms other tools (e.g., Tufano et al. [184]) on the same benchmarks.

Besides, Niu et al. [145] propose a Seq2Seq pre-trained model (i.e., SPT ) by three code-specific

tasks (code-AST prediction, masked sequence to sequence and method name generation) and

fine-tune on the generation tasks (i.e., code summarization, code completion, program repair and
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code translation) and classification task (i.e., code search). Results show that SPT outperforms

CodeBERT [49], GraphCodeBERT [56] and Tufano et al. [184] on the bug-fixing datasets BFP-small

and BFP-medium. Unlike previous general-purpose pre-trained models considering various tasks,

Zhang et al. [232] propose CoditT5, a pre-trained language model only for code-related edit tasks.

CoditT5 is pre-trained on both program languages and natural language comments. Zhang et
al. fine-tune it for three down-streaming tasks: comment updating, bug fixing, and automatic

code review. For bug-fixing, they fine-tune it with Java datasets BFP small and BFP medium. The

evaluation shows that CoditT5 outperforms other APR tools like CodeT5 and PLBART on three

down-streaming tasks.

There also exist some pre-trained models with BERT-like encoder-only architecture, which

usually with an additional decoder ti support program repair. For example, in 2020, Feng et al. [49]
present a bimodal pre-trained model (i.e., CodeBERT ) for natural language and programming

language with a transformer-based architecture. CodeBERT utilizes two pre-training objectives

(i.e., masked language modeling and replaced token detection) to support both code search and

code documentation generation tasks. To support program repair task, Lu et al. [113] leverage
CodeBERT as the encoder, which is connected with a randomly initialized decoder. Besides, Guo et
al. [56] present the first structure-aware pre-trained model (i.e., GraphCodeBERT ) that learns code
representation from source code and data flow. Unlike existing models focusing on syntactic-

level information (e.g., AST), GraphCodeBERT takes semantic-level information of code (e.g., data
flow) for pre-training with a transformer-based architecture. The results on BFP datasets [184]

demonstrate the advantage of leveraging code structure information to repair software bugs.

5.2 Specific Pre-trained Model-based APR Techniques
In addition to those above-mentioned typical pre-trained models that involve program repair,

researchers have adopted pre-trained models to design novel APR techniques. Table 7 presents

existing pre-trained model-based APR techniques. We summarize existing APR studies that employ

pre-trained models as follows.

Table 3. A summary and comparison of existing pre-trained model-based APR techniques

Year Study Type Model Language

2021 TFix [15] Syntax T5 JS

2022 CIRCLE [228] Semantic T5 Java,C,JS,Python

2022 VulRepair [51] Vulnerability CodeT5 C

2022 AlphaRepair [209] Semantic CodeBERT Java,Python

2022 SYNSHINE [4] Syntax RoBERTa Java

In 2021, inspired by the pre-trained T5 model [158] that converts all text-based language problems

into a text-to-text format in the NLP field, Berabi et al. [15] formulates the problem of fixing coding

errors as a text-to-text prediction task and propose TFix, a T5-based approach to fix syntax errors.

They fine-tune a pre-trained T5model to generate JavaScript fixes on datasets extracted fromGitHub

by themselves. By feeding the model with line context and fine-tuning it according to various

error types, they obtain multiple fine-tuned T5 models. The evaluation shows that TFix is able to

generate 67% of correct patches, significantly outperforming SequenceR [27] and CoCoNut [115].

In 2022, to address the issue of previous works not performing well on large programs, Ahmed et
al. [4] propose SynShine, a learning-based approach to fix syntax errors in Java programs by

innovatively using the diagnostics from a compiler and exploiting the ability to pre-train model.

SynShine first applies a three-stage syntax repair workflow, i.e., BlockFix for recovering block
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structure, LineFix for fixing line errors, and UnkFix for recovering unknown tokens. SynShine then

leverages RoBERTa-based pre-training and information from compiler errors to generate fixes using

multi-label classification. The experimental results on the Blackbox dataset show that SynShine

outperforms previous repair approaches, e.g., DeepFix [58] and SequenceR [27] on different token

ranges. Importantly, they have also integrated SynShine with the VSCode IDE for public usage,

showing the practical value in a real-world development environment.

Considering that previous NMT-based repair approaches fail to consider DL descriptions about

the code context, Chakraborty et al. [24] present MODIT, a multi-modal pre-trained model-based

approach, to automatically generate fixes for buggy code. They leverage three modalities of infor-

mation during training: edit location, edit code context, and commit messages (i.e., natural language
guidance from the developer). They then employ the pre-trained PLBART model as the as the

starting point to train MODIT. The experimental results show that MODIT generates 29.99% correct

patches for the BFP-small dataset [184], outperforming CodeBERT by 15.12%, GraphCodeBERT by

16.82% and CodeGPT 5.49%. Similarly, 23.02% of patches generated by MODIT on the BFP-medium

dataset are correct and the improvement against the three pre-trained models reaches 34.38%,

25.72%, and 30.50%, respectively.

Existing learning-based APR techniques can only generate patches for a single programming

language and most of them are developed offline. In 2022, Yuan et al. [228] propose CIRCLE, a T5-
based APR technique targeting multiple programming languages with continual learning. CIRCLE

first employs a pre-trained model as a repair skeleton, then designs a prompt template to bridge the

gap between pre-trained tasks and program repair. To further strengthen the continual learning

ability, CIRCLE applies a difficulty-based rehearsal method to achieve lifelong learning without

access to the entire historical data and an elastic regularization to resolve catastrophic forgetting.

Finally, to perform the multi-lingual repair, CIRCLE designs a simple but effective re-repairing

mechanism to eliminate incorrectly generated patches caused by multiple programming languages.

The experimental results on five benchmarks across four programming languages (i.e., C, JAVA,
JavaScript, and Python) show that CIRCLE is able to achieve outperform various previous learning-

based APR approaches, such as CoCoNut [115], DLFix [98] and CURE [73]. More importantly, the

results demonstrate the potential of CIRCLE in repairing multiple programming language bugs

with a single repair model in the continual learning setting.

Different from previous learning-based APR approaches (e.g., CIRCLE [228]) that heavily rely on

large numbers of high-quality bug-fixing code pairs, in 2022, Xia et al. [209] introduce AlphaRepair
as a cloze-style APR tool to directly query a pre-trained model for generating patches. They apply

the newly pre-trained CodeBERT as an example under zero-shot learning settings. They try to mask

the buggy line in the source code with different templates or strategies and feed the whole source

code into the model with the buggy line as a “comment". Then with a large number of patches this

model generated, they propose probabilistic patch ranking to determine top-𝑘 plausible patches.

After evaluating this technique on both Java and Python benchmarks, it outperforms other APR

tools (e.g., Recoder [242], DLFix [98] and TBar [107]) and proves that a pre-trained model with no

fine-tuning is feasible.

Unlike VRepair employing a basic transformer, Fu et al. [51] propose VulRepair, a T5-based auto-

mated vulnerability repair technique based on subword tokenization and pre-training components.

They compare VulRepair with two competitive baseline approaches, VRepair and CodeBERT on a

C benchmark CVEFixes. Besides, they analyze the impact of adopted components (i.e., tokenization
and pre-training) and conduct an ablation study to investigate the contribution of each component.

The results show that VulRepair outperforms the previous repair technique VRepair [28] and it is

capable of repairing the Top-10 most dangerous CWEs.
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In parallel with these newly proposed approaches equipped with pre-trained models, the com-

munity has also seen some studies that empirically explore the actual performance of pre-trained

models in different repair scenarios. We will discuss these empirical studies in Section 6.3.

✎ Summary ▶ Overall, pre-trained models have significantly influenced a large amount

of code-related fields in the SE community, especially program repair. At the current stage,

existing techniques using pre-trained models for program repair are usually divided into three

categories. First, when some pre-trained models are built, they are fine-tuned and evaluated by

some downstream tasks, including program repair. The evaluation experiments are usually

conducted by these authors of the pre-trained models and reported in their original papers using

the BPF dataset from Tufano et al. [183]. The typical pre-trained models involve CodeT5 [197],

T5Learning [127] and SPT [145]. Second, researchers have proposed some novel pre-trained

model-based APR techniques. The first typical one is the fine-tuning scenario, e.g.,CIRCLE [228]
is proposed to fine-tune the pre-trained T5 model with continual learning. The second typical

one is the zero-shot scenario, e.g., AlphaRepair [209] is proposed to use CodeBERT to generate

correct code under a cloze-style way. Third, there exists an increasing number of empirical

studies to evaluate the ability of pre-trained models in program repair. These empirical studies

encompass different pre-trained models [208], bug types [67] and programming languages [80].

In the future, pre-trained models can further deeply influence various steps of the program

repair workflow, such as patch correctness assessment, detailed in Section 8. ◀

6 EMPIRICAL EVALUATION
In this section, we introduce existing widely adopted datasets in the learning-based APR field and

discuss common evaluation metrics for evaluating repair performance.

6.1 Dataset
Different from previous APR techniques conducted in a traditional pipeline (e.g., generating patches
by heuristic strategies), the process of learning-based APR techniques is two-fold (1) a training pro-

cess with supervised learning on large labeled datasets (e.g., CoCoNut [115]); and (2) an evaluation

process on a small set of labeled datasets (e.g., Defects4J [76]). Benefiting from a large amount of

research effort in the learning-based APR community, there are several existing benchmarks to

evaluate NMT techniques for automatically repairing bugs. Now we discuss the widely adopted

datasets in the literature.

Defects4J [76] is the most widely adopted benchmark in learning-based APR studies, which

contains 395 known and reproducible real-world bugs from six open-source Java projects. To

facilitate reproducible studies, each bug contains a buggy version and a fixed version, as well as

a corresponding test suite that triggers that bug. Defects v2.0 provides 420 additional real-world

bugs from 17 Java projects, which is adopted by some recent studies [209, 242]. QuixBugs [103] is a

multi-lingual parallel bug-fixing dataset in Python and Java used in [209, 228]. QuixBugs contains

40 small classic algorithms with one bug on a single line, along with the test suite. Bugs.jar [165]

contains 1,158 real bugs from 8 large open-source Java projects, each of which has a fault-revealing

test suite. ManyBugs [92] contains 185 real-world bugs from 9 open-source C projects and each

bug has a corresponding developer patch and test suite. IntroClass [92] consists of 998 bugs in six

small student-written programming assignments for C language. Due to a well-defined test suite,

these datasets are effective in evaluating the correctness of generated patches by dynamic program

behavior.

8
The link provided in the original paper has expired. We find and provide a new link on Bitbucket, which is also maintained

by the authors.
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Table 4. Detailed information on collected datasets in existing learning-based APR studies.

ID Name Language #Bugs Test Suite Training Testing Techniques URL

1 Bears [117] Java 251 ✔ ✔ ✔ [94, 227] Link

2 BFP medium [184] Java 65454 ✘ ✔ ✔
[24, 31, 42, 66,

142, 175, 176,

184, 221]

Link

3 BFP small [184] Java 58350 ✘ ✔ ✔
[24, 31, 42, 66,

142, 175, 176,

184, 221]

Link

4 BigFix [98] Java 1.824 M ✘ ✔ ✔ [98, 99] Link

5 Bugs2Fix [113] Java 92849 ✘ ✔ ✔ [27, 33] Link

6 Bugs.jar [165] Java 1158 ✔ ✔ ✔ [98, 179, 227] Link

7 Code-Change-Data [23] Java 44372 ✘ ✔ ✔ [23] Link

8 CodeXGlue [113] Java 122 K ✘ ✘ ✔ [33] Link

9 CodRep [29] Java 58069 ✘ ✔ ✔ [27, 227] Link

10 CPatMiner [141] Java 44 K ✘ ✔ ✔ [99] Link

11 DeepRepair [203] Java 374 ✘ ✔ ✘ [203] Link

12 Defects4J [76] Java 835 ✔ ✔ ✔
[23, 26, 94, 99,

114, 119, 175, 178,

179, 190, 226]

Link

13 Function-SStuBs4J [143] Java 21047 ✘ ✔ ✔ [143] Link

14 IntroClassJava [45] Java 998 ✔ ✔ ✔ [26, 242] Link

15 Java-med [8] Java 7454 ✘ ✔ ✘ [77] Link

16 ManySStuBs4J large [78] Java 63923 ✘ ✔ ✔ [125] Link

17 ManySStuBs4J small [78] Java 10231 ✘ ✔ ✔ [125, 179] Link

18 MegaDiff [137] Java 663029 ✘ ✔ ✘ [28] Link

19 Ponta et al. [154] Java 624 ✘ ✔ ✔ [31] Link

20 Pull-Request-Data [183] Java 10666 ✘ ✔ ✔ [23, 183] Link

21 Ratchet [63] Java 35 K ✘ ✔ ✔ [63] Link

22 Recoder [242] Java 103585 ✘ ✔ ✘ [242] Link

23 TRANSFER [130] Java 408091 ✘ ✔ ✘ [130] Link

24 Deepdelta [132] Java 4.8 M ✘ ✔ ✔ [132] N.A.

25 Rahman et al. [159] C 2482 ✘ ✔ ✔ [159] N.A.

26 Big-Vul [47] C 3745 ✘ ✔ ✔ [28] [241] Link

27 Code4Bench [118] C 25 K ✔ ✔ ✔ [185] Link

28 Wang et al. [182] C 195 K ✔ ✔ ✔ [191] N.A.

29 CVEFixes [16] C 8482 ✘ ✔ ✔ [51, 192] Link

30 DeepFix [58] C 6971 ✔ ✔ ✔
[57, 58, 60, 75,

222, 223]

Link
8

31 ManyBugs [92] C 185 ✔ ✔ ✔ [115, 190, 228] Link

32 Prophet [111] C 69 ✔ ✔ ✔ [111, 114] Link

33 Prutor [36] C 6971 ✔ ✔ ✔ [134, 219] Link

34 BugAID [61] JS 105133 ✘ ✔ ✔
[114, 115, 190,

228]

Link

35 BugsJS [59] JS 453 ✔ ✔ ✔ [89] Link

36 HOPPITY [39] JS 363 K ✘ ✔ ✔ [39] Link

37 KATANA [169] JS 114 K ✘ ✔ ✔ [169] Link

38 REPTORY [139] JS 407 K ✘ ✔ ✔ [139] Link

39 TFix [15] JS 100 K ✘ ✔ ✔ [15] Link

40 ETH Py150 [160] Python 150 K ✘ ✔ ✔ [64, 163, 186] Link

41 GitHub-Python [223] Python 3 M ✘ ✔ ✔ [223] Link

42 Szalontai et al. [172] Python 13 K ✘ ✔ ✔ [172] N.A.

43 PyPIBugs [7] Python 2374 ✘ ✔ ✔ [7, 163] Link

44 SSB-9M [164] Python 9 M ✘ ✔ ✘ [163] Link

45 VUDENC [199] Python 10 K ✘ ✔ ✔ [241] Link

46 Macer [30] Python 286 ✔ ✘ ✔ [231] Link

47 SPoC [88] C++ 18356 ✔ ✔ ✔ [222] Link

48 QuixBugs [103] Java,Python 40 ✔ ✔ ✔
[26, 28, 41, 73,

114, 115, 179, 190,

209, 228, 242]

Link

49 DeepDebug [41] Java,Python 523 ✘ ✔ ✔ [41, 42] N.A.

50 CoCoNut [115] C,Java,JS,Python 24 M ✔ ✔ ✘
[73, 115, 227,

228]

Link

51 CodeFlaws [173] C,Python 3902 ✔ ✔ ✔ [19, 115, 216] Link

52 ENCORE [114] Java,JS,Python,C++ 9.2 M ✘ ✔ ✘ [114] N.A.
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However, NMT-based APR techniques employ neural network techniques to learn the bug-fixing

patterns from the training dataset. The training of a reliable NMT repair model is hindered by the

scarcity of high-quality test datasets, which require extensive manual effort to produce. To make

experiment results more persuasive, lots of large-scale datasets have been curated recently. Such

datasets contain bug-fixing code pairs for the model to learn how to transform a buggy code into

the expected fixed code. In particular, researchers usually mine open-source projects from code

platforms (e.g., GitHub) and extract the commits by fixing-related keywords. Then unqualified

commits are filtered out by pre-defined rules (e.g., non-code changes). For example, Tufano et
al. [184] extract the bug-fixing commits between March 2011 and October 2017 on GitHub and

release two BFP datasets for small (i.e., 0∼50 tokens) and medium (i.e., 50∼100 tokens) methods,

consisting of 58k (58,350) and 65k (65,455) bug-fixing samples, respectively. Recoder [242] releases

a dataset of 103,585 bug-fixing pairs by crawling Java projects on GitHub between March 2011

and March 2018. Further, CoCoNut [115] provides five datasets across four languages (i.e., Java,
Python, C and JavaScript) by extracting commits from GitHub projects, resulting in more than

twenty million bug-fixing pairs.

Table 4 presents the description of all involved datasets in our survey. The first two columns list

the dataset name and the third column lists the programming languages the dataset covers. The

fourth column lists the number of bugs the dataset contains. The fifth column indicates whether

the dataset has corresponding test suites. The sixth and seventh columns indicate whether the

dataset is used in the training and evaluation process. The last column lists some learning-based

studies employing the dataset.

Among the collected datasets in our survey, we find that training datasets usually only contain

bug-fixing pairs for NMT model training, while evaluation datasets may additionally contain some

test suites to validate the correctness of generated patches. For example, existing studies [115, 228]

generally adopt some datasets like Defects4J as the evaluation datasets while adopting other

datasets like CoCoNut as the training datasets. Besides, we find some studies [183, 184] adopt the

same dataset for training and evaluation without executing test suites. For example, Tufano et
al. [184] split BFP dataset into training and evaluation parts and evaluate the repair performance

by match-based metric.

Table 4 also presents the programming languages of all datasets. It can be found that the collected

datasets mainly involve five languages (i.e., Java, JavaScript, Python, C and C++). Among them,

similar to traditional APR, Java is the most targeted language in the learning-based APR techniques.

Besides, researchers conduct lots of datasets in other languages (e.g., Python), indicating that

learning-based APR techniques begin to consider more languages in practice. For Java, researchers

prefer the traditionally dominated Defects4J dataset and the recently-released BFP dataset. For

other programming languages, researchers have different choices for datasets due in part to the

lack of publicly-accepted datasets. We also find that some recent datasets involve multi-languages,

such as CoCoNut [115] and QuixBugs [103, 225], while the traditional APR techniques mainly

focus on Java language [43]. The possible reasons lie in that (1) traditional techniques are widely

conducted on the same benchmark Defects4J while some additional datasets have been released

along with the application of DL; (2) traditional techniques may rely on language-specific features

to generate patches, which is challenging to apply to other languages (e.g., PraPR adopting JVM

bytecode [54]), while learning-based techniques treat APR as an NMT task similar to NLP, which is

independent of specific programming languages.

✎ Summary ▶Within the expansive arena of learning-based APR, datasets play a pivotal role

in shaping the trajectory of research advancements. Different from traditional APR techniques,
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which often leverage heuristic strategies for patch generation, learning-based APR techniques

are distinctly split into a two-phase methodology: a supervised training on large-scale labeled

datasets and a subsequent evaluation on smaller, selected datasets. While the traditional APR

realm has seen an inclination towards Java-centric datasets like Defects4J, the infusion of DL

into the sector has broadened horizons. One typical trend is the construction of large-scale

training datasets, e.g., the BPF dataset [183]. The other typical trend is the application of

multiple programming languages, e.g., the CoCoNut dataset [115]. However, we observe that
while ample datasets exist for training—mainly comprising bug-fixing pairs, evaluation datasets

often carry the added component of test suites to ascertain patch correctness. In summation,

as learning-based APR continues to evolve, it is imperative for the community to prioritize the

curation of comprehensive, high-quality datasets that cater to both training and evaluation. ◀

6.2 Metric
Evaluation metrics play a crucial role in the development and growth of learning-based APR

techniques as they serve as the standard to quantitatively define how good an NMT repair model is.

In this section, we discuss the common evaluation metrics in the learning-based APR community.

6.2.1 Execution-based Metrics. In general, learning-based APR techniques predict some candidate

patches with high probability as the outputs. The generated patches are evaluated by executing

available test suites to determine whether to report them to the developers for deployment. We list

the standard metrics as follows.

(1) Compilable Patch. Such a candidate patch makes the patched buggy program compile

successfully.

(2) Plausible Patch. Such a compilable patch fixes the buggy functionality without harming

existing functionality (i.e., passing all available test suites).
(3) Correct Patch. Such a plausible patch is semantically or syntactically equivalent to the

developer patch (i.e., generalizing the potential test suite).

6.2.2 Match-based Metrics. Although widely used in the learning-based APR literature, it is time-

consuming to evaluate generated patches on dynamic execution for all available test suites. Besides,

test suites may not always be available in large-scale evaluation datasets. More recently, an increas-

ing number of studies evaluate the performance by code token matching between the generated

patch and the ground truth (i.e., developer-written patches), listed as follows.

(1) Accuracy. Accuracy measures the percentage of candidate patches in which the sequence

predicted by the model equals the ground truth. As learning-based APR techniques usu-

ally employ a beam-search strategy, the beam-search strategy reports the 𝑘 sequences (i.e.,
sequence of terms representing the fixed code) with the highest probability. Researchers

consider these 𝑘 final sequences as candidate patches for a given buggy code snippet. Then

Accuracy@K value is defined as follows.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝐾 =

∑𝑛
𝑖=1 1{𝑚𝑎𝑡𝑐ℎ(

∑𝑘
𝑗=1 𝑐

𝑗

𝑖
)}

𝑛
(1)

where 1 denotes whether 𝐶𝑖 contains a predicted repair sequence equal to the ground truth

repair sequence. The sequence accuracy is 1 if any predicted sequence among the 𝑘 outputs

matches the ground truth sequence, and it is 0 otherwise.

(2) BLEU. BLEU (Bilingual Evaluation Understudy) [149] score measures how similar the

predicted candidate patch and the ground truth are. Given a size 𝑛, BLEU splits the candidate

patch and ground truth into n-grams and determines how many n-grams of the candidate
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patch appear in the reference patch. The BLEU score ranges between 0 (the sequences are

completely different) and 1 (the sequences are identical).

Compared with execution-based metrics, accuracy and BLUE evaluate the candidate patch by

matching the tokens of the candidate patch and ground truth without dynamic execution. These

two metrics can be employed to evaluate the performance of a mass of candidate patches in a limited

time and thus have been commonly adopted in the learning-based APR community [183, 184, 228].

However, accuracy and BLUE are initially designed in NLP tasks and may be improper to evaluate

the program repair task due to the differences between natural language and programming language.

For example, accuracy refers to the perfect prediction, which ignores that different code snippetsmay

have the same semantic logic. Besides, BLEU is originally designed for natural language sentences

by token-level matching, neglecting important syntactic and semantic features of codes. To address

the above concerns, recently researchers adopt a variant of BLEU (i.e., CodeBLEU [161]) to evaluate

the performance of learning-based APR techniques [113]. Compared with BLEU, CodeBLEU further

considers the weighted n-gram match, the syntactic AST match, and the semantic data-flow match.

In particular, the n-gram match assigns different weights for different n-grams, the syntactic match

considers the AST information in the evaluation score by matching the sub-trees, and the semantic

match employs a data-flow structure to measure semantic similarity.

✎ Summary ▶ Overall, within the realm of learning-based APR, evaluation metrics are of

paramount importance in guiding the evolution of repair models. On the one hand, similar to

traditional APR, learning-based APR the APR domain has been inclined towards execution-

based metrics, such as plausible patches, which are derived from the field of SE. On the other

hand, unlike traditional APR, are increasingly biased towards match-based metrics, such as

BLEU, which are derived from the field of NLP. The possible reason behind this trend is

the lack of test cases in the evaluation datasets, such as the BFP dataset [183]. Despite their

convenience, these NLP-inspired metrics are not without their pitfalls. For example, Accuracy

focuses narrowly on perfect predictions, and traditional BLEU might overlook the intricate

semantics of source code. To sum up, as learning-based APR continues its upward trajectory, the

spotlight is increasingly on the development and adoption of nuanced, code-centric evaluation

metrics (such as CodeBLUE) that mirror the complexities of the programming domain. ◀

6.3 Empirical Study
Despite an emerging research area, a variety of learning-based APR techniques have been proposed

and continuously achieved promising results in terms of the number of fixed bugs in the litera-

ture [115, 228]. In addition to developing new repair techniques that address technical challenges,

the learning-based APR research field is benefiting from several empirical studies. These empirical

studies systematically explore the impact of different components (e.g., code representation), pro-
viding insights into future learning-based APR work. We summarize existing empirical studies in

Table 5 and discuss them in detail as follows.

Traditional APR techniques are usually restrained by a relatively limited set of manually crafted

repair patterns [107]. Inspired by the potential of advanced DL techniques, which have shown

impressive performance in tackling several SE tasks [220], in 2019, Tufano et al. [184] conduct the
first systematic empirical study to investigate the capability of utilizing NMT models to fix software

bugs from open-source bug-fixing commits. First, they mine the bug-fixing commits by message

patterns from projects in GitHub repositories and filter out the low-quality commits by specific

rules. Second, they identify the list of edit actions performed between the buggy and fixed files using

the GumTree [46] and extract bug-fixing method pairs with at least one edit action. Third, they

design a code abstraction strategy to reduce vocabulary size by only keeping frequent identifiers
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Table 5. A summary and comparison of empirical studies in learning-based APR

Year Study Scope Language Description

2019 Tufano et al. [184] Program Repair Java

the first empirical study to assess the feasibility of using NMT

techniques for learning bug-fixing patches.

2020 Ding et al. [40] Program Repair Java

investigate how language translation models perform in APR,

specifically on the concept of “patching as translation”.

2021 Mashhadi et al. [125] Program Repair Java

investigate the performance of CodeBERT in fixing bugs from

the ManySStuBs4J banchmark.

2022 Kolak et al. [84] Program Repair Java

investigate the performance of the pre-trained model in fixing

bugs from the QuixBugs benchmark.

2022 Namavar et al. [139] Code Representation JavaScript

investigate the impact of code representations in APR with

21 models and 14 code representation methods.

2022 Xia et al. [208] Program Repair Java,Python,C

the first extensive study on directly applying nine pre-trained

models for APR across three programming languages.

2022 Wang et al. [198] Patch Correctness Java

an extensive study of learning-based patch correctness as-

sessment techniques on the Defects4J dataset.

2022 Kim et al. [80] Kotlin Repair Kotlin

investigate the performance of the pre-trained model in fixing

defects in the Samsung Kotlin projects.

2022 Huang et al. [67] Vulnerability Repair C/C++

a preliminary study to investigate the performance of pre-

trained models in repairing security vulnerabilities.

and literals. Finally, they construct two datasets (i.e., BFP-small and BFP-medium) and train NMT

models to translate the buggy method into the corresponding correct method. The experimental

results show that NMT models are able to fix a considerable number of buggy methods in 9%–50%

of the cases. More importantly, this study highlights the future of NMT for APR, providing a solid

empirical foundation for follow-up studies in the learning-based APR community.

In 2020, Ding et al. [40] empirically investigate to what extent program repair is like machine

translation. They reveal that there exist essential differences between Seq2Seq models and transla-

tion models in terms of task design and architectural design. The translation model is inappropriate

for program repair due to the lack of vocabulary and immediate context. Besides, the translation

model usually keeps up most tokens from the bug code while replacing only a small number, which

is not ideal for program repair. Finally, they implement an edit-based model by adapting the Seq2Seq

models used for translation to generate edits rather than raw tokens, which leads to promising

improvement.

In 2021, with the rise of pre-trained models in the SE domain, Mashhadi et al. [125] conduct a pre-
liminary to apply CodeBERT to Java simple bugs. They fine-tune and evaluate it on ManySStuBs4J

datasets and find it is capable of generating patches in a short time. Their approach gets rid of the

limitation of token length and vocabulary problems, thus this model is more efficient and effective.

This model can generate patches for different types of bugs and outperform simple Seq2Seq models

in terms of the accuracy of generated patches. Similarly, Kolak et al. [84] propose to apply large

pre-trained language models to generate patches for one-line bugs in Java and Python programs.

They consider pre-trained models with a wide range of sizes (e.g., GPT-2 with 160M, 0.4B, and 2.7B

parameters and CodeX 12B parameters) for evaluation and comparison. After evaluating these

models on the QuixBugs benchmark, they discover that larger language models tend to generate

more predictable patches and thus are more promising in guiding patch selection in APR work.

In 2022, focusing on code representation, Namavar et al. [139] conduct a systematic study to

understand the effect of different code representation ways on learning-based APR performance. In

particular, they implement REPTORY as a tool for controlled experiments to assess the accuracy of

different code representations (e.g., AST variants) and the functionality of four different embeddings

(e.g.,Word2Vec). They conduct 21 experiments with different models to evaluate their automatic

patchability and perceived usefulness as well as accuracy. The results reveal that mixed code
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representation with Golve embedding outperforms other settings. Moreover, they find that bug

type affects the accuracy of different code representations.

At the same time, Xia et al. [208] present the first extensive evaluation of large programming

language models (PLMs) for program repair. They select nine state-of-art pre-trained PLMs with

different types (i.e., infilling and generative models) and parameter sizes (i.e., ranging from 125M

to 20B). They design three different repair settings for PLMs (i.e., complete function generation,

correct code infilling, and single line generation). They then conduct experiments on 5 datasets

across 3 different languages to compare different PLMs in the number of bugs fixed, generation

speed and compilation rate. They also compare the performance of PLMs against existing APR

techniques (e.g., Recoder [242] and CURE [73]) and results demonstrate the promising future of

directly adopting PLMs for APR.

Considering most existing APCA techniques evaluated on limited datasets, Wang et al. [198]
conduct an extensive empirical study of patch correctness on Java programs. First, they collect

a large-scale real-world dataset for patch correctness, containing 1,988 patches generated by the

recent PraPR APR tool [54]. Then they revisit state-of-the-art APCA techniques on the new dataset,

including static-based (e.g., Anti-patterns: [174]), dynamic-based (e.g., PATCH-SIM [212]), and

learning-based (e.g., ODS [224]). Results show that learning-based APCA techniques tend to

suffer from the dataset overfitting issue [198]. For example, the embedding-based techniques [179]

underperform on patches sourced from subjects outside the training set, thereby highlighting the

need for cross-dataset evaluation in future learning-based APCA research. Besides, the performance

of dynamic techniques significantly drops when encountering patches with more complicated

changes.

Different from previous empirical studies [184, 208] focusing on semantic bugs triggered by

test cases, Kim et al. [80] conduct an empirical study to investigate the performance of existing

learning-based APR techniques in fixing defects detected by a static analysis tool. They employ

the pre-trained TFix [15] model as the representative APR technique to fix defects from industrial

Samsung Kotlin projects. The experimental results demonstrate the original TFix model can fix 94

out of 1,961 defects. They also find that a fine-tuned TFix model using the defect-fixing dataset can

fix 289 more defects than the original TFix model. Besides, the TFix model with additional transfers

performed using the bug-fixing dataset fixes 211 more defects than the model transferred using only

defect-fixing knowledge. More importantly, as the first work to apply TFix to an industrial software

project, this empirical study demonstrates the potential of transfer learning when applying existing

learning-based APR techniques to industrial software.

Meanwhile, to explore the real-world performance of pre-trained models for vulnerability repair,

Huang et al. [67] conduct a preliminary stucy to apply large pre-trained models for vulnerability

repair. They compare the performance of CodeBERT and GraphCodeBERT on a C/C++ vulnerability

dataset with five CWE types. They discover that GraphCodeBERT with a data flow graph is signifi-

cantly better than CodeBERT without documenting code dependencies. They also demonstrate

that such pre-trained models outperform learning-based APR techniques (e.g., CoCoNut [115] and
DLFix [98]) and more data-dependent features (e.g., data flow and control flow) will help to repair

more complex vulnerabilities.

✎ Summary ▶ As the APR research community embraces an influx of learning-based APR

approaches, there is a parallel rise in empirical studies aimed at scrutinizing the progression

and subtleties of these techniques. These empirical studies explore the actual performance of

existing approaches from different aspects, such as the impact of code representation, the ability

of pre-trained models, and the potential in repairing vulnerabilities. However, considering that
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there exist different repair phases, and each process can introduce various specific techniques,

the community urgently needs more and deeper empirical studies to illuminate the landscape

of learning-based APR. For example, future work can empirically explore whether mature

dynamic program execution techniques from other domains (e.g.,mutation testing and fuzzing)

can be used to accelerate the patch validation, detailed in Section 8. ◀

7 APPLICATION AND DISCUSSION
In this section, we will discuss and summarize several crucial aspects of the learning-based APR

community.

7.1 Industrial Deployment
As a promising field, APR has been extensively studied in academia and even has drawn growing

attention from industry [10]. For example, Marginean et al. [121] present SapFix, the first end-to-
end deployment of industrial APR in Meta. SapFix is implemented in a continuous integration

environment and deployed into six production systems with tens of millions of code lines. Similar

industrial practices can also be found in other companies, such as Fujitsu [166], Bloomberg [81] and

Alibaba [239]. In addition to the above-mentioned traditional deployment, the industry recently

explored the feasibility of deploying learning-based APR tools. For example, GitHub launches a

product Copilot
9
, which can provide code suggestions (e.g., fixing bugs) for more than a dozen

programming languages. Copilot is deployed in multiple IDEs, such as VS Code, Visual Studio,

Neovim, and JetBrains. Besides, Microsoft recently released a new tool Jigsaw
10

to fix bugs in

machine-written software.

Now, we summarize the existing learning-based APR techniques and industrial deployment from

enterprises.

As early as in 2019, Bader et al. [10] present Getafix, the first industrially-deployed automated

bug-fixing tool for Java programs. To be fast enough to suggest fixes in time, this model produces a

ranked list of fix candidates based entirely on past fixes and on the context in which a fix is applied.

Besides, it leverages the hierarchical clustering technique for discovering repetitive fix patterns.

Moreover, They apply a statistical ranking technique to enable the model to predict human-like

fixes among the top few suggestions. An evaluation with a large dataset containing six types of

common bugs and their experience of deploying Getafix within Facebook shows that the approach

accurately predicts human-like fixes for various bugs, reducing the time developers have to spend

on fixing recurring kinds of bugs.

In 2020, Hellendoorn et al. [64] from Google conduct experiments for two different model

architectures that leverage both local and global information. They propose sandwich models that

apply different message-passing techniques and GREAT models that add extra information to a

transformer. Both architectures achieve high results and outperform both RNN and transformer

architectures, proving that a hybrid model with global information and incorporating structural

bias helps improve accuracy.

In 2021, Baudry et al. [11] present R-HERO, a novel software repair robot to automatically repair

bugs on the single platform GitHub/Travis CI. R-HERO contains six main blocks: a) Continuous

integration, b) Fault localization, c) Patch generation, d) Compilation & Test execution, e) Overfitting

prevention, and f) Pull-request creation. It receives and analyzes the events from a continuous

integration (CI) system. R-HERO leverages continual learning to acquire bug-fixing strategies from

9
https://github.com/features/copilot

10
https://www.microsoft.com/en-us/research/blog/jigsaw-fixes-bugs-in-machine-written-software/
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the platform mentioned above. It shows that developers and bots can cooperate fruitfully to produce

high-quality, reliable software systems.

Different from previous works with supervised learning, Allamanis et al [7] from Microsoft

propose BUGLAB to detect and repair software bugs automatically by self-supervised learning.

Similar to BIFI [223], BUGLAB employs a detector model to repair bugs and a selector model to

generate buggy code snippets as the training data for the detector. The authors create a dataset

PYPIBUGS of 2374 real-world bugs from the PyPI packages. The results show that BUGLAB can fix

a number of software bugs and detect some previously unknown bugs in open-source software.

In parallel to BUGLAB, Tang et al. [176] from Microsoft introduce a grammar-guided end-to-end

approach to generate patches, which treats APR as the transformation of grammar rules. They

apply structure-aware modules and design three different types of strategies for grammar-based

inference algorithms. They also leverage two encoders and enhance the model with a new tree-

based self-attention. The experimental results on BFP datasets [184] demonstrate that the proposed

technique outperforms previous RNN-based techniques (e.g., Tufano et al. [184]).
Considering the raise of pre-trainedmodels, Drain et al. [42] fromMicrosoft introduceDeepDebug,

a span-masking pre-trained encoder decoder transformer as a tool to fix Java methods. The model is

pre-trained fromBARTwhich is pre-trained in English. They conduct three pre-training experiments

to verify the feasibility of the model and test it on the Java benchmarks from Tufano et al. [184].
Results show that DeepDebug outperforms existing APR tools (e.g., CodeBERT [49] and Tufano et
al. [184]), and adding syntax embeddings along with the standard positional embeddings helps

improve the model.

In 2022, similar to DeepDebug, Hu et al. [66] from AWS AI propose NSEdit to generate patches

for Java programs. Given only the buggy code, NSEdit uses the pre-trained CodeBERT as the

encoder and CodeGPT as the decoder to address the Seq2Seq NMT problem. Moreover, it uses a

pointer network to select content-based edit locations. They apply beam search and design a novel

technique to fine-tune the reranker to re-rank the top-k patches for the buggy code. The results on

BFP benchmarks [184] indicate that NSEdit outperforms CodeBERT [49] and the ablation study

demonstrates the effectiveness of each component of the model.

Meanwhile, Wang et al. [190] from Ping An Technology propose CPR, short for causal program

repair, as a tool to utilize data augmentation strategy for input perturbations. This model can

generate patches for Java, Python, JavaScript, and C based on causally related input-output tokens.

Besides, it can offer explanations by transforming code into explainable graphs on various Seq2Seq

models in APR. They conduct experiments on four programming languages and prove that APR

models can be utilized as causal inference tools.

✎ Summary ▶ The APR domain has witnessed an unprecedented surge in industrial adoption.

With giants like Meta, Fujitsu, Bloomberg, and Alibaba exploring and harnessing its potential,

learning-based APR has undoubtedly established its foothold in real-world applications. Em-

phasis has notably shifted to learning-based APR tools, as exhibited by GitHub’s Copilot and

Microsoft’s Jigsaw, which underscore the blend of machine learning with traditional program-

ming paradigms. Noteworthy contributions emerge from global tech titans including Microsoft,

Google, and AWS AI. From tools like Getafix, R-HERO, and BUGLAB, which emphasize speed,

collaboration, and self-supervised learning respectively, to models like DeepDebug and NSEdit

that push the envelope of program repair using state-of-the-art machine learning architectures,

industry-affiliated research has been at the forefront. As the APR community moves forward,

the collaboration between academia and industry in the APR domain is poised to shape the next

generation of repair tools and methodologies. The trend demonstrates the desire to harness
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advanced DL techniques to address recurrent software bugs, thereby alleviating the developers’

workload in the industry. ◀

7.2 DL for Traditional APR
In addition to the increasing number of end-to-end learning-based APR techniques, there has been

growing interest in leveraging these learning technologies to improve and refine the capabilities

of traditional APR techniques. These studies usually treat machine learning as a component to

address the inherent limitation in the original APR workflow. Table 6 presents existing studies that

attempt to boost traditional APR techniques by utilizing deep learning or machine learning. The

first and second columns list the summarized studies and the years. The third column denotes the

traditional APR techniques targeted by these summarized studies. The remaining two columns list

the targeted languages and a brief description.

Table 6. A summary and comparison of APR studies combining traditional repair techniques and machine
learning techniques

Year Approach Base Language Description

2016 Prophet [111] SPR C

Training a ranking model to assign a high probability

to correct patches based on designed features.

2017 ACS [213] N.A. Java

Inferring which predicates should be used with a

given variable.

2019 DeepRepair [203] Astor Java

Learning to rank the repair ingredients based on code

similarity with representation learning.

2022 LIANA [26] RESTORE Java

Employing a machine learning model to rank candi-

date patches based on their static (e.g., the number of

variables) and dynamic (the number of passing tests)

features.

2022 TRANSFER [130] TBar Java

Training a BiLSTM-based multi-classifier model to

predict which fix template should be tried to repair

one suspicious statement.

2022 ARJANMT [94] ARJA Java

Employing a Seq2Seq model to generate patches as

potential fix ingredients that are manipulated by a

multi-objective evolutionary search algorithm.

2022 SituRepair [185] N.A. C

Training a machine-learning model to predict the

types of bugs based on static features and apply modi-

fications to the faulty program according to the types.

As early as 2016, Long et al. [111] propose Prophet, a patch-generation system for repairing bugs.

It uses dynamic analysis on the given test suite to get the program points for the patch to modify.

Then, the SPR [110] is used to generate search space. With a trained probabilistic model, Prophet

ranks the candidate patches, which are validated by executing the test suites. They collect eight

projects from GitHub and get 777 patches to train their model and test it on a benchmark [91]. The

result shows that Prophet can generate patches correctly with the learned knowledge compared

with previous patch generation systems. From the perspective of community development, while

Prophet may not be an end-to-end NMT-based patch generation approach like CoCoNut [115], its

pioneering integration of machine learning into the repair process offers invaluable insights for

subsequent research endeavors.

In 2017, Xiong et al. [213] introduce ACS, which aims to generate precise conditions at faulty

statements. During the condition synthesis process, ACS selects what variables should be used

in the conditional expression and decides what predicate should be performed on the variables.
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The predicates are mined from existing projects, and sorted based on their frequencies in contexts

similar to the target condition. The results on Defects4J show that ACS is the first APR approach

that achieves a precision higher than 70% (the precision of previous approaches is below 40%). ACS

employs a learning component to infer which predicates should be used with the current variable.

Although the learning component (just counting the frequencies in a corpus of source code) is

very simple, it is still learning. Thus, we regard ACS as one of the earliest learning-based APR

techniques.

At the same time, Long et al. [109] present a new system, Genesis, that processes human patches

to automatically infer code transforms for automatic patch generation. They first extract transforms

from the training set to obtain a pair containing a program before a change and a program after

a change. For each transformation, they create a template that defines the AST changes. They

then collect templates to create AST template forests which contain template variables to match

any appropriate AST subtrees. Given a set of training pairs, Genesis will select from the inference

search space to obtain potential transforms. They design an algorithm to reach a trade-off between

search space coverage and tractability. Finally, from these transforms they obtain a set of candidate

patches. They then evaluate Genesis on a dataset collected from GitHub Java programs covering null

pointer (NP), out-of-bounds (OOB), and class cast (CC) bugs. Results show that Genesis outperforms

another patch generation technique PAR [79] that leverages manually defined templates.

In 2019, White et al. [203] propose DeepRepair to intelligently select repair ingredients via

deep learning code similarities. In particular, DeepRepair is implemented on top of Astor [123], a

traditional heuristic-based APR approach, and consists of three phases, i.e., language recognition,
machine learning, and program repair. First, the language recognition phase processes the source

code to create ASTs and maps the literal tokens to their respective type. Second, the machine

learning phase trains a neural network language model from the file-level corpus to representations

for each term, and then trains an encoder to encode arbitrary streams of embeddings. Third, the

program repair phase leverages the trained encoder to query and transform code snippets for

patch generation. In this step, DeepRepair sorts the repair ingredients based on code similarity and

applies repair operators (“addition of statement” and “replacement of statement”) to repair the code

snippet. The experimental results on Defects4J demonstrate that DeepRepair achieves comparable

performance against jGenProg [122] in terms of the number of plausible patches with a faster

discovery speed of compilable ingredients. More importantly, as the first approach to expand the fix

space by transforming ingredients, DeepRepair generates some patches that cannot be generated

by jGenProg, highlighting the differences between the nature of DeepRepair and jGenProg.

In 2022, Chen et al. [26] propose a search-based technique called LIANA, which is based on

a designed learning-to-rank prioritization mode. It is based on the idea of repeatedly updating a

statistical model online based on the intermediate validation results of an ongoing program repair

process. The model is first trained offline and updated repeatedly after the generating progress

starts. The most up-to-date model is used to generate fixes and prioritize those that are more likely

to include the correct ingredients.

To improve the template-based APR, Wang et al. [130] propose TRANSFER, a fault localization
and program repair approach with deep semantic features and transferred knowledge which is

obtained by a combination of spectrum-based and mutation-based localization techniques. They

build a fault localization and program repair dataset respectively and employ existing fix templates

designed by TBar. They also design 11 binary classifications to identify whether one of the 11 bug

types they define exists in a statement and a multi-classification to determine which fix template

this statement should apply. The binary classification, consisting of one embedding layer, one RNN

layer, one max pooling layer, and one dense layer, is fed with spectrum-based, mutation-based, and
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semantic features and outputs the probability of containing specific bugs. Although this approach

is only tested on Java, it is proven to outperform many state-of-art approaches.

Similarly, to improve the search-based APR, Li et al. [94] design a novel framework called

ARJANMT to leverage both redundancy assumption and Seq2Seq learning of correct patches to

generate fixes for Java methods using NSGA-II algorithm. This framework combines both ARJA and

SequenceR into a unified framework. After evaluating ARJANMT on two Java benchmarks, results

show that it benefits from search-based and NMT-based techniques and outperforms existing APR

techniques (e.g., CoCoNut [115], DLFix [98] and CURE [73]).

To address multiple bugs, Valueian et al. [185] propose SituRepair for repairing multiple bugs in

C programs based on pre-defined repair patterns. It applies a machine learning model to predict the

buggy type and localization of the buggy code and then repairs them with situational modifications

accordingly. SituRepair is evaluated on a C benchmark Code4Bench and it successfully repairs

3,848 multiple-fault programs, outperforming Genprog [93].

✎ Summary ▶ Although a mass of research effort has been devoted to end-to-end patch gen-

eration, the literature has also seen some orthogonal works utilizing DL to enhance traditional

APR techniques. Different from most learning-based APR techniques that design an NMT-based

patch generation model from scratch, these techniques can leverage mature traditional APR

techniques and employ DL to improve specific components, such as the selection of repair

templates [130]. Future work can be conducted to address certain limitations of traditional

APR techniques, such as the donor code retrieval issue [107] using pre-trained models. ◀

7.3 Open Science
Recent years have witnessed an increasing application of DL in traditional SE problems and tasks.

In particular, software bug is a growing quality concern for modern software, and accordingly,

APR has become an actively studied topic in the SE community. According to our survey, various

learning-based APR techniques have been introduced in the last five years (discussed in Section 2).

DL brings a new repair paradigm (i.e., training and repairing) for the APR problem with promising

results. However, due to the nature of DL, learning-based APR techniques face some concerns

in reproducibility, which is quite different from traditional APR techniques. For example, it may

require a large number of machine resources for researchers to reproduce the NMT model’s work.

The cost is unaffordable for most researchers from academia. Besides, there exists randomness in

the neural network training process, which hinders the reproduction results.

Such challenges posed by DL motivate us to further understand the potential issues with open

science in the learning-based APR area, so as to advance existing techniques by taking advantage

of the general merits of open science. Open science advocates that researchers make their artifacts

(e.g., raw data, dataset, scripts, related models, or any results produced in their work) available

to all levels of researchers [128], so knowledge can be shared without boundaries [146]. While a

mass of DL techniques are proposed to fix software bugs automatically, more support is needed

to investigate the critical open science problem. In particular, we investigate to what extent the

collected papers make their artifacts publicly available and in what way they provide the relevant

information.

Table 7 shows the tool availability results of the investigated papers. For each paper we collect,

we check whether an accessible link for its tool or data is provided in the main text or footnotes of

the paper. We only present the studies that provide the link of publicly available data or tools due

to limited space, listed in the first column. We then investigate the following five dimensions in

characterizing the availability of each paper:

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 1. Publication date: 2023.
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• Hosting Site. This information indicates which hosting site the available artifact is uploaded

to for public access (e.g., GitHub or Google), if the artifact link is presented in the paper. The

detailed information is listed in the third column.
• Link Accessibility. This information indicates whether the provided link is accessible, such

that we can download the artifacts. The detailed information is listed in the fourth column.
• Source Code Available (SA). This information indicates whether the source code (e.g.,
training and evaluation scripts) is available in the artifacts. The detailed information is listed

in the fifth column.
• Dataset Available (DA). This information indicates whether the dataset (e.g., raw data

and training data) is available in the artifacts. The detailed information is listed in the sixth
column.

• Trained Model Available (TA). This information indicates whether the trained model (e.g.,
raw data and training data) is available in the artifacts. The detailed information is listed in

the seventh column.

We also list the programming languages targeted by the tools in the second column and list the

accessible URL links in the last column. After carefully checking the collected papers, we find that

only a few of the papers have made their source code available to the public. For convenient public

access, a majority of papers upload their works to GitHub. The possible reason is that GitHub

is the most popular platform to host open-source code publicly. Meanwhile, we find that several

papers fail to provide the source code, dataset, or already trained model [176, 228]. The possible

reasons may be (1) the artifacts need to be refactored or reorganized for public availableness; (2)

the artifacts are used for further studies; and (3) the artifacts are lost due to some accidents. We also

find while the artifacts are available, some studies cannot be reproduced because (1) the missing of

default hyperparameters
11
; (2) the complexity of environment settings for training

12
; and (3) the

insufficiency of documentation to reproduce the experiments
13
.

✎ Summary ▶ Overall, compared with traditional APR, the need for high-quality artifacts in

learning-based APR is even more vital for replication and future research. On the one hand, the

learning-based APR usually involves abundant training time and expensive equipment (e.g.,
GPUs) to train a repair model, and thus it is much harder to reproduce existing works. On the

other hand, some learning-based APR models require complex environment settings (e.g., the
best hyperparameters and the random seed) and some authors may fail to provide high-quality

code. In contrast, traditional APR results are typically more straightforward and deterministic to

reproduce when provided with open-source code and data. Therefore, we hope that researchers

in the learning-based APR community can provide high-quality open-source code and detailed

instructions to construct a unified repair framework for convenient reproduction. ◀

7.4 The Latest Advancements
While the scope of this survey encompasses literature up to Nov 2022, it is worth noting that

there have been significant advancements in the field of learning-based APR during 2023. For

example, notable papers presented at prominent conferences such as ICSE and ASE have introduced

innovative learning-based APR approaches, especially many of which leverage pre-trained models

to achieve remarkable results. Although a comprehensive review and analysis of these recent

works are beyond the scope of this paper, we acknowledge their contributions to the field and

11
https://github.com/lin-tan/CoCoNut-Artifact/issues/11

12
https://github.com/pkuzqh/Recoder/issues/11

13
https://github.com/ICSE-2019-AUTOFIX/ICSE-2019-AUTOFIX/issues/5
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recognize them as pivotal developments that will shape future research in APR. In the following,

we summarize some recent studies for a timely understanding of the latest advancements.

In line with Section 4.3, code context provides necessary information for repair models to

generate correct patches and plays a vital role in the learning-based APR workflow. However,

existing approaches mainly extract code in close proximity to the buggy statement within the

enclosing file, class, or method, without any analysis to find actual relations with the bug. Sintaha et
al. [169] propose a learning-based APR approach Katana, which employs a program slicing-based

approach to analyze code context in program repair. Particularly, Katana designs a dual slicing

strategy to analyze statements that have a control or data dependency on the buggy statement.

In line with Section 4.4, Zhu et al. [243] further propose Tare built upon their previous graph-

based APR approach Recoder, a type-aware model for program repair to learn the typing rules.

Compared with Recoder, Tare replaces the grammar in Recoder with a T-Grammar that integrates

the type information into a standard grammar, and replaces the neural components of Recoder

encoding ASTs with neural components encoding T-Graphs, which is a heterogeneous graph with

attributes. Besides, Jiang et al. [72] propose KNOD, a learning-based APR approach based on a three-

stage tree decoder and a domain-rule distillation. The first tree decoder directly generates ASTs

of patched code according to the inherent tree structure and The second domain-rule distillation

leverages syntactic and semantic rules and teacher-student distributions to explicitly inject the

domain knowledge into the decoding procedure during both the training and inference phases.

In line with Section 4.6, Xiao et al. [210, 211] systematically investigate whether existing muta-

tion testing acceleration techniques are suitable for general-purpose patch validation. They then

introduce ExpressAPR, a patch validation framework by designing two adaption strategies, i.e.,
execution scheduling and interception-based instrumentation. The experimental results on four

previous APR approaches (including the learning-based one Rcoder) demonstrate that ExpressAPR

is able to reduce patch validation time significantly.

In line with Section 4.8, some domain approaches are proposed to address the repair problem for

various bug types. For example, So et al. [171] propose SmartFix, a learning-based technique for

repairing vulnerable smart contracts. SmartFix employs statistical models to intelligently guide

the repair procedure, so as to prioritize candidate patches that are helpful in finding desired

safe contracts. At the same time, Fan et al. [48] systematically investigate whether existing APR

techniques (e.g., Recoder [242]) can fix the incorrect solutions produced by pre-trained models in

LeetCode contests. Besides, First et al. [50] propose Baldur, an automated whole-proof generation

and repair approach on top of a large pre-trained model. Baldur first generates whole formal

proofs by a proof generation model trained on natural language text and code and fine-tuned on

proofs. Baldur then combines this proof generation model with a fine-tuned repair model to repair

incorrectly generated proofs, further increasing proving power.

In line with Section 5, there exist some recent approaches proposed to explore how to transfer

domain bug-fixing knowledge into the pre-trained model-based patch generation process. The

first example is RAP-Gen [196], a retrieval-augmented program repair approach on top of a pre-

trained CodeT5 model. RAP-Gen retrieves a relevant bug-fixing pair from an external codebase to

augment the buggy input for the CodeT5 patch generator. The second example is FitRepair [207], a

CodeT5-based APR approach that incorporates domain-specific knowledge with the insights of

the plastic surgery hypothesis. FitRepair designs two domain-specific fine-tuning strategies and

one prompting strategy to leverage the hypothesis from the buggy projects. The third example is

Repilot [201], which helps pre-trained models generate more valid patches through a completion

engine. Repilot employs the interaction between a pre-trained model and a completion engine to

generate candidate patches by first pruning away infeasible tokens suggested by the pre-trained

model and then completing the token based on the suggestions provided by the completion engine.
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In line with Section 6.3, some empirical studies further explore the actual performance of learning-

based APR from different aspects. For example, Jiang et al. [71] empirically evaluate the fixing

capabilities of pre-trained models with and without fine-tuning for the APR task, involving ten

pre-trained models and four benchmarks. Zhang et al. [235] conduct an extensive empirical study

to investigate how pre-trained models are applied to vulnerability repair in the workflow (i.e., data
pre-processing, model training and repair inference) and further propose an enhanced approach

with bug-fixing transfer learning, involving more than 100 variants of fine-tuned models. Similarly,

Wu et al. [206] conduct an extensive study to evaluate the fixing capabilities of five pre-trained

models and four learning-based APR approaches on real-world Java vulnerabilities.

In line with Section 7.2, there exist some approaches proposed to combine traditional APR and

recent learning-based APR. For example, Zhang et al. [236] propose GAMMA, a template-based

program repair approach on top of the advance of fix patterns from traditional template-based

APR and mask prediction from pre-trained models. Similarly, Meng et al. [131] propose TENURE,
a novel template-and-learning-based program repair approach by combining the template-based

and NMT-based methods. Importantly, both GAMMA and TENURE preliminarily demonstrate

the prospect of combining the advances of traditional APR and DL models. At the same time,

Parasaram et al. [150] propose RETE, which aims to navigate the search space of patches by

learning project-independent information about the program namespace. RETE first employs repair

patterns to generate candidate patches and prioritize patches by learning rich semantic information

about the project namespace.

✎ Summary ▶ Overall, these latest research findings further demonstrate the timeliness and

comprehensiveness of our survey. Importantly, the most apparent trend is the increasing use of

pre-trained models, including enhanced pre-trained model-based approaches, empirical studies

on diverse bug types, and the combination with traditional APR. Besides, there exist some

studies focusing on optimizing other components of the repair process, such as code context

and patch validation acceleration. ◀

8 IMPLICATION AND GUIDELINES
Our study reveals the following important practical guidelines for future learning-based APR.

I&G❶: Multifarious CodeRepresentation.As discussed in Section 4.4, inspired by the advance
of neural machine translation in NLP, early learning-based APR work usually treats source code

as a sequence of code tokens. The follow-up work has begun to consider complex code features,

such as code edit [242], AST [98], and data flow graph [142]. For example, CIRCLE [228] which

treats the APR as a simple machine translation task on code sequences, and Recoder [242] which

is equipped with a syntax-guided edit decoder, are able to fix 64 and 65 real-world software bugs

from the Defects4J benchmark, respectively. Such observation indicates that there does not always

exist a specific code representation to demonstrate good performance, e.g., a simple sequence

representation can also yield excellent results. It is difficult to directly investigate the advantages

and disadvantages of different code representations because each code representation comes with

differentiated configurations, such as model architectures.

We recommend that future work can be conducted in the following three directions. First, it

is crucial to conduct a systematic study to explore the impact of different code representations

under various configurations, e.g., model architectures. Second, we find there exists a mass of code

representation ways in existing learning-based APR techniques, future work needs to design optimal

code representation based on specific scenarios. For example, researchers can design optimal code

representations based on specific programming languages, types of bugs and benchmarks. Third,
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considering that most existing repair work statically extracts the buggy and contextual features,

it is promising to incorporate the static code representation features (e.g., AST) and dynamic

execution feedback (e.g., test results). In this way, the NMT model and the repair process can be

more deeply integrated to fit the APR scenario. Fourth, with the rise of pre-trained models, the

community has seen the usage of prompt-based representation of feeding inputs to pre-trained

models to facilitate the repair task, e.g., CIRCLE [228]. However, research about prompt-based

representation in the repair domain is still in its early stages, mainly focusing on fine-tuning [228].

In the future, researchers can draw from other code-related fields [140, 235] to further deepen the

understanding of how the knowledge of pre-trained models can be stimulated to support repair

tasks with appropriate prompt representation.

I&G❷: Patch Validation Acceleration. As discussed in Section 4.6, dynamic execution is the

common practice to validate candidate patches in the APR community. Although some techniques

have been proposed to speed up patch validation [14, 25], it is time-consuming to dynamically

execute all candidate patches against each test case. Besides, existing patch validation studies in

learning-based APR are general to both traditional and learning-based APR communities.

We recommend that future research can be conducted from three aspects. First, it is promising to

extensively investigate the differences between patches generated by traditional and learning-based

APR techniques, based on which more advanced patch validation techniques can be designed

that are targeted at learning-based APR techniques. Second, predictive patch validation can be

conducted on top of the code semantic understanding capability of DL techniques, i.e., predictive
patch validation. For example, automatically learning patched code features and predicting whether

a patch is passed by previous failing test cases without dynamic execution is promising. Third, we

notice that other fields also suffer from the problem of dynamic program execution overhead, such

as mutation testing (both mutants and patches are considered variants of a program). Therefore,

some advanced techniques from these similar fields can also be migrated into patch validation. For

example, Wang et al. [188, 189] detect equivalencies in mutant execution and execute one for each

equivalence class, which is general and applicable to patch validation.

I&G❸: Training Dataset Construction. As discussed in Section 6.1, in contrast to traditional

APR techniques, learning-based techniques heavily rely on the quality of the training dataset. A

majority of existing techniques mine bug-fixing pairs from open-source code repositories (e.g.,
GitHub) and build their own datasets. However, the training dataset is usually collected by auto-

mated tools (e.g., extracting commit by fix-related keywords) and then inspected by some filtering

rules (e.g., more than five Java files) [242], which means the quality of the training dataset can

be variant. Many training datasets contain noise (e.g., CoCoNut contains a number of duplicated

samples) that may reduce the performance of the model. Besides, the number of training samples

in different techniques varies greatly (e.g., 3,241,966 in CoCoNut [115] and 2,000 in DLFix [98]).

These concerns may introduce bias when comparing and analyzing learning-based techniques.

We recommend approaching future work in two parts. First, a unified standard for training

datasets should be built to reduce the burden on researchers when they propose a novel learning-

based APR technique. Second, with a standardized training dataset, researchers can uniformly

evaluate the performance of different repair models across various settings, such as code represen-

tations, model architectures, and training hyperparameters.

I&G❹: Practical Evaluation Metrics. As discussed in Section 6.2, when evaluating repair

performance, dynamic execution-based metrics (e.g., plausible patches) are the common practice in

the APR community. However, such metrics may suffer from some drawbacks. First, they need to

execute all available functional test suites against each patched software program, consuming a

significant amount of execution time. Section 4.6 lists some candidate patch validation acceleration

techniques to mitigate this issue. Second, due to the overfitting problem, developers are required to
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further perform a manual inspection to assess the correctness of plausible patches, which demands

a substantial amount of human resources and is prone to errors. The overfitting problem leads

to the development of some patch correctness assessment techniques in Section 4.6. Third, the

dynamic execution heavily relies on well-constructed datasets including the corresponding fault-

triggering test cases. However, such test cases are often unavailable in practical scenarios, making

it challenging to rely solely on such metrics. We encourage further work to explore more practical

metrics to evaluate the repair performance of NMT models. For example, it is interesting to design

a hybrid metric by combining dynamic execution and static match.

We find an increasing number of recent learning-based APR techniques [51, 184] rely on static

match-based metrics (e.g., Accuracy and BLUE) to perform evaluation (mentioned in Section 6.2).

However, such match-based metrics are usually derived from the NLP domain (e.g., neural machine

translation) and fail to consider that a program’s functionality can be implemented in various ways,

such as different algorithms, data structures, or data flows. In the future, the community needs

large-scale empirical work to validate whether the match-based metrics can accurately reflect the

repair capability of NMT APR models. Besides, the two types of evaluation metrics (i.e., dynamic

execution vs. static match) are orthogonal and have their own advantages and disadvantages. We

suggest that the relationships between the recent static match-based and the classical dynamic test

execution-based metrics need to be studied in the future.

I&G❺: Exploring Patch Overfitting Issue. Similar to traditional APR techniques, learning-

based techniques usually adopt available test suites to filter incorrect candidate patches. However,

the test suite is an incomplete specification under the program behavioral space. The plausible

patches passing the existing test suite may not satisfy the expected outputs of potential test suites,

leading to a long challenge in APR (i.e., the overfitting issue). Considering the learning-based

APR is an end-to-end repair paradigm (in a black-box manner), which is different from traditional

techniques adopting test suites to guide the repair process, the overfitting issue in learning-based

APR is more significant and severe. Recently, researchers have adopted DL techniques (e.g., code
embedding [102, 179]) to predict the correctness of plausible patches, which is a promising direction

to address overfitting problems.

We recommend that future work can be conducted from three aspects. The first recommendation

lies in the process of patch generation. It is possible to design advanced code-aware NMT models

that incorporate more code information (e.g., code structure information or dynamic execution

information) to generate high-quality code snippets. The second recommendation is the process of

patch correctness. Investigating how to better utilize DL techniques to differentiate between correct

patches and overfitting patches is worth exploring. For example, we can incorporate contrastive

learning into existing learning-based patch correctness assessment approaches, as contrastive

learning is shown to be effective in distinguishing positive samples (i.e., correct patches) and

negative samples (i.e., overfitting patches). The third recommendation is the repair paradigm.

Previous work [107, 208] has shown that fix templates can generate higher-quality code snippets

with high precision. We believe that combining DL techniques with fix patterns as a novel repair

paradigm can address this issue in previous learning-based APR techniques.

I&G❻: Unified Localization and Repair workflow. As discussed in Section 4.2, similar to

traditional APR techniques, existing learning-based techniques usually consider fault localization

as an additional step in the repair process and adopt off-the-shelf fault localization tools (e.g., SBFL)
to identify suspicious code element, which is the input of NMT repair models. In the literature,

these two tasks (i.e., fault localization and patch generation) are developing in their own respective

fields so far and little work has explored their potential relationship. Recently, Ni et al. [143]
propose CompDefect to handle defect prediction and repair simultaneously. The powerful capacity
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of DL to learn the semantic information of source code for fault localization [97, 112] and program

repair [228, 242] makes it possible to combine the two tasks.

We suggest that future works focus on a unified repair process interactively incorporating fault

localization and patch generation. The fault localization results can be improved with the feedback

from the patch generation, while the updated localization results can assist in generating patches

more effectively. Different from previous studies that treat the two tasks as separate, the unified

repair facilitates interaction between the two tasks, enabling feedback-driven improvements in

both localization and repair performance iteratively.

I&G❼: Combination with Traditional APR Techniques. As discussed in Section 4.4, existing

DL techniques are usually adopted as a patch generator in the learning-based APR workflow, which

takes the buggy code snippets as inputs and returns a ranked list of candidate patches. Despite

remarkable progress, such learning-based APR techniques need to generate correct code snippets

from scratch and are developed separately from traditional APR techniques. Previous work [242]

has demonstrated that learning-based APR is complementary to traditional repair techniques in

terms of fixed bugs.

Future work can be conducted in two aspects. First, it is interesting to design a predictive

APR technique to predict the optimal traditional or learning-based APR technique for a given

buggy project based on the program analysis. Second, it is flexible to integrate DL techniques into

traditional APR techniques as a component instead of developing a brand-new end-to-end patch

generator. For example, a state-of-the-art template-based APR tool TBar retrieves relevant donor

code from the local buggy file and may fail to generate correct patches with inappropriate donor

code with the correct fix pattern. Researchers can boost existing template-based APR techniques

(e.g., TBar) via pre-trained models, which contain generic knowledge pre-trained with millions of

code snippets from open-source projects, and provide a variety of donor code to fix different bugs.

I&G❽: Exploring Domain Repair Techniques. As discussed in Section 4.4, a majority of

learning-based APR techniques focus on semantic bugs, which have been investigated intensively

in the literature. Section 4.4 also summarizes a number of existing repair techniques considering

other types of bugs, such as security vulnerabilities and programming assignments. However, these

studies only account for a small proportion of existing techniques, and the types of investigated

bugs are also very limited.

We recommend that future work can be carried out from two perspectives. First, it is promising

to design more domain-specific learning-based APR techniques in repairing other diverse scenarios,

e.g., test repair, concurrency program repair, and API misuse repair. Second, we find the community

usually treats fixing these types of bugs as separate tasks. SequenceR [27] has demonstrated that

NMT-basedmodels only trained on a limited bug-fixing corpus can already fix notable vulnerabilities.

These results indicate that bug fixing and vulnerability repair both aiming to fix errors in the source

code have a high degree of similarity, and the knowledge learned from bug fixing can be well

transferred to vulnerability repair. Such observation motivates that some bugs with different

types are very similar in both code patterns and repair workflow. Thus, future researchers are

recommended to explore their potential relationship and investigate whether these bugs can benefit

each other. Besides, it is promising to conduct some empirical studies to migrate existing mature

learning-based APR techniques to other scenarios, such as automated vulnerability repair.

I&G❾: Explainable Patch Generation. As discussed in Section 4.4, existing learning-based

APR techniques usually perform an end-to-end patch generation in a black-box manner, i.e.,
automatically transforming the buggy code snippets into correct ones on top of an NMT model.

The developers are unaware of why NMT models predict such results, thus unsure about the

reliability of these generated patches, hindering the adoption of repair NMT models in practice.

In the literature, a majority of studies focus on improving repair accuracy, while minor focus on
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improving the explainability of such NMT models. In the future, advanced explainable techniques

can be considered to make the predictions of NMT repair models more practical, explainable, and

actionable.

We suggest that future work should concentrate on two aspects to support the understanding of

NMT models for program repair: the attention mechanism and input perturbation mechanisms.

As a white-box method, the attention mechanism generates explanations by assigning weights to

different parts of the input, thus indicating an attribution of importance for the prediction. On the

other hand, the input perturbation mechanism is a black-box method to modify the input data and

observe variations in the model’s output, helping to understand which parts of the input the model

deems most crucial.

I&G❿: Pre-trained Model-based APR Research. As discussed in Section 5, an increasing

number of APR studies are focusing on employing pre-trained language models to generate patches.

We have already seen pre-trained models being successfully applied to the APR domain with

promising results [208, 237]. In the future, pre-trained models will still be the main trend for follow-

up research, and there is still a lot of room for further improvement. We stress the importance of

conducting more research into pre-trained models to deepen our understanding of the existing

challenges in developing APR techniques. We describe the relevant topics in the following.

(1) Patch Correctness via Pre-trained Models. Recently, the research for generating patches on top of

pre-trained models is developing rapidly. However, patch correctness, as an important research

direction in the APR community, has not benefited much from these pre-trained models. For

example, Tian et al. [179] simply regard BERT as an embedding representation approach without

investigating the benefits of the pre-training component itself. We believe that future work

can be conducted to employ the rich programming knowledge contained in pre-trained models

to identify the relationship between correct patches and overfitting patches. For example, it

is promising to employ the pre-trained model as a component in existing patch validation

techniques. Besides, researchers can directly treat the patch correctness assessment as a code

classification task, and fine-tune off-the-shelf pre-trained models on patch-specific datasets.

(2) Repair-oriented Pre-trained Model We have seen an increasing number of pre-trained models in

the APR field. In the literature, the majority of these pre-trained models are designed with a

general-purpose pre-training approach to facilitate a variety of downstream tasks. However,

considering the distinct difference between these downstream tasks, the universal pre-trained

model may hinder the effectiveness of program repair. For example, these models usually

focus on code-related tasks to encode a given code snippet, such as code search and code

summarization. Specifically, the designed pre-training tasks (e.g., masked language modeling)

typically deal with a code snippet as the input, and the key challenge is to capture the syntactic

and semantic information of the code snippet. However, APR deals with two code snippets and

the key challenge is to understand the code change patterns in bug-fixing pairs. The learned

knowledge in existing pre-trained models is generally related to the syntactic and semantic

information of code snippets, which can hardly be exploited to encode bug-fixing pairs. Thus,

employing existing pre-trained models for APR will inevitably lead to inconsistent inputs

and objectives between pre-training and fine-tuning. It is sub-optimal to fine-tune existing

pre-trained code models for APR due to the natural differences between pre-training objectives

and APR. We recommend future work to explore domain-specific models for APR. For example,

the researcher can propose a repair-oriented pre-trained model, which takes two code snippets

as inputs to learn the domain knowledge about code change patterns with bug-fixing specific

pre-training objectives.
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(3) Trade-off between Effectiveness and Model Size. In the literature, recent learning-based APR

techniques tend to employ the growing size of models, achieving better performance. Xia et
al. [208] have demonstrated that larger models usually repair a greater number of software bugs,

highlighting the promising future of pre-trained models for APR. However, such large models

are difficult to deploy in the development workflow. Besides, with the release of ever-larger

models, there may exist a barrier in the trade-off between effectiveness and model size. In fact,

most existing pre-trained models in the APR literature (e.g., CIRCLE [228], AlphaRepair [209]

and VulRepair [51]) usually treat source code as natural language (i.e., code sequence), which
cannot capture the code structure features. In the future, investigating how to bring in code

features and program analysis (e.g., data flow or control flow) in pre-training may be a flexible

strategy instead of employing a larger mode size.

(4) Practical Pre-trained Repair model. As discussed in Section 5, an increasing number of learning-

based APR techniques attempt to generate candidate patches by large pre-trained language

models. Although remarkable progress is obtained, such repair models contain millions or even

billions of parameters. For example, CodeBERT has 125 million parameters and 476 MB model

size in total. It is significant to deploy these models in modern IDEs to assist developers during

software development and maintenance. However, these repair models consume huge device

resources and run slowly in the development workflow (e.g., IDEs), limiting their application

in practice. In the future, it is necessary to reduce the size of these repair models to deploy in

real-world scenarios while maintaining comparable prediction accuracy, such as model pruning

and knowledge distillation.

(5) Pre-trained Model-based Repair Chatbot. At the current stage, the goal of most learning-based

APR techniques is to automatically generate patches that pass available test cases without

human intervention, similar to traditional APR techniques. However, there are some long-term

challenges in deploying these APR techniques directly into the development process, such as

the low recall of repaired bugs and the low precision of correct patches [101]. Recently, the

natural language understanding capabilities of large pre-trained models (e.g., ChatGPT) have
provided a new direction, i.e., conversation-driven repair. Specifically, we can employ the large

pre-trained model as a repair chatbot, which can converse with developers just like a human to

provide potential fix suggestions. In such a human-machine conversation process, developers

can tell the repair chatbot useful debugging information, such as suspicious code statements and

bug reports. More importantly, the patches generated by the repair chatbot can be validated by

developers and external devices (e.g., static analysis tools and compilers), and then the feedback

(e.g., dynamic execution information) can be provided to the chatbot for further optimization.

9 CONCLUSION
APR techniques address the long-standing challenge of fixing software bugs automatically, and

alleviate manual debugging effort significantly, which promotes software testing, validation, and

debugging practices. In the last couple of years, learning-based APR techniques have achieved

promising results, demonstrating the substantial potential of using DL techniques for APR.

In this paper, we provide a comprehensive survey of existing learning-based APR techniques. We

describe the typical learning-based repair framework, involving fault localization, data pre-processing,

patch generation, patch ranking, validation and correctness components. We summarize how ex-

isting learning-based techniques design strategies for these crucial components. We discuss the

metrics, datasets and empirical studies in the learning-based APR community. Finally, we point out

several challenges (such as overfitting issues) and provide possible directions for future study.
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