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(Source) code search is widely concerned by software engineering researchers because it can improve the productivity and

quality of software development. Given a functionality requirement usually described in a natural language sentence, a code

search system can retrieve code snippets that satisfy the requirement from a large-scale code corpus, e.g., GitHub. To realize

efective and eicient code search, many techniques have been proposed successively. These techniques improve code search

performance mainly by optimizing three core components, including query understanding component, code understanding

component, and query-code matching component. In this paper, we provide a 3-dimensional perspective survey for code

search. Speciically, we categorize existing code search studies into query-end optimization techniques, code-end optimization

techniques, and match-end optimization techniques according to the speciic components they optimize. These optimization

techniques are proposed to enhance the performance of speciic components, and thus the overall performance of code search.

Considering that each end can be optimized independently and contributes to the code search performance, we treat each end

as a dimension. Therefore, this survey is 3-dimensional in nature, and it provides a comprehensive summary of each dimension

in detail. To understand the research trends of the three dimensions in existing code search studies, we systematically review

68 relevant literatures. Diferent from existing code search surveys that only focus on the query end or code end or introduce

various aspects shallowly (including codebase, evaluation metrics, modeling technique, etc.), our survey provides a more

nuanced analysis and review of the evolution and development of the underlying techniques used in the three ends. Based on

a systematic review and summary of existing work, we outline several open challenges and opportunities at the three ends

that remain to be addressed in future work.
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1 INTRODUCTION

Software development is usually a repetitive task, where the same or similar implementations exist in established
open-source projects (e.g., GitHub repositories [31]) or online forums (e.g., Stack Overlow [50]). Software
developers on average spend about 19 percent of their development time in searching the relative code over a
large-scale codebase, because they can reuse or modify previously written code snippets to improve the eiciency
of project development [6]. (Source) code search aims to retrieve relevant code in large-scale code corpora for
a developer’s given query requirements. Reusing the retrieved high-quality code can efectively improve the
productivity and quality of software development, which makes code search receive widespread attention from
software engineering researchers. Besides, code search provides more opportunities for code reuse, which is
an earlier concept than code search [29, 104, 107]. Code reuse aims to modify an existing code into a new code
according to the requirements, while code search makes it possible to ind the available one. In other words, code
reuse can be realized through code search, further proving the considerable research value and signiicance of
code search.

The ideal code search tool can ind the closest code snippets based on the arrived queries and return them [37, 71].
In fact, many developers currently rely on Google, Baidu, and other search engines for code search, but the
search results are arrestingly unsatisfactory. The search logic or methods used by common search engines are
not suitable for matching natural language and code pairs. In most cases, the search results are not available for
developers to refer to, which will take them more time to change or choose a better query [9, 52, 82]. Given the
importance of code search, there is great interest in implementing better methods for retrieving relevant code
snippets from the code corpus, depending on the developer’s intent expressed as a search query.
Code search can be narrowly deined as a technique that takes as input a natural language query given by a

user, then selects the closest or possible answer from the code corpus and returns it to the developer as an output.
Of course, there exist a few individual code search techniques that take some non-natural language queries as
input or return the output into other forms such as API interface [76] or I/O examples [105]. In this paper, we
mainly study the mainstream code search scenario, where the query is natural language text and the search
results are method/function code snippets. By organizing and conducting a statistical analysis of articles on
code search that it our main study, we can get a glimpse of the development history of code search techniques.
From the view of technical composition, both early and recent code search techniques are composed of three
core components, including a query understanding component, a code understanding component, and a query-
code matching component. The query understanding component and the code understanding component are
responsible for mining and representing the features of the query and code snippet, respectively. The query-code
matching component is responsible for ranking a set of candidate code snippets according to how closely their
representations semantically match the query. The technical contributions of diferent code search studies mainly
lie in the optimization of these three components.
In this survey, we propose a novel approach for summarizing code search techniques from a 3-dimensional

perspective. Speciically, according to the speciic components they optimize, we irst classify existing code
search techniques into three categories: query-end optimization techniques, code-end optimization techniques,
and match-end optimization techniques. Each end exposes a perspective through which we can understand
and dissect the essential optimizations/improvements made by existing code search techniques. Therefore, this
survey investigates code search techniques from three perspectives, referred to as a 3-dimensional perspective.
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Optimization techniques of the three perspectives are instrumental in enhancing the accuracy of query under-
standing, code understanding, and matching between queries and code snippets, thereby directly impacting the
efectiveness and eiciency of code search. Then, we perform a systematic literature review of the optimization
techniques proposed in the three ends. We carefully select 68 representative papers from the 1,427 candidates.
Among these 44 papers propose solutions for query-end optimization, 50 papers for code-end optimization, and
52 for match-end optimization. Since some papers may propose optimization techniques for multiple ends, there
will be some overlapping papers in the three ends. Finally, we tease out the development history of optimization
techniques proposed for each end and summarize the development trends. Building on a thorough review of
optimization techniques proposed in existing code search papers, we outline persistent challenges that necessitate
further attention. Additionally, we present potential research opportunities in the code search ield.

The main contributions of this survey include:

• We propose a novel systematic review of 2,191 code search techniques published in journal papers, con-
ference papers, and arxiv papers up to September 30, 2023, as a starting point for future code search
research.
• We analyze 68 diferent code search techniques and conduct analysis from a 3-dimensional perspective to
explore these techniques’ innovations in query-end optimization, code-end optimization, and match-end
optimization. This survey will help subsequent researchers to enumerate their characteristics.
• We divide code search techniques into three categories according to the speciic components they optimize,
and analyze the evolution of techniques in each category over time as a basis for further comparison and
benchmarking.
• We highlight opportunities and challenges in code search research based on our indings to stimulate
further research in this ield. Some resources, datasets, and code can be found at https://github.com/wssun/
SourceCodeSearch.

1.1 Comparison with Existing Code Search Surveys

Around the 1960s, the concept of code search emerged [28, 57, 87]. Subsequently, with the development of
open-source platforms, the number of papers related to code search has risen rapidly since 2009, and dozens
of related papers appear in the ield every year. Over the past nearly sixty years, many techniques have been
successfully applied in code search, and there are also surveys and summaries of these techniques [33, 53, 66, 92].
These surveys either only focus on the query or code-end optimization or shallowly introduce various aspects of
code search tools, including codebase, evaluation metrics, modeling techniques, etc. For example, Rahman et
al. [92] explore the application of automatic composition query technology in code search, mainly relected in
the classiication of algorithms, assessment of the quality of results and the future constraints and challenges of
query reformulation. Another existing survey conducted by Liu et al. [66] focuses on analyzing the existing code
search tools, discusses and learns from the speciic search content of the tools, and proposes relevant indicators
for evaluating code search tools. Luca et al. [33] discuss and summarize the code search process, including query
processing, code indexing, search results sorting, and pruning. While their survey covers natural language queries
and lists three techniques used to modify queries, they do not delve into the key optimization techniques for
this type of query from diferent perspectives and their evolution over time, which are explained in detail in
our survey. For the process of code, they introduce the artifacts that get indexed and information for indexing
code according to the levels of code complexity. Moreover, they enumerate several techniques for comparing
queries and code snippets and the ranking of search results, respectively, while we uniformly view comparison
and ranking as a matching process. The latest survey completed by Kim et al. [53] provides an encompassing
introduction to the task of code search, including the search base (i.e., a repository or dataset), benchmarks for
code search, evaluation methods, etc.
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However, a systematic review of various optimization techniques involved in diferent core components in
code search techniques is still lacking. From the view of technical composition, most code search techniques
are composed of three core components, including a query understanding component, a code understanding
component, and a query-codematching component. The lack of a systematic review of the optimization techniques
involved in these components hinders developers/researchers from identifying technology trends for each core
component, as well as the challenges and opportunities faced in optimizing diferent components. To ill this
gap, our paper focuses on the update and iteration of optimization techniques on these components. This
facilitates subsequent researchers to optimize designs for speciic components by assisting them in quickly
inding comparative baselines.
Structure of the paper: The remainder of this survey is organized as follows. Section 2 briely introduces

the background of code search. Section 3 presents the survey methodology that we follow. Section 4, 5, and 6
summarize the key research questions we investigate and their answers in this study. Section 7 discusses the
challenges for the road ahead on code search techniques and presents the potential research opportunities for
future work. Section 8 shows the potential threats that may afect the validity of this review. Finally, Section 9
provides a conclusion of this survey.

2 BACKGROUND

In this section, we will introduce the background of code search, including code search deinition and code search
techniques.

2.1 Code Search

Since the existing works improve and implement the code search task using diferent techniques, there is no
formal problem deinition for the code search task. In this paper, we survey a wide range of code search research,
including early information retrieval (IR)-based code search research and recent deep learning (DL)-based code
search research. To the best of our knowledge, there is no strict deinition of general code search. We investigate
the widely-studied code search scenario, where the query given by the developer is a short natural language
text, and the search result is a code snippet of a method/function [26, 34, 37, 65, 66, 99, 107]. Formally, let
� = {�1,�2, · · · ,��} be a query given by the developer, where�� is the �-th word in �; � = {�1, �2, · · · , ��} be a
large-scale code corpus, where � is a code snippet; code search is deined as follows.

Definition 1 (Code Search). Code search is the task of retrieving a code snippet � ∈ � for � that satisies the

following conditions:

• ∀�′ ∈ �, �′ ≠ �

• � = Φ(�)

• � = Ψ(�), �′ = Ψ(�′)

• ���(�, �′) ≤ ���(�, �) �� � (�, �′) ≤ � (�, �)

where Φ(·) and Ψ(·) are functions designed to represent features of query and code snippet, respectively. ���(·) is a

function that measures the similarity between two feature representations of the query and code snippet. � (·) is a

predictor function that predicts the classiication probability that the query semantically matches the code snippet.

We focus on investigating free-text code search where queries given by developers are free-form natural
language text and search results are method-level code snippets. This is the most practical, common, and widely
researched code search application scenario [9, 66]. Figure 1 shows two examples of code search. In both examples,
queries are natural language descriptions and code snippets are methods written in programming languages
(e.g., Java and C/C++). From Figure 1(a) and (c), we can observe that the former (�1) wants to ind a code snippet
calculating the factorial of a number, while the latter (�2) aims to retrieve a code snippet implementing the

ACM Trans. Softw. Eng. Methodol.
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calculate the factorial of a number.

(b) A Java Code Snippet �
!

(a) A Query q1

1 unsigned int cnt_digits(unsigned int n) {

2 unsigned int count = 0;

3 while (n > 0) {

4 n /= 10;

5 count++;

6 }

7 return count;

8 }

calculate how many digits an integer has.

(d) A C/C++ Code Snippet �
"

(c) A Query q2

1 public long factorial (int number) {

2 long factorial = 0;

3 int i = 1;

4 for (; i <= number; i++) {

5 factorial = factorial * i;

6 }

7 return factorial;

8 }

Fig. 1. Examples of code search

Query Code Snippet
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Query 
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Representation

DL-based Feature
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Fig. 2. Overall framework of the code search technique

functionality of counting the number of digits in an integer value. Obviously, the two queries have diferent
intents or requirements. The query understanding component is responsible for capturing the intents/semantics
in the natural language query. Figure 1(b) and (d) show two code snippets. All code search systems require a code
understanding component, which is responsible for capturing the semantics in the programming language code
snippet. Intuitively, a good code search technique requires understanding the semantics of both the query and
the code snippet. Only in this way, can it retrieve the code snippets that satisfy the query intents.
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2.2 Code Search Techniques

Figure 2 shows the overall framework of the code search technique. The goal of the code search technique is to
retrieve relevant code from a large-scale code corpus according to the intent of the developers’ query. A typical
code search system/tool contains three components: a query understanding component, a code understanding
component, and a query-code matching component. The query understanding component is responsible for
processing the natural language queries given by developers, such as mining and representing the key information
(also called features/semantics) from the query. The code understanding component is responsible for processing
the programming language code snippets in the code corpus, such as mining and representing features from
the code snippets. The query-code matching component is responsible for ranking code snippets according
to how well they semantically match the query. So, to implement efective and eicient code search, existing
works have proposed various techniques to optimize these three components. These optimization techniques
enhance the overall performance of code search by improving speciic components. In this survey, according
to the speciic components they optimize, we divide the existing code search studies into the following three
categories: query-end optimization techniques, code-end optimization techniques, and match-end optimization

techniques.
Query-end Optimization. Given a query, query-end optimization aims to produce a query representation that

not only preserves the core semantics of the query but also facilitates the computing of matching components,
thereby improving the efectiveness and eiciency of code search. The query understanding component produces
such a representation through two sequential steps: query feature mining and query feature representation. The
query feature mining step treats the raw query given by the developer as input and extracts the important features
from the raw query. Considering that the raw query may be of low quality and contains few useful features,
existing works propose a variety of techniques to automatically optimize the quality of the features extracted
from the raw queries [72, 73, 82, 92, 116]. In this survey, we investigate four classic techniques for optimizing
query quality, including query reduction, query replacement, query expansion, and query transformation (details
are described in Section 4.1). The query feature representation step takes in the features extracted by the query
feature mining step and produces a semantic-preserving feature representation. Such a representation will be
used to rank a large number of code snippets in the query-code matching component. From another perspective,
query representation techniques are equally important. They also determine the inal performance of the code
search techniques, because accurate representation of semantic features in queries can assist code search models
in retrieving code snippets correctly. Existing works propose many techniques to optimize the process of feature
representation [96]. We divide the query representation methods utilized in existing technologies into two
categories: IR-based feature representation and DL-based feature representation. IR-based representation methods
always regard queries as vectors or plain texts, which can be utilized easily to optimize the query-end by the
researchers. DL-based feature representation methods apply deep neural networks to encode the query. They
are frequently adopted by existing code search techniques because they yield better semantic representations of
queries. Details of query feature representation are described in Section 4.2.

Code-end Optimization. Given a code snippet, code-end optimization aims to produce a code representation
that not only preserves the core semantics of the code but is also convenient for subsequent query-code matching
computing, thereby improving the efectiveness and eiciency of code search. Like the query understanding
component, the code understanding component produces such code representation through two sequential steps:
code feature mining and code feature representation. The code feature mining step treats the raw code snippet
in the code corpus as input and extracts its important features. Considering that the raw code snippet may be
complex and contains noise features, existing works propose a variety of techniques to automatically optimize
the quality of the features extracted from the raw code snippets [2, 9, 37, 64, 115, 121, 127, 128]. It is a common
practice to characterize code features from two aspects: textual features and structural features. In this survey,

ACM Trans. Softw. Eng. Methodol.
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we investigate three textual features and four structural features commonly used in code search works (details
are described in Section 5.1). The code feature will be further passed into the code representation step to produce
semantic-preserving feature representations. Such a representation will be used to rank a large number of code
snippets in the query-code matching component. To make the resulting representation as semantically preserving
as possible, existing works propose many techniques to optimize the process of code feature representation [96].
Like query feature representation, we also divide code feature representation techniques into two categories:
IR-based feature representation and DL-based feature representation. IR-based feature representation treats the
code primarily as text, supplemented by additional information to represent it more comprehensively. DL-based
feature representation techniques apply deep neural networks to embed the code features. Details of code feature
representation are described in Section 5.2.
Match-end Optimization. Given a query representation and a set of code representations, match-end

optimization aims to rank code representations based on their relevance to the query representation. Diferent
techniques adopt diferent methods to calculate the relevance scores. In this survey, we investigate three widely
used matching methods, including text-based matching, vector distance-based matching, and classiication-based
matching. Text-based matching methods measure the relevance scores by calculating the distance between
the keyword-based or IR-based query feature representation and the keyword-based or IR-based code feature
representation. Vector-based matching methods measure the relevance scores by calculating the distance between
the query feature vectors (including embeddings) and the code feature vectors. Vectors are produced by traditional
IR techniques or advanced DL techniques. Classiication-based matching methods measure the relevance scores
by using neural network classiiers to predict the probability of semantic relevance of the query embeddings and
the code embeddings.

3 SURVEY METHODOLOGY

We follow the guidelines for the systematic literature review (SLR) in software engineering [55, 86, 103] to
conduct this survey. We start this survey by asking three research questions and then comprehensively analyze
the various optimization techniques used in code search.

3.1 Research uestions

The research questions are one of the most important contents of the literature review, which guide us to clarify
the research direction and thus conduct a purposeful investigation. In this survey, we want to explore, classify,
and summarize various optimization techniques used in code search to date in query-end optimization, code-end
optimization, and match-end optimization. These three dimensions are the core components of the code search
techniques and the main perspectives for researching code search techniques in this survey. Therefore, we
investigate the following three research questions (RQs):

• RQ1.What are the query-end optimization techniques in code search studies? The purpose of this RQ is to
investigate which techniques are applied to query processing (including query feature mining and query
feature representation) and the development trend of query-end optimization techniques.
• RQ2. What are the code-end optimization techniques in code search studies? This RQ aims to investigate
which code features are used in code-end optimization techniques, how they represent involved code
features, and the development trend of code-end optimization techniques.
• RQ3. What are the match-end optimization techniques in code search studies? The goal of this RQ is
to investigate how match-end optimization techniques match the representations of the query and code
features to rank the expected code snippet in a higher rank and the development trend of match-end
optimization techniques.

ACM Trans. Softw. Eng. Methodol.
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Fig. 3. Selection of research studies

In the process of seeking the answers to these questions, we also ind the deiciencies and limitations of the
existing code search techniques. As a reference, we put forward some suggestions and directions for future
research.

3.2 Search Strategy

Collecting published papers requires selecting appropriate publication databases and searching keywords. In
this survey, we selected six widely available electronic databases, including DBLP publication database 1, Google
scholar database 2, IEEE Explore database 3, ACM Digital Library 4, Web of Science database 5, and ArXiv
database 6. It is worth noting that, considering that some researchers are willing to disclose the latest research
techniques on ArXiv in advance, we also collected the code search papers that have been made public on ArXiv
but not accepted by any journal or conference. In terms of selecting searching keywords, we referred to the PIO
(Population + Intervention + Outcome) criteria [56] and used the population terms and intervention terms from
code search ield to construct keywords, as in previous studies [92]. Population terms covered all aspects of the
research topic. In this survey, we used łCode Searchž, łCode Retrievalž, łCode Recommendationž, and łCode
Reusež as the population terms. Intervention terms focus on a speciic aspect of the research topic. We used
łQuery Expansionž, łQuery Reductionž, and łQuery Transformationž as the intervention terms for RQ1. Relevant
papers up to September 30, 2023, were included in our search results. As Figure 3 shows, we retrieved 2,191
relevant papers from six databases in total as Outcome after removing duplicated studies.

3.3 Study Selection

Once those candidate studies were collected, we made a gradual selection according to the ilter conditions (C)
we carefully set up.

• C1. eliminating book, thesis, and short papers (our deinition of short essay papers: less than ive pages);
only needing journals and conferences.

1https://dblp.uni-trier.de
2https://scholar.google.com/
3https://ieeexplore.ieee.org/
4https://dl.acm.org/
5https://www.webofscience.com/
6https://arxiv.org/
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• C2. only selecting technical papers, excluding technical reports, empirical studies, and surveys.
• C3. choosing the papers about the ield of code search:
– removing papers in which queries are not in natural language;
– ruling out papers that propose techniques for local code search (e.g., feature location), as they aim to
ind relevant locations in a single speciic software repository rather than retrieving code snippets from
large-scale code corpora;

– eliminating researches that employ code search engines to improve the performance of other research
areas, such as code clone detection.

• C4. choosing the papers that meet the requirements of having a technical innovation in one of the ends.
– query-end: proposing new query processing techniques that help preserve or augment the semantics of
queries, including query feature mining and query feature representation techniques;

– code-end: mining new code features, exploring new methods to extract code features, or proposing
innovative approaches to optimize the representation of code features;

– match-end: introducing novel methods of matching queries and code snippets to sort code snippets more
eiciently or optimizing the matching process (e.g., speeding up the matching).

According to the four conditions, manual experiments were carried out to select the inal range from the
candidate papers. The irst manual experiment obtained the page number and published source of the whole paper.
We obtained a total of 1,427 papers (including 708 conference papers, 645 journal papers, and 74 arxiv papers)
according to the requirements of Condition C1. Then, we invited 8 volunteers with strong English proiciency
and software engineering research experience to conduct the subsequent manual experiments. In the second
manual experiment, they judged whether the remaining papers meet Condition C2 and retained 1,279 technical
papers, excluding 192 empirical studies, 25 surveys, and 21 technical reports. In the third manual experiment,
each volunteer checked 178 ~179 papers to determine whether they meet Condition C3 mainly based on the
title and abstract parts. After this step, 189 papers were remained. Finally, we carefully read these papers to
assess whether they meet the requirements of C4 and selected 68 representative papers. Our systematic ilter
conditions ensure the quality and representativeness of the papers selected. The selected 68 papers have fully
covered relevant research on the three ends.
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Fig. 4. 1,427 code search papers from 1965 to 2023

ACM Trans. Softw. Eng. Methodol.



10 • W. Sun, C. Fang, Y. Ge, Y. Hu, Y. Chen, Q. Zhang, X. Ge., Y. Liu., and Z. Chen.

2009 2011 2015 2016 2017 2018 2019 2020 2021 2022 2023
Year

0

2

4

6

8

10

12

14

N
um

be
r o

f p
ap

er
s

(a) Group by Year

Journal

39.7%

Conference

47.1% ArXiv

13.2%

(b) Group by Venue

Fig. 5. 68 papers on code search discussed in this article

We grouped the collected 1,427 papers by year of publication, and the statistical results are shown in Figure 4. It
is observed that the number of relevant papers has increased signiicantly since 2005, indicating that the problem
of code search has received signiicant attention.

After screening all the conditions, we inally identiied a total of code search studies related to our research. For
this study, we carefully selected representative papers from the candidates and conducted a systematic analysis,
and inally, 68 studies are selected. According to the three questions we raised above, these papers are divided into
three relevant categories, among which 44 papers are related to RQ1; 50 papers are related to RQ2; and 52 papers
are related to RQ3. Since some papers may propose optimization techniques for multiple ends, there will be
some overlapping papers in the three RQs. It should be noted that we will focus on introducing the optimization
techniques proposed by each paper on the corresponding end in diferent RQs. Figure 5(a) presents the number
of papers we discuss per year of publication, illustrating the increasing relevance of the topic. Figure 5(b) shows
that 47.1% of them were published in conference proceedings, accounting for the largest proportion, followed by
Journal (39.7%) and ArXiv (13.2%).

4 ANSWERING RQ1: WHAT ARE THE QUERY-END OPTIMIZATION METHODS IN CODE

SEARCH STUDIES?

In the realm of code search, the quality of a query is paramount as it directly inluences the quality of the
search results [93, 94]. A low-quality query, characterized by the use of uncommon abbreviations or redundant
and noisy phrases, may result in the retrieval of suboptimal code snippets. As a countermeasure, researchers
have progressively proposed a variety of optimization techniques aimed at optimizing and understanding user
queries. These endeavors collectively serve to enhance the performance of code search. In a nutshell, query-end
optimization endeavors to elevate the quality of user queries, consequently heightening the quality of code
search.

As shown in Figure 2, the optimization techniques employed at the query end can be mainly categorized into
two facets: feature mining from the user query and subsequent representation of these extracted query features.
For query feature mining, existing eforts predominantly fall within three categories: query reduction, query
expansion, and query transformation. Query reduction improves the quality of the user query by eliminating
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Fig. 6. Evolution of feature mining techniques in query end

redundant content [68]. Query expansion is to enrich the user query by incorporating available information,
such as software-speciic expansion words sourced from Stack Overlow [73, 82]. Query transformation irst
transforms the user query into an alternative form, such as API [90], and then retrieves related code snippets
using the transformed form. Figure 6 lists some representative works of the three types of query feature mining
techniques at various temporal junctures. More details of these techniques are discussed in Section 4.1. As for
query feature representation, existing endeavors are generally classiied into two classes: IR-based methods
and DL-based methods. The main diference between the two lies in the adoption of diferent techniques to
embed the natural language query and generate the corresponding vector representations. Figure 7 presents
some notable works of the two categories of query feature representation techniques across diferent points in
time. More details of query feature representation are discussed in Section 4.2. In the following subsections, we
will intricately introduce the three types of query feature mining techniques and the two categories of query
feature representation techniques aforementioned in detail. Additionally, we will succinctly encapsulate their
trajectories of development and emerging trends.

4.1 uery Feature Mining

4.1.1 uery Reduction. As mentioned earlier, query reduction strives to eliminate superluous components from
the query, which contributes to the code search technique to grasp the core intent of the query accurately, thereby
enhancing performance. Existing studies [40, 91] ind that the keywords that occur in more than 25% of the
documents in a corpus are less discriminating. Thereby, the key of query reduction is to remove the redundant,
noisy, ambiguous, or less discriminating keywords [92], making the results of code search more reasonable and
suitable for users to reuse. The irst line of Figure 6 shows the code search papers that employ query reduction to
reformulate user queries. It can be seen intuitively that query reduction is less common for code search. In the
following, we will detail how these two code search works perform query reduction.

Yu et al. [126] propose an information retrieval-based technique called APIBook to help users search the code
of API methods. Given a user query also called łAPI descriptionž in their paper, APIBook extracts semantic
information and type information from the query. The extracted information will be used for matching later.
The semantic information of an API description refers to the meaning of words in the API description. They
use nouns, verbs, and adjectives as the semantic information of the API description. The type information of an
API description refers to the information that concerns types, such as łStringž and łStringBuilderž. In simple
terms, they perform query reduction by removing content other than semantic and type information, such as
stop words, prepositions, and adverbs.

Huang et al. [47] propose a deep learning-based method called QESC for efective query expansion. Although
only query expansion is emphasized in the title of the paper, QESC also performs query reduction. Therefore, it
can be said that QESC employs a combination of query expansion and query reduction to optimize query feature
mining. In this section, we focus on how QESC performs query reduction, and the content of query expansion is
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introduced in Section 4.1.2. Speciically, they decompose the code search into two steps: irst-pass retrieval and
second-pass retrieval. In the irst-pass retrieval, on receiving a query, the search engine produces the initial query
results. They train an inference model based on the Deep Belief Network [42], which can infer the ine-grained
changed code terms that will most likely occur in the initial results. They represent a code term by a triplet
of (⟨�����⟩, ⟨����⟩, ⟨���������⟩). ⟨�����⟩ represents the textual information of Abstract Syntax Tree (AST) nodes.
⟨����⟩ has two options that decide if a term is changed or dependent. ⟨���������⟩ has three operations that decide
if a term is unchanged, new, or deleted. In the second-pass retrieval, they reformulate the query with the selected
changed terms. If the ⟨���������⟩ of the term is łdeletedž, they see it as an irrelevant term and remove its ⟨�����⟩
from the query. In short, QESC performs query reduction by deleting irrelevant terms identiied by the inference
model.
Wang et al. [117] ind the existing code search tools usually return a ranked list of candidate code snippets

without any explanations, making the developers often ind it hard to choose the desired results and build
conidence on them. To address this issue, they propose XCoS, an explainable code search approach based
on query scoping and knowledge graph. Query scoping essentially performs the process of query reduction,
aiming to extract diferent parts from a query, including functionalities, functional constraints, and nonfunctional
constraints. Speciically, given a query, XCoS irst removes the starting words for a question, such as łhow tož
and łhow can Iž. Then XCoS uses an NLP tool spaCy to analyze the part of speech and dependence tree of the
remaining query. After that XCoS extracts diferent parts from the query using linguistic rules. The linguistic
rules for the code search query are borrowed from the NLP ield where linguistic rules are commonly used to
extract functionality and constraints [49, 85, 113]. To build linguistic rules, they randomly sample 50 question
titles as a validation dataset to iteratively reine and validate the rules by observing the extraction results. In
the rules, VERB, DOBJ, PREP, POBJ, and MOD denote verb, direct object, preposition, preposition object, and
modiier, respectively. Based on these rules, they summarize that Functionality: VERB or VERB DOBJ; Functional

Constraint: PREP POBJ, to VERB DOBJ, or using DOBJ; Nonfunctional Constraint: adverbs, adverb clauses, relative

clauses, or phrases such as in MOD way that are used to modify or qualify the functionalities or functional constraints.
XCoS composes the functionality part and functional constraint part together to retrieve code snippets. The
knowledge graph is used to guide the generation of explanations for code snippets and its construction is an oline
task. In practice, given a query, XCoS irst identiies diferent parts (i.e., functionalities, functional constraints,
nonfunctional constraints) from it and uses the expressions of functionalities and functional constraints to search
the codebase. It then links both the query and the candidate code snippets to the concepts in the knowledge
graph and generates explanations based on the association paths between these two parts of concepts together
with relevant descriptions.

In summary, the advantage of query reduction lies in eliminating noise, redundant parts, and some ambiguous
keywords in the query. Query reduction ensures that the remaining keywords make the search results more
accurate and reasonable. However, if query reduction is not precise enough, it may result in the loss of some of
the query’s intent. Therefore, inefective query reduction might have a negative impact on the results.

4.1.2 uery Expansion. Query expansion is to expand the user’s original query through the inclusion of other
available information, such as synonymous words. This approach serves as a strategy for reformulating queries,
particularly in cases where the original query yields a poor retrieval result. Originally, in the ield of information
retrieval, query expansion was used for cross-language information retrieval [10], the words/terms suggested by
query expansion techniques can rich retrieval code results. Given the efective promotion of search performance,
the researchers in the software engineering community introduce them to code search tasks. The second line
Figure 6 presents the code search papers that leverage query expansion to enrich user queries. It is apparent that,
compared with query reduction, query expansion has garnered extensive attention and application within code
search. Subsequently, we will discuss how these code search endeavors conduct query expansion.
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Query expansion from API. Utilizing API to expand queries can enhance the semantic understanding of
queries, providing more accurate search results. Furthermore, it also increases the possibility of inding reusable
APIs.

Lv et al. [74] ind that one major limitation of existing code search tools is the lack of query understanding.
These tools often adopt conventional text similarity matching techniques to retrieve relevant code snippets. They
do not consider query understanding, which could lead to inaccurate return results. Therefore, they propose
CodeHow, a code search approach that considers both API understanding and text similarity matching. CodeHow
understands a query by identifying the APIs that the query may refer to. CodeHow expands the user query
with the identiied APIs and applies the Extended Boolean model to retrieve the code snippets that match the
expanded query. Speciically, CodeHow decomposes code search into two phases, i.e., the API understanding
phase and the code retrieval phase. In the API understanding phase, CodeHow irst collects the description of
each API in the API library from its online documentation. It then calculates two similarity values, one between
the API description and the query, and one between the API name and the query. Finally, it returns the potentially
relevant APIs that match the query according to two similarity values. In the code retrieval phase, CodeHow
constructs a Boolean query expression for retrieving code snippets that match the query in terms of text similarity.
It retrieves code snippets that contain the potentially relevant API as well as other query terms in the method
body and method name. CodeHow also constructs Boolean query expressions for each API recommended in the
API understanding phase, which is intended to search for code snippets that contain the potentially relevant API.
The query expressions above are combined to obtain an expanded query expression for retrieving code snippets.
Finally, the expanded query expression is passed to an Extended Boolean Model as the input, which will return
relevant code snippets according to their similarity to the expanded query expression.
Zhang et al. [129] ind that the proportion of identiiers (e.g., class and method names) plays a key role in

retrieving relevant code examples from code search engines. Therefore, they propose to perform query expansion
by recommending semantically related identiiers (particularly Application Program Interface (API) class-names)
to expand natural-language queries. Speciically, they irst use the continuous bag-of-words model (CBOW) [79]
to extract vector representations that are used to map natural-language queries with identiiers. Then based on
similarities between vector representations of the query and API class-names, they ind relevant API class-names
(identiiers) from the corpus to expand the given query. Finally, they retrieve code snippets from the corpus by
executing the expanded query.

Query expansion from Question & Answer (Q&A). Q&A not only includes highly precise answers but also
questions posed by developers using natural language. This format is highly suitable to improve the performance
of query expansion.
To overcome the term mismatch problem inherent in text retrieval-based techniques, Nie et al. [82] propose

Query Expansion based on Crowd Knowledge (QECK) to improve the performance of code search. Speciically,
given a query, QECK ranks all Question & Answer (Q&A) pairs collected from Stack Overlow 7 using the
information retrieval model Lucene 8. The top-� Q&A pairs are identiied as the Pseudo Relevance Feedback
(PRF) documents, which will be treated as relevant to the query. Then, QECK identiies useful expansion words
from PRF Q&A pairs. Each word in PRF Q&A pairs is assigned an expansion weight. According to the weights
of words, top-� words are selected as useful expansion words and added to the original query to generate the
expanded queries. Finally, QECK ranks all code snippets in the corpus for the expanded query, and the top � code
snippets are recommended to developers as the search results.

Q&A from programming forums that contain abundant exchanging knowledge about programming issues are
crucial resources for code retrieval and annotation. However, Hu et al. [44] ind that mining software repositories

7https://stackoverlow.com/
8http://lucene.apache.org
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in such open and unrestricted forums is challenging, since the posts can be arbitrary and noisy. To overcome this
challenge, they propose Code-Description Mining Framework (CodeMF), an unsupervised framework to eliminate
noisy posts and extract high-quality software repositories from programming forums. Speciically, CodeMF is
the combination of two proposed frameworks kernel principal component analysis (KPCA) and wavelet time-
frequency transform feature fusion (WTFF) which are applied in extracting high-quality software repositories.
KPCA is the principal component analysis tool used to reduce the dimension of features collected from the
software repositories, and then further extract high-quality mappings between query-code pairs. Regarding the
novel framework WTFF, it transforms the multiple dimension features into a time-frequency domain through
wavelet transformation to reduce the computational complexity. This helps to extract the principal components
of the software repository features more easily. Finally, CodeMF leverages the QECK [82] to retrieve the code
snippets. As we introduced above, QECK uses the Q&A context-text pairs to expand the NL queries. CodeMF
enhances the Q&A Pairs Search Engine which is a crucial component of QECK. Thus, it ofers high-quality
expanded keywords, leading to improved code search performance.
Query expansion from Source Code. Utilizing source code to expand queries is one of the most common

expansion strategies. The source code contains a wealth of code context, including variable names, function
names, comments, and other information. Using this information for expansion can signiicantly enhance the
performance of code search.

Code tokenization is a key preprocessing step in code search techniques, which aims to convert query or code
snippets into lexicons. Karnalim [52] ind that most code search techniques rely on programming-language-
dependent features to extract source code lexicons. However, these techniques would require manual updates to
accommodate new programming languages, a process that can consume a signiicant amount of time. To handle
this issue, Karnalim proposes a language-agnostic code retrieval approach. It does not rely on programming-
language-dependent features. Instead, it relies on the Keyword & Identiier lexical pattern which are typically
similar across various programming languages. The recognized lexicons are classiied by lexicon categorization
based on Keyword & Identiier lexical pattern. This lexical pattern is selected as the main concern, because its
rules are similar in most programming languages. This pattern is also adapted to query expansion. Speciically,
the keyphrases found in the most descriptive paragraph are regarded as the query expansion candidates. They are
selected from top-K retrieved documents and limited by lexical pattern. A lexicon is only viewed as a candidate if
its category is similar to the category of the query term, either a keyword-like or identiier-like lexicon. After
that, the candidates are sorted by the importance score which is weighted by term frequency and one-to-many
association. Finally, the query expansion candidates are used to improve the code search performance, which
expands the query based on terms found in the top � retrieved source codes.
Lu et al. [72] ind that formulating (e.g., exchanging, adding, and deleting) the related words identiied based

only on the positional proximity is not enough to optimize the query. The presence of word relations prevalent
within the source code, such as compound words and synonyms, is useful for query reformulation. Therefore,
they propose a novel method called INQRES to leverage these word relations to expand the query interactively.
Experiments show that the performance of reconstructing queries through expansion by INQRES is very efective,
far surpassing the expansion methods proposed by Lu et al. [73] Speciically, given a query, INQRES irst extracts
meaningful keywords from it. Then INQRES expands the keywords based on identiiers from the source code,
meaningful words from the comments, and synonyms from the WordNet thesaurus. To ind related expansion
words from the three sources, INQRES excavates ive word relations in the source code, including the Inheritance
Relation (InR), Implementation Relation (ImR), Synonym Relation (SynR), Same-word Relation (SamR) and
Compound Relation (ComR). All extracted word relations are saved in a word set called word-relation library
(WRLib). Then, WRLib is used to extend the related words in the search query. If some words in the query
also occur in WRLib, the related words are recommended, which are annotated by the relation level (SynR-1,
SynR-SamR-2, etc.), which consists of the type of word relations and the grade of the relation between the
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recommended words and the query words. All extended related words are sorted based on the grade of relation
level and their frequency used in the source code. After ranking all the related words, they further demonstrate
them using the łANDž or łORž relation for developers to understand and select. Inspired by code search engines
where the developers often use the ładvanced searchž to optimize the query results, that is, query words are
combined with the łANDž and łORž relations, INQRES builds łANDž and łORž relations in an interactive way for
the developer to select suitable words for query expansion. SynR and SamR indicate similar relations between
words and thus the words in these two sets are deined as the łORž relation. The meanings of ComR, InR, and
ImR are complementary, and thus the words in these three sets are deined as the łANDž relation. In INQRES, all
related words are shown in an interface. Users are empowered to evaluate the relevance of these words to the
original query. Those deemed relevant are recognized as valid and subsequently incorporated into the original
query. INQRES can iteratively use the expanded query to identify other efective related words in a similar way,
until the search results are satisied.
Yang et al. [124] discover a signiicant issue where code search results are often modiied manually. This

phenomenon is caused by the inability to predict intent accurately with code search tools. To address this problem,
they propose an intent-enforced code search approach called IECS. IECS can predict potential intents for a query
before performing code retrieval. It utilizes intent to enhance the search to meet user needs. Speciically, IECS
extracts intents from the given query by the intent extraction algorithm. This algorithm irst uses the AST to
identify modiications from the past method records. It then records the mapper between the identiiers and
the concrete instances according to the modiications. After that, IECS can extract the intents from the mapper.
Finally, it expands the query with intents and applies the Extended Boolean Model to retrieve the relevant code
without any subsequent modiication. Experiment results show that IECS performs well when performed to code
search tools, with a 28.5% increase in the precision of the irst returned results compared to CodeHow [74].
Huang et al. [47] ind a potential issue where expanded queries may inadvertently include irrelevant terms.

This phenomenon, known as the łoverexpansion problemž, can lead to confusion within the search engine
and subsequently result in worse outcomes. To avoid the overexpansion problem, they propose a novel query
expansion algorithm based on the semantics of change sequences, named QESC. Change sequences are generated
from the commits of each method. They contain the changed terms (the new or the deleted code terms) as well as
dependent terms (the unchanged code terms). As we mentioned earlier, DBN is trained on the change sequences.
Then, QESC uses the DBN to generate changed terms which are composed of operation, label, and role. If the
operation of the term is new, it means the term is relevant to the original query, promoting QESC to expand
the query with its label. According to the obtained changed terms, QESC guarantees the expanded terms are
relevant to the original query, and second-pass retrieval with an expanded query will perform better. Furthermore,
compared with two other recent code expansion methods, CodeHow [74] and QECK [82], QESC also generally
have better performances.
Query expansion from Model Inference. Utilizing DL models to assist in query expansion is a very

promising approach. Among these methods, some directly use the models to infer the content of the expansion,
which has been proven to enhance the performance of code search.

NCS [96] is a useful code search tool that can correctly search repositories of existing source code for code
snippets. However, Liu et al. [68] ind that the performance of NCS regresses with shorter queries. To address
this issue, they explore an additional way of using neural networks in code search. They develop NQE, a neural
model that takes in a set of keywords and predicts a set of keywords to expand the query to NCS. NQE with NCS
can perform better than using NCS alone. Speciically, NQE is an encoder-decoder model, given a query as input,
which outputs the most likely sets of expanded keywords. NQE learns to predict keywords that co-occur with
the query keywords in the underlying corpus, which helps productively expand the query. Besides, beam search
is also utilized to obtain the top-k most likely sequences of method names. This enhances the performance of
NQE in inding the most relevant keywords for expanding the query.
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QECC (Query Expansion with Code Changes) [48] applies a similar approach to QESC, improving its ability to
infer expansion words. Similar to QESC, QECC also extracts (changes, contexts) pairs from the abstract syntax
trees (ASTs) of changed methods, which are used to detect changes and extract contexts. However, the diference
between the two lies in the output of the inference model, the association-based inference model trained by
QECC can directly infer the suggested words to expand the query. Precisely, upon receiving a query, QECC
retrieves initial results from the code corpus. Subsequently, the model extracts the contexts of these initial results
and deduces potential expansion words by assessing the basis of initial results. Ultimately, the model constructs
an expanded query by incorporating these expansion words into the original query. This expanded query is then
utilized to execute a inal search within the code corpus.
Query reformulation is a widely utilized technology that can be regarded as similar to query expansion

for enriching user requirements and enhancing the outcomes of code search. However, Mao et al. [75] ind
that training a query reformulation model requires a large parallel corpus of query pairs (i.e., the original
query and a reformulated query) that are conidential and not publicly available. This restricts the practicality
of query reformulation in software development processes. Therefore, they propose SSQR, a self-supervised
query reformulation method that does not rely on any parallel query corpus. Speciically, SSQR treats query
reformulation as a masked language modeling task conducted on an extensive unannotated corpus of queries.
SSQR extends T5 [89] (a sequence-to-sequence model-based on Transformer) with a new pre-training objective
named corrupted query completion (CQC), which randomly masks words within a complete query and trains
T5 to predict the masked content. Subsequently, for a given query to be reformulated, SSQR identiies potential
locations for expansion and leverages the pre-trained T5 model to generate the appropriate content to ill these
gaps. In this way, SSQR enhances the performance of code search from the unsupervised query reformulation.
Compared to baseline expansion method proposed by Lu et al. [73], SSQR brings a giant leap of over 50% in
search accuracy.

Query expansion from Other Sources. There are also other sources for query expansion that can improve
the accuracy of code search.

Lu et al. [73] propose an approach for expanding queries using WordNet to generate synonyms. This approach
ensures that the query can accurately search for code snippets with similar semantics (synonyms). Speciically,
after preprocessing the query text, this approach irst uses a Part-of-Speech Tagger (POS Tagger) to determine
the part of speech of each word in the query. Then, it uses WordNet [61] to determine synonyms for each word to
expand the original query. Since WordNet may return some inappropriate synonyms, this approach only returns
synonyms from WordNet that have the same part of speech as the words in the query as the expanded word
set. Finally, the expanded query is matched with identiiers extracted from the code snippets, and the results are
sorted based on the similarity of the matches.
Cai et al. [8] ind the retrieved source code from the existing code search techniques is not compatible with

local programming language since the evolution and production of multiple versions of libraries. To solve this
issue, they propose DCSE, a deep code search model based on evolving information. Speciically, DCSE irst
deeply excavates evolved code tokens and evolution descriptions in the code evolution process. It then treats
evolved code tokens and evolution descriptions as one feature of source code and code descriptions, respectively.
Therefore, DCSE can retrieve the source code that is compatible with the local programming language. DCSE
embeds source code and its code descriptions into a high-dimensional shared vector space. It retrieves the initial
result using the given query from the repositories. If the initial search result is incompatible with the local
programming language, users could add the error report of IDE to query for a second-time search. This is due to
the error report being semantically related to the evolution description while the evolution description is one
feature of code description, so the distance between the expanded query vector and the compatible source code
vector will be closer. Finally, DCSE can leverage the expanded query to retrieve the compatible source code. As
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demonstrated by the experimental results, DCSE outperforms QESC [47] by 9ś12% in precision and 12% in mean
reciprocal rank.
In summary, the advantage of query expansion methods lies in their ability to reconstruct queries by adding

content, which has a good chance of covering the query’s intent and serving as an efective supplement to the
query. However, one limitation of query expansion lies in the availability/accessibility of expansion content.
Additionally, increasing the expansion content introduces additional query overhead, making it challenging to
limit the number of expansions and control the quality of expansion content.

4.1.3 uery Transformation. Considering the gap in syntax and structure between the query in natural language
and the code snippet in programming language, there are naturally some obstacles if directly matched between
them. To address this issue, some researchers believe that inding an intermediate pattern to bridge this gap
holds promise as a viable solution. They successively propose some query transformation techniques, which can
convert natural language queries into other forms or augment the queries with those forms, such as Q&A posts
and other customized forms [102, 116]. In short, query transformation turns the direct matching problem between
query and code into an indirect one. From the third line of Figure 6, it is observed that the research enthusiasm
for both query transformation and query reduction is comparable but notably lower than that observed for query
expansion. The subsequent sections will delve into a detailed discussion of how these works conduct the process
of query transformation.
Sirres et al. [102] ind a signiicant issue where source code terms such as method names and variable types

are often diferent from conceptual words mentioned in a query. This is called a mismatch problem which occurs
from the poorly documented or non-explicit names of source code. To reduce this mismatch problem, they present
COCABU, a novel approach that leverages common developer questions and the associated expert answers to
transform the augmented queries from the original user queries according to the relevant Q&A sites. Speciically,
in the irst step of COCABU, the search proxy takes an original query as input and returns a set of relevant posts
collected from developer Q&A sites as an output. The obtained Q&A posts are used to ind out how natural
language concepts can be translated into program elements, that is, to collect potential translation rules. These
translation rules can alleviate the vocabulary mismatch problem between user queries and source code. To
transform the original query into the augmented query, the code query generator module extracts structural code
entities from code snippets in Q&A sites. Besides, the code query generator only considers the accepted answers
in Q&A sites. Thereafter, based on the Lucene search engine, COCABU preserves the terms from search results
and combines them with the types of structural code entities collected from Q&A sites (e.g., unqualiied/partially
qualiied method invocations or classes) to form the augmented query. Finally, the code search engine takes an
augmented query produced by the code query generator and provides a list of search results to the developer.
Ling et al. [64] ind most code search techniques ignore the deep structured features when processing both

queries and code snippets. To address this problem, they propose an end-to-end deep graph matching and
searching (DGMS) model based on graph neural networks for the task of semantic code retrieval. Considering
the rich, important semantic structure information within the queries and code snippets, DGMS builds the
graph-structured data to represent that structure information. Speciically, for the natural language query text,
DGMS builds the text graph based on the constituency parse tree [23] and word ordering features. These features
provide both constituent and ordering information of sentences to establish the graph-structured data. In a
nutshell, DGMS performs query transformation by converting the query text into a text graph. For code snippets,
DGMS also generates corresponding code graphs. After transforming both queries and code snippets into uniied
graph-structured data, DGMS uses the proposed graph matching and searching model to retrieve the best
matching code snippet.
Wang et al. [116] ind that the user query is relatively shorter than the code description (also known as code

comments) and limited in context. It implies a knowledge gap between the query and the code description.
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The code description contains more semantic keywords like code snippets rather than the query. However,
existing research ignores this gap, resulting in low code search accuracy for code search models trained based on
code descriptions rather than real queries. To reduce the impact of the knowledge gap, Wang et al. propose a
query-enriched code search model called QueCos. QueCos performs query transformation by generating the
corresponding code descriptions from the given query. Those descriptions are utilized for improving the code
search performance. Speciically, QueCos collects the code-description pairs dataset from GitHub. The designed
crawler saves the code snippets referred in the Stack Overlow posts and the corresponding code descriptions.
Then, a query semantic enriching model is designed to generate the corresponding descriptions for queries based
on the collected dataset, during which reinforcement learning is adopted to enable the code snippets retrieved by
the generated descriptions to be ranked higher. The generated descriptions are treated as semantically enriched
queries and not necessarily to be exactly close to the ground-truth descriptions. Finally, both the semantically
enriched queries and original queries are employed for the ultimate code search.
Existing code search techniques [25, 32, 34] have primarily relied on intricate matching and attention-based

mechanisms. However, Tang et al. [111] ind that those techniques often lead to computational and memory
ineiciencies, posing a signiicant challenge to their real-world applicability. To tackle this challenge, they propose
a novel technique, the Hyperbolic Code QA Matching (HyCoQA). HyCoQA leverages the unique properties of
Hyperbolic space to express connections between code snippets and their corresponding queries. Speciically,
HyCoQA transforms the code search task into a Q&A pair matching paradigm. It constructs a dataset with
triple matches characterized as ’⟨negative code, description, positive code⟩’. In this case, the primary objective
is to maximize the margin between the scores of the correct Q&A pair and the negative Q&A pair, ensuring
that the retrieve system can robustly diferentiate between accurate and inaccurate solutions based on the
given description. Thus, these triple matches are subsequently processed via a static BERT embedding layer,
yielding initial embeddings. A novel mathematical concept, hyperbolic geometry is used by HyCoQA. Unlike
traditional Euclidean spaces, hyperbolic spaces excel at depicting hierarchical structures, which often underlie
the relationship between code and its corresponding natural language description. Therefore, HyCoQA utilizes a
hyperbolic embedder to transform the initial embeddings into hyperbolic space, calculating distances between
the codes and descriptions. The process concludes by implementing a scoring layer based on these distances and
leveraging hinge loss for model training.

In summary, query transformation bridges the gap between natural language and programming language by
transforming queries into intermediate forms or enhancing queries with these forms. The reconstructed query
can enhance the performance of code search. However, restructuring queries through query transformation
consumes a signiicant amount of computational resources, which may result in lower overall eiciency.

Query
Feature
Representation

IR-based
Representation
(ğ4.2.1)

[74] [82, 84] [124]
[72, 102]
[129]

[94] [44] [122]

DL-based
Representation
(ğ4.2.2)

[37, 96] [115]

[63, 100]
[18, 110]
[35, 95]
[134]

[8, 78]
[34, 123]
[25]

[16, 58]
[59, 116]
[19, 127]
[133]

[7, 128]
[75, 111]

(year) 2015 2016 2017 2018 2019 2020 2021 2022 2023

Fig. 7. Evolution of feature representation techniques in query end
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4.2 uery Feature Representation

4.2.1 IR-based Feature Representation. Information retrieval (IR) is the technique of inding relevant information
from large amounts of information according to the needs of users [101]. In the ield of code retrieval (i.e.,
code search), the IR technique has naturally been introduced by researchers. There are many mature IR-based
methods to handle natural language queries. Those methods represent queries as vectors or plain texts, and
researchers utilize these representations to optimize the query end, thereby enhancing the inal results of code
search. Generally speaking, traditional IR methods represent queries as some form of index (such as keyword
terms and vectors), which can relect the semantic information contained within queries. Thereby, the code search
model can utilize these representations to optimize the query end and improve the inal performance. The irst
line of Figure 7 showcases the code search works that adopt IR-based techniques to represent query features. It is
observed that most early code search eforts employ IR techniques to represent queries. This demonstrates that
IR technology is simple and efective in feature representation, and we will describe these works in detail later.
Plain text is a common feature representation method in the ield of information retrieval, which refers to

preprocessed text from the query. The plain text representation can be used to optimize the query end. As
mentioned in Section 4.1, CodeHow [74] expands the query with the APIs and performs code retrieval. To ind the
related APIs, CodeHow needs to represent the descriptions of APIs and the given query before calculating their
similarity. Therefore, Codehow utilizes plain text as the representation of features used in traditional IR methods,
while preprocessing of the text is required before generating the plain text representation. In the preprocessing
stage, CodeHow inds some words that appear very often and do not have a deinite meaning, called stop words
(e.g., on, the, are, etc.). To reduce the impact of those meaningless words in the queries and descriptions, they
remove those stop words after adopting the text normalization. Thereafter, they also perform stemming. The
goal of those preprocessing steps is to represent the text into keyword terms that can be used to compute the
similarity by Vector Space Model (VSM) [98]. In the code retrieve stage, the method of representing the queries
expanded with APIs is also similar to the preprocessing stage. The expanded queries, represented in the form of
plain text, are used for Boolean Model (BM) [97] to match with code snippets.
Nie et al. [82] also employ plain text to represent query features and query expansion word features. As

mentioned in Section 4.1.2, they propose a query expansion tool called QECK. In QECK, there are two times
of feature representation. The irst one involves representing the original query for irst-pass retrieval, while
the second one involves representing the expanded candidate words to select the most suitable ones. These two
instances of feature representation both utilize plain text. In this way, QECK directly processes the text into the
search without converting it into vectors. Speciically, the original text is split by Camel-case and separators
(e.g., ‘_’). Then, it ilters these words by removing the stop words. Besides, the remaining words are handled by
stemming. After the preprocessing, the obtained plain text can be used to retrieve the code snippets. Lu et al. [72]
and Hu et al. [44] also utilize a similar feature representation rule to extract the plain text representation for user
queries. They regard the processed plain text representation as a keyword set that can retrieve the code more
easily.
In order to extract the plain text representation of queries more accurately, Rahman et al. [94] propose a

Part-of-Speech (POS) tagging on the query before normal preprocessing. POS can extract meaningful words such
as nouns and verbs from the query. Once a query is submitted, they irst perform POS and then apply standard
natural language preprocessing (i.e., stop word removal, splitting, and stemming) on the query to extract the
stemmed words. This more precise query feature representation can further enhance the inal performance of
code retrieval.

Using traditional IR methods to represent queries, whether expanded or reduced, as vectors is also a common
approach. For example, the use of VSM as a method for representing queries as vectors has been applied in many
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techniques. For example, Sirres et al. [102] and Niu et al. [84] use the VSM to determine the relevancy of the user
query. It represents the query as a vector where the term is computed by the TF-IDF weighting.
Another widely used IR method is the bag-of-words model (BOW) [79]. BOW represents a text document as

a collection of vocabulary, disregarding the sequence and context of words, only focusing on the frequency of
word occurrences within the document. For example, Wu et al. [122] employ the BOW to represent each term in
a normalized query and generate the term vector to represent the semantic feature. In BOW, text is regarded
as an unordered collection of vocabulary, disregarding its grammar and context. Feature information of query
is obtained using the TF-IDF, which calculates the term frequency (TF) and inverse document frequency (IDF).
Thereafter, the query vectors are calculated by summing up the vectors of each term. Yang et al. [124] also adopt
BOW to represent the query feature. After the normal preprocessing, they convert the query and the intents
into a BOW model. The output from the BOW model is regarded as the representation of the query. To map
queries with identiiers that are used to expand the queries, Zhang et al. [129] utilize the continues bag-of-words
model (CBOW) to convert the original query into a vector representation. CBOW is an improved version of
the traditional BOW model. Unlike the BOW model, which focuses solely on the frequency of words within a
document, the CBOWmodel pays attention to the vocabulary information in the context. Therefore, the semantic
features represented by the query vectors generated through CBOW are more accurate.

4.2.2 DL-based Feature Representation. DL-based feature representation applies deep neural networks to encode
the given feature data to produce semantic-preserving numerical vector representations (also known as embed-
dings). It has also been widely used to optimize query feature representation in code search. When code search
techniques apply DL techniques/models to transform queries into embeddings, models will extract ine-grained
semantic and structural information in queries. The second line of Figure 7 presents the code search techniques
that apply DL techniques to represent queries. These techniques transfer diferent neural networks/models from
the natural language processing (NLP) or computer vision (CV) ields to encode queries. We will introduce these
techniques in subsequent paragraphs.
Ling et al. [63] and Kong et al. [58] utilize FastText [5] to build word vector representations. FastText is an

open-source model released by Facebook. Researchers can directly download pre-trained FastText models from
open-source repositories to represent the queries they need to process. Besides, FastText employs CBOW and
Skip-gram models to learn word vector representations. It focuses on the context of words, generating dense,
low-dimensional vectors for each word. Therefore, word representations learned by FastText are more reliable
and efective.
Sachdev et al. [96] are among the irst researchers to adopt DL techniques to represent query features. They

propose a neural code search tool named NCS. In NCS, query feature representation is decomposed into two
steps: 1) building word embeddings and 2) building document embeddings. NCS treats a query as a document.
In step 1), NCS uses a variant of the Word2vec model, called FastText [5] to build word vector representations
(i.e., embeddings). It employs the continuous skip-gram model with a window size of 5, i.e., all pairs of words
within a distance of 5 are considered nearby words. In step 2), NCS expresses the intent of the query in the same
highśdimensional vector space as the word embeddings, by aggregating the representations of all the words
extracted from the query. The authors found that building document embeddings by simply averaging word
embeddings does not work well for their purposes. Therefore, they further tried three variants of the combination
method: i. Average over all the words; ii. Average over the unique words in each document; iii. Weighted average
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of all unique words in a document according to the following equations.

�� = �

(︁

�∈�

� (��) · tidf(�,�,�)

)
(1)

tidf(�,�,�) =
1 + log tf(�,�)

log |� |/df(�,�)
(2)

where � is a multiset of words representing a document; � is the corpus containing all documents; � is a
normalizing function where � (�) = �

|� |
; tidf, short for term frequencyśinverse document frequency, is a function

that assigns a weight for a given word in a given document [81]. A word has a higher weight if it appears
frequently in the document but is also penalized if it appears in too many documents in the corpus. Their
experiments show that the weighted average method works signiicantly better than the others.
Recurrent Neural Network (RNN) is also widely used to encode queries. For example, Gu et al. [37] utilize

an RNN to represent query features. It is known that RNN has a recurrent structure within the network where
hidden layers are recurrently used for computation. Therefore, unlike traditional feed-forward neural networks,
RNN can encode sequential queries using its internal memory. The hidden state represents the feature of the
query as the inal output of RNN. The query representation through RNN can be computed as:

ℎ� = tanh (� [ℎ�−1,�� ]) (3)

where each hidden state ℎ� is generated from the previous hidden state ℎ�−1 and�� is the one-hot representation
of each word in query; while� is the matrix of trainable parameters in the RNN, while tanh(·) is a non-linearity
activation function of the RNN.

Wan et al. [115] propose a comprehensive multi-model representation method for source code called MMAN.
To match with the source code representation, MMAN exploits the standard LSTM to learn the representation
of the given query. In MMAN, building a query feature representation consists of two steps: 1) embedding the
query into a vector and 2) generating the hidden state from LSTM. In step 1), MMAN builds a word embedding
layer that uses the one-hot embedding function to compute the given query into embedding. In step 2), MMAN
applies an LSTM to represent the query. As an improved version of RNN, LSTM can better capture long-term
dependencies. Each LSTM unit contains an input gate, a memory cell, and an output gate. The unit receives the
embedding from step 1) and generates the hidden state given to the next unit. The last hidden state can be used
as the query feature representation denoted ℎ

�����
� . It can be computed as:

ℎ
�����
� = LSTM

(
ℎ
�����
�−1 ,� (�� )

)
(4)

where� (·) is the word embedding layer to embed each word into a vector; � is the input of the word embedding
layer which donates the query; the last hidden state ℎ

�����

�
is the inal output of the LSTM. Due to its outstanding

performance and eiciency, LSTM is also widely employed by other code search techniques for query feature
representation. For instance, CSSAM [7] and DCSE [8] all follow almost the same process as MMAN.
Unlike NCS in building document embeddings step, CARLCS-CNN [100], CoNCRA [18], and CSRS [16]

introduce the use of the convolutional neural network (CNN) for query feature representation extraction after
obtaining the word embedding. As for the query, it is usually short, but it contains informative keywords that
relect the intention of the user. Therefore, CNN is suitable for extracting query feature representation from word
embedding. The feature representation � of a query can be computed as:

�� = � (�� ∗ ��:�+ℎ−1 + �) (5)

Dh = [�1, �2, . . . , �� ] (6)

D = D1 ⊕ . . . ⊕ Dn (7)
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where � is the embedding of the query;� is the convolution kernels for convolution operation; and � is a non-
linear function such as the hyperbolic tangent. After generating the feature scores � , the embedding matrix �ℎ

can also be obtained. Thereafter, the inal feature representation � is accomplished by merging all the embedding
matrices.

Difering slightly from the aforementioned methods, EAGCS [133] and CRaDLe [35] incorporate a maxpooling
layer after LSTM. They take the hidden states generated by each LSTM unit and feed them into the maxpooling
layer to obtain the inal query representation. The purpose of adding a maxpooling layer is to perform further
feature extraction, obtaining the signiicant features. Therefore, the inal representation of the query, denoted
������ , can be formulated as:

������ = maxpooling ( [ℎ1, . . . , ℎ� ]) (8)

where maxpooling(·) refers to maxpooling layer; the ℎ is the hidden state from each LSTM unit and calculated
by Equation (4).

As a variant of the traditional LSTM, bi-directional LSTM (Bi-LSTM) is also employed by Ren et al. [95], Wang
et al. [116], and Meng [78] to generate query feature representations. Unlike the traditional LSTM, Bi-LSTM
simultaneously considers the past and future information at each time step in the sequence to better capture
contextual relationships. Bi-LSTM consists of two LSTM layers, one processing the input sequence from left to
right in terms of time steps (i.e., forward LSTM), and the other processing the input sequence from right to left
(i.e., backward LSTM). The outputs of these two LSTM layers are concatenated to form a representation that
incorporates bidirectional contextual information. The inal feature representation generated by Bi-LSTM for the
query can be formalized as:

������ = ℎ� =

[−→
ℎ �,
←−
ℎ �

]
(9)

where
−→
ℎ � and

←−
ℎ � are the forward and backward hidden states produced by the inal layer of LSTM.

Considering the self-attention mechanism is suitable for capturing the structural and semantic features within
query sequences, Fang et al. [25], Zhu et al. [134], Gu et al. [34], Kong et al. [59], and Sun et al. [110] utilize the
self-attention mechanism to extract features and generate representations. The framework they designed for
constructing the query feature representation by the self-attention mechanism can be divided into two steps: 1)
generating word embedding of query and 2) obtaining feature representation from the self-attention mechanism.
In step 1), the framework applies a word embedding tool to build the embedding layer. Sun et al. and Kong et al.
select the one-hot code to represent the word embedding of the query. The rest of the techniques exploit the
well-known word embedding tool, called word2vec 9. Word2vec uses the CBOW to embed words. Compared with
one-hot representation, distributed representation produced by word2vec can build semantic relations between
diferent words. In step 2), the word embedding generated by the embedding layer is further embedded by the
self-attention mechanism. The self-attention mechanism can efectively extract features from the query and
generate the feature representations. The following equation simply summarizes the above process of generating
a query feature representation through the embedding layer and attention mechanism.

������ = Att (� (������)) (10)

where ������ is the given query treated as a list of words; while � (·) represents a word embedding layer; ������ is
the inal output of attention mechanism.
To fully understand the relationships between query and code, Deng et al. [19] propose a code search model

named FcarCS. The approach of representing query features in FcarCS is similar to the aforementioned self-
attention framework, but it replaces the self-attention mechanism with the co-attention mechanism as the

9https://github.com/danielfrg/word2vec/
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feature-extracted tool. FcarCS constructs a new ine-grained co-attention mechanism to learn interdependent
representations for each code snippet and query, respectively. The worklow of this co-attention mechanism
can be divided into computing semantic association, extracting semantic information, and calculating semantic
vector parts. According to those steps, the co-attention mechanism establishes dynamic attention relationships
between queries and code snippets. Therefore, it can explore more ine-grained semantic correlations between
each code snippet and query, and enrich the query feature representations.
There also exists an architecture that utilizes both attention mechanisms and a co-attention mechanism to

generate query feature representations. To bridge the semantic gap between code snippets and queries efectively
and eiciently, Xu et al. [123] propose a two-stage attention-based model for code search, called TabCS. The irst
stage leverages attention mechanisms to extract semantics from queries considering their textual features. The
second stage leverages a co-attention mechanism to capture the semantic correlation between queries and code
snippets. Therefore, the co-attention mechanism contributes to better query representation.
Yu et al. [127] propose a novel deep neural network named Method-Description-Joint Embedding Neural

Network (MD-JEnn), which uses a joint embedding technique to model the semantic relation between code
snippets and descriptions. The description embedding module (DE-Module) is a component of MD-JEnn that
embeds natural language descriptions (queries) into vectors. The word embedding model and Bi-LSTM are used
in MD-JEnn to embed queries into query vectors irst. Since some words in a description are important, it is
necessary to assign higher weights to these important words. Thus, MD-JEnn introduces an attention mechanism
to aggregate the query vectors of the description into a feature-represented vector by calculating a scalar weight
for each vector of the description word. The individual vectors are aggregated to a feature-represented vector �
via attention:

�� =
exp (ℎ̃�

⊺

· �)
∑�

�=1 exp (ℎ̃ �
⊺

· �)
(11)

� =

�︁

�=1

�� · ℎ̃� (12)

where ℎ is the the hidden states of the previous Bi-LSTM layer, which represents the query vector and �� is a

learnable matrix initialized in random, �� also represents the attention weight of each ℎ̃� .
Zeng et al. [128] also propose an embedding module similar to MD-JEnn, but they replace Bi-LSTM with

LSTM. They utilize the structure of an LSTM layer along with an attention layer to accurately extract feature
representations containing keyword information from user queries. Besides, Hu et al. [45] design a similar
structure to obtain feature representation. However, instead of using one-hot representation or pre-trained
word2vec embeddings to generate the word embedding, they use a structure embeddings matrix to incorporate
word-level structure information and get the structure embeddings of queries.

Tang et al. [111] leverage the unique properties of Hyperbolic space to express the feature of user queries.
Unlike traditional Euclidean spaces, hyperbolic spaces excel at depicting hierarchical structures. Therefore,
they irst exploit the BERT [20] (a pre-trained NLP model) as the embedding layer to embed the original query.
Thereafter, they use an advanced hyperbolic embedder to encode the query embedding into hyperbolic spaces as
the inal representation. This representation can express the feature of the query deeply and easily to match with
the code snippets.
SSQR [75] utilizes masked language modeling task (MLM) to conduct the extensive unannotated corpus of

queries to reformulate queries. SSQR takes the T5 [89] (a pre-trained NLP model) as the backbone model for the
MLM task since it has a sequence-to-sequence architecture. The queries are converted into the embeddings by the
MLM andmasked out a span of 15% consecutive words from a randomly selected position. The purpose of theMLM
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task is to encourage the model to learn contextual relationships and better understand the semantics of language
by inferring missing words in a given context. Following MLM training, the T5 model can accurately capture the
semantic meanings of each word in the queries and generate high-quality query embeddings. Therefore, these
query embeddings are used for the inal code retrieval.

In summary, using IR-based methods or DL-based methods for query feature representation has its advantages
and disadvantages. IR-based methods are relatively simpler and more eicient but lack a deep semantic under-
standing of queries. DL-based methods using neural network models require signiicant computational resources
for training but can provide more accurate feature representations. Choosing the appropriate method from these
two for feature representation is crucial depending on the situation.

Summary for RQ1: Existing code search techniques mainly optimize the query end from two aspects: query
feature mining and query feature representation. For query feature mining methods, query reduction, query
expansion, and query transformation continue to receive attention. Among them, query expansion overall is
the most, followed by query transformation, and query reduction. Compared with query reduction, research
on query transformation has become more popular in recent years and continues to be a hot trend. For query
feature representation methods, most early code search techniques apply information retrieval techniques
(e.g., plain text, bag of words, and TF-IDF) to represent query features. In recent years, with the emergence of
deep learning technology, most researchers have turned to using neural networks (e.g., FastText, CNN, RNN,
LSTM, Bi-LSTM, BERT, and T5) and attention mechanisms (e.g., self-attention and co-attention mechanisms)
to represent query features, and this phenomenon will obviously continue.

5 ANSWERING RQ2: WHAT ARE THE CODE-END OPTIMIZATION METHODS IN CODE SEARCH

STUDIES?

Understanding code semantics also plays an important role in code search. Only by correctly understanding
what a code snippet is doing can we better match it to the query. As a human-readable text written in a speciic
programming language, code snippet contains semantic information not only in the text but also in its structure,
such as AST. To learn about the semantics of the code snippet more comprehensively, it is often necessary to
leverage such semantic information and convert it into other representations that can be used to match queries at
a later stage. As a result, many code-end optimization techniques have been proposed to capture and understand
the semantics of the code snippet to improve the efectiveness and eiciency of code search.
As illustrated in Figure 2, similar to the query end, the optimization techniques devised for the code end

can likewise be divided into two primary parts: code feature mining and code feature representation. For code
feature mining, existing works mainly focus on mining textual and structural features of the code snippet. The
textual features include method names, API sequences, and tokens. The structural features, also referred to as
intermediate representations, encompass abstract syntax tree (AST), data low graph (DFG), control low graph
(CFG), program dependence graph (PDG), and variable-based low graph (VFG). Details of the above textual
and structural features are discussed in Section 5.1. For code feature representation, similar to the query end,
the techniques used to represent code features can also be divided into two major classes, i.e., IR-based feature
representation and DL-based feature representation. Details of these code feature representation methods are
discussed in Section 5.2. In the following subsections, we will discuss these code features and their representation
ways in detail, extract their commonalities, ind their diferences, and summarize the development trends.

5.1 Code Feature Mining

5.1.1 Code Textual Feature Mining.

The code snippets we discuss in this survey are at the method (function) level. A method-level code snippet
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Fig. 8. Evolution of feature mining techniques in code end

usually consists of a method name, parameters (optional), and a method body. In code search, commonly used code
textual features include method name, API sequence, and tokens, all of which contain semantic information [59].

Method name. The method name often outlines the functionality (semantics) of a code snippet (at the method
level) [100]. Therefore, it plays an important role in understanding the code snippet. As shown in the irst line of
Figure 8, many works [8, 16, 19, 25, 37, 58, 59, 67, 78, 95, 96, 100, 115, 116, 123, 127] mine and utilize this feature.
The extraction of method names is relatively simple and intuitive, and some works describe this process in detail.
For example, CodeMatcher [67] develops a tool called JAnalyzer 10, which transforms a method into an AST with
the Javaparser 11 library and then extracts method name by traversing the AST. CodeHunter [58] irst uses JDT
(i.e., Eclipse Java Development Tools) to construct the AST of the source code, and then invokes the getName()
method in the MethodDeclaration class to obtain the method name. Considering that a method name typically
consists of multiple words, it is a common practice to split the camelścase (camelCase) or snakeścase (snake_case)
concatenated method names into multiple separate tokens for later embedding.
API sequence. API (Application Programming Interface) is of great signiicance in code search. It refers to

a predeined and encapsulated function. Rather than implementing a method from scratch, developers often
invocate APIs in their code to facilitate their development activities [38]. What’s more, the naming of an API
usually briely describes its functionality (semantics), so the API sequence extracted from a code snippet can help
code search models understand how this code snippet is implemented. As illustrated in the second line of Figure 8,
many works [8, 16, 19, 21, 25, 37, 58, 59, 94, 100, 123] make use of this feature. Next, we will introduce two ways
to extract API sequences. Rahman et al. [94] extract API sequences from Stack Overlow posts with island parsing
techniques. They irst isolate code snippets from the HTML source of each answer from Stack Overlow using
<����> tags, and then use a regular expression for Java class to extract the API class tokens having camel case
notation. DeepCS [37], DCSE [8] and CodeHunter [58], follow the method described in DeepAPI [38] to extract

10https://github.com/liuchaoss/janalyzer
11https://github.com/javaparser/javaparser
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an API sequence from each Java method. They all employ the Eclipse JDT compiler to parse and traverse the AST.
After obtaining the AST, the API sequence is generated by the following rules [37, 59]:

• For a constructor invocation new C(), they produce C.new.
• For a method call o.m() where o is an instance of class C, they create C.m.
• For a method call passed as a parameter, they append the method before the calling method.
• For a statement sequence �1; �2; . . . ; �� , they extract the API sequence �� from each statement �� and
concatenate them to form the API sequence �1-�2- . . . -�� .
• For conditional statements such as � � (�1){�2; }����{�3; }, they produce a sequence from all possible branches,
i.e.,�1-�2-�3, where �� is the API sequence extracted from the statement �� .
• For loop statements such as �ℎ��� (�1){�2; }, they generate a sequence �1-�2, where �1 and �2 are API
sequences extracted from statement �1 and �2, respectively.

Tokens. Tokens are bags of words that are parsed from the method body of a code snippet. They include
useful information such as constant names, variable names, and comments written by the developer. Usually,
data preprocessing for tokens removes duplicate words, stop words, and keywords in the programming language,
which improves the quality of tokens. As a result, as presented in the third line of Figure 8, almost all code
search techniques [7, 8, 13, 16, 18, 19, 25, 26, 34, 36, 37, 41, 59, 63, 67, 74, 78, 83, 95, 100, 102, 111, 115, 116, 119,
122, 123, 125, 127, 129, 134] take advantage of this feature. Most of them tokenize code snippets through camel
case splitting or snake case splitting. Zhang et al. [129] focus on query-end optimization and aim to extend
natural-language queries with API class-names, so they keep them intact.

5.1.2 Code Structural Feature Mining.

In code search, commonly used code structural features include AST, DFG, CFG, PDG, and other structural
features.

AST. Abstract syntax tree (AST) abstractly represents the syntactic structure of a code snippet in the form of
a tree [115]. Each node in the tree denotes a structure in the code snippet, such as loop structure, conditional
judgment structure, method call, and variable declaration [123]. There is no doubt that AST is very helpful in
understanding the code as these structures denote the logic of the code. Consequently, AST is the most commonly
used structural feature in code search techniques [34, 35, 41, 45, 78, 83, 110, 115, 123]. They use various diferent
AST parsing tools to generate AST. For instance, MMAN [115] parses C code into AST via an open-source tool
named Clang 12. PSCS [110] extracts AST paths using PathMiner [60], an open-source Java library for mining
path-based representations of code. At-CodeSM [78] employs javalang to generate an AST from the code snippet.
SPT-Code [83] irst uses an AST parser 13 to get the AST. Then, it utilizes a simpliied version of structure-based
traversal (SBT) [46] called XML-like SBT (X-SBT) to traverse the AST and parse it into a sequence. By employing
SBT, the resulting sequence can be reduced by more than half in length.
DFG. Data low graph (DFG) is a type of intermediate representation. DFG refers to the data low of a

program, which describes how the data in a piece of code lows and how it is processed. Many code search
works [7, 35, 39, 115] use DFG as a feature to capture the data dependencies between code elements. For instance,
GraphCodeBERT [39] is a pre-trained model for the programming language, which utilizes data low in the
pre-training stage. Such a semantic-level structure is less complex and does not bring an unnecessarily deep
hierarchy of AST, the property of which makes the model more eicient. It irst parses a code � into an AST,
whose terminals (leaves) are used to identify the variable sequence, denoted as � = {�1, �2, . . . , �� }. Then, it takes
each variable as a node of the graph, and a direct edge � = ⟨�� , � � ⟩ from �� to � � means that the value of �-th
variable comes from �-th variable. Taking � = ���� as an example, ���� is an expression (e.g., (�+�) ∗�), and edges

12http://clang.llvm.org/
13https://tree-sitter.github.io/tree-sitter/
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from all variables in ���� to � are added into the graph. The set of directed edges is denoted as � = {�1, �2, . . . , �� }

and the graph G(�) = (� , �) is data low used to represent dependency relation between variables of the code.
Hu et al. [7] establish a code semantic representation graph (CSRG) based on AST and DFG, which is a graph
structure more compact than AST. Their performance tests show that CSRG signiicantly reduces the complexity
of input data, improves the training speed compared with only using AST, and improves the accuracy of search
results compared with just using DFG. Since AST has more node information than DFG, the training time of the
AST model is longer than the DFG model. Therefore, the training time of the CSRG model is increased compared
with the DFG model, but less than the AST model. At the same time, its Mean Reciprocal Rank (MRR) score is
higher than that of AST and DFG models.

CFG. Control low graph (CFG) is another type of intermediate representation of the code feature. CFG means
the computation and control low of a program, which has the function of representing all possible execution
paths for the program. CFG is also a code feature commonly used by code search techniques [35, 115] to capture
control dependencies between code elements. For example, Wan et al. [115] directly make use of the CFG of a
code snippet in their code search model. They irst parse C functions into CFGs via an open-source tool named
SVF [106] 14. Then, for nodes with the same statement, they keep the nodes that appear irst in the output of SVF,
remove their child nodes, and connect the children of their child nodes to them. For nodes without statements,
they delete them and link their child nodes to their parent nodes.
PDG. Program dependence graph (PDG) can represent the data dependencies and control dependencies

of each operation in a program [27]. It is built on AST, but not as deep as AST in structure, and reserves
only the execution paths that will afect the execution results [35]. Gu et al. [35] utilize PDG to extract code
structures. They propose CRaDLe, a code retrieval model based on semantic dependency learning, to learn
the matching relationship between the code and description pairs which helps to retrieve the related code
snippets. Zhao et al. [133] establish a statement-level advanced program dependence graph (APDG), which
introduces the statement execution information and control logic missed in PDG. In addition, their statistics on
the maximal/average/minimal number of nodes and edges of ASTs and APDGs indicate that APDG efectively
reduces the complexity of code graphs and is conducive to model training. Based on APDG, they propose EAGCS, a
novel code search approach that largely enhances the expression of structural and semantic information in source
code. APDG helps EAGCS to learn a deeper understanding of code vectors which improves the performance of
retrieving code snippets for a given query.
Others. Some code search techniques deine new structural features based on those above. For instance,

DGMS [64] and GraphSearchNet [70] both construct a program graph to represent the source code, which helps
them precisely learn uniied semantic relation representation of the source code and queries. Given a code snippet
� , a program graph is a multi-edged directed graph �(� ,�) ∈ G extracted from � . � is a set of nodes built on
the AST and � ∈ {0, 1}�×�×� is the adjacency matrix representing the relationships between the nodes (i.e.,
the edges), where � and � are the total number of edge types and nodes in �, respectively. Particularly, the
leaf nodes of AST correspond to the identiier in the code snippet, and the non-leaf nodes represent diferent
compilation units such as łAssignž, łBinOpž, łExprž. In addition, GraphSearchNet also builds the syntactic edges
(i.e., łNextTokenž, łSubTokenž) and data-low edges (i.e., łComputedFromž, łLastUsež, łLastWritež) based on AST
nodes, which can represent the code snippet.
Noticing that the API sequence generated by traversing the AST tree ignores semantics contained in the

structure of the code snippet, SQ-DeepCS [127] introduces a novel method called program slice to preserve
structural information. To generate a program slice, irst, the AST of a code snippet is parsed, and then diferent
processing methods are applied to diferent statements extracted from the code snippet. Taking the loop statement
as an example, the program slice reserves its judgment conditions and loop body and adds the for keyword.

14https://github.com/SVF-tools/SVF
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For instance, for(c1; c2; c3){s4;} is converted to for(p2){p4;}, where p2 and p4 are the program slices of
condition c2 and statement s4.

A variable-based low graph (VFG) is proposed by Zeng et al. in their work DeGraphCS [128]. They think that
tokens and structural features cannot accurately express the in-depth semantics of source code. To overcome this
limitation, they propose VFG, which integrates tokens, data low, and control low. VFG is constructed on LLVM
IR instructions. Speciically, to construct VFG, they irst extract the identiiers in each LLVM IR instruction as
nodes. Then, they build data dependencies and control dependencies between nodes according to diferent types
of instructions. The data dependencies are built based on the address operation instructions (e.g., łloadž) and the
computation-related constructions (e.g., ładdž). The control dependencies are constructed based on the jump
instructions (e.g., łbrž) and address operation instructions. Finally, they apply an optimization mechanism to
remove the redundant nodes without changing the semantic information.

In summary, code features are mainly divided into two aspects: textual and structural. Textual features include
method names, API sequences, and tokens that relect the semantic information and functionality of the code
snippet. Structural features focus on the structural information, including AST, DFG, CFG, and so on. Diferent
features relect diferent aspects of the code snippet, providing information from various levels and perspectives.
They give more comprehensive support for code understanding and presentation.

Code
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Fig. 9. Evolution of feature representation techniques in code end

5.2 Code Feature Representation

5.2.1 IR-based Feature Representation.

As mentioned earlier, code Search is a successful application of IR where the information retrieved is code snippets.
The core idea of IR-based code search methods is to treat source code as text, so the code and the query can be
matched by their textual similarity. The irst line of Figure 9 presents the code search works that adopt IR-based
techniques to represent code features. We will describe these studies in detail later.

While an approach based entirely on IR was efective in the early days, as time goes by, researchers have come
to realize that treating code as just plain text does not provide a comprehensive understanding of its semantics.
As a result, later techniques combine it with some additional information, such as the relational representations
of code [65], API [1, 74], comment [30], and keywords [15], etc. Another research [77] aims at making it easier
for developers to make use of the code snippet retrieved by showing other possibly related functions and the
call graph between them. In this section, we will introduce several typical IR-based code feature representation
techniques.
In most applications of mining and searching software corpora, the code’s structural aspects, as well as the

relevant metadata surrounding it, are always ignored. To utilize this information, Linstead et al. [65] propose
Sourcer, which combines standard text IR techniques with source-speciic heuristics and a relational representation
of code. It employs a relational database consisting of two tables to store the data: (1) program entities: uniquely
identiiable elements from the source code; and (2) their relations: any dependency between two entities. In
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addition, they also store compact representations of attributes for fast retrieval of search results, including
keywords from FQNs and comments, and ingerprints used to support structural searches of source code. All
entity keywords and metadata are indexed using Lucene to support fast search. In this way, Sourcerer provides a
comprehensive, multi-modal platform for searching and inding reusable software components.
Niu et al. [84] propose a code search approach that utilizes a machine learning technique to automatically

train a ranking schema. They represent each code snippet as a 12-dimension vector, each dimension denotes the
value of a feature extracted from the code snippet. The 12 features are classiied into four categories: similarity,
popularity, code metrics, and context. The similarity is the textual similarity between a query and candidate code
snippets, computed by the Vector Space Model (VSM) [98]. The popularity category has two features: frequency
and probability. Frequency is the number of times that the frequent method call sequence of a candidate code
snippet occurs in the corpus, while probability is the likelihood of following the method call sequence in a
candidate code example. The code metrics category contains eight features that only relect characteristics of a
code snippet regardless of the query, including the line length, the average number of identiiers per line, and
so on. The context similarity refers to the similarity between the context of the query and the candidate code
snippets.

Similar to Niu et al. [84], Jiang et al. [51] also leverages textual and structural features like the textual similarity
between a query and a candidate code snippet and line length of a code snippet to represent the code. Besides,
they also consider the topic similarity between a query and a code snippet since a code snippet can be viewed
as a textual document describing one or more technical topics. They irst generate a term-by-document matrix
� , given a collection of code snippets and queries. Then, they employ Latent Dirichlet Allocation (LDA) [4] to
identify the latent variables (topics) hidden in the data and generate as output a topic-by-document matrix. A
generic entry �� � of this matrix denotes the probability of the ��ℎ document to belong to the ��ℎ topic. Finally, the
topic similarity between a query and a code snippet can be calculated based on this matrix.

In summary, IR-based code feature representation is relatively simple, is of high eiciency, and requires fewer
computing and time resources. However, it usually only represents and matches based on the lexical level and
lacks an in-depth understanding of code semantics, making it diicult to deal with polysemy problems.

5.2.2 DL-based Feature Representation.

DL-based feature representation on the code-end optimizes the capture and representation of code features
(semantics) by introducing advanced deep learning techniques, thereby improving the performance of code
search. In this technique, both queries and code snippets are transformed into feature vector representations (also
called embeddings). Embedding learns to represent entities (e.g., words, sentences, and graphs) as vectors with
the aim of making vector representations of similar entities close to each other [79, 80]. These embeddings are
randomly initialized and then ixed via an end-to-end supervised training paradigm. The purpose of embedding
training in code search is to bridge the lexical gap between code snippets in programming languages and queries
in natural language, so as to better understand the semantics of the code snippets. In the task of code search,
both code and query are embedded into a uniied vector space through Joint Embedding, which is a technique to
jointly embed heterogeneous data. As a result, similar concepts with diferent modalities are close to each other in
this space and the code relevant to a query can be measured by the distance between their vector representations,
such as their cosine similarity [37].
Gu et al. [37] irst introduces deep learning to the ield of code search. They propose a novel deep neural

network called CODEnn to learn a uniied vector representation of both code snippets and natural language
queries. Based on CODEnn, they develop a prototype named DeepCS to support code retrieval. After DeepCS,
many DL-based feature representation techniques have sprung up. In this section, we will irst discuss how they
leverage advanced deep learning techniques to represent a single feature of a code snippet, and how they utilize
these features to build high-performance code search models.
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To begin with, we will introduce the representation methods for the textual features of a code snippet as
mentioned in Section 5.1.1.
For the method name, DeepCS [37] and SQ-DeepCS [127] both use a Recurrent Neural Network (RNN) to

encode the sequence of the tokens obtained by splitting the method name, as RNN can capture the semantics
of sequence information well. It is computed using the same Equation (3) mentioned in Section 4.2.2. DCSE [8]
employs Bi-LSTM to learn the semantic information since the method name has word order. Empirically inding
that the average length of each method name sequence is only 2 or 3 in its training data, CARLCS-CNN [100]
applies a Convolutional Neural Networks (CNN) instead of RNN, which is supposed to be good at extracting
robust and abstract features. Therefore, in CARLCS-CNN, the representation of the method name is calculated as:

�1:� = �1 ⊕ �2 ⊕ · · · ⊕ �� (13)

�� = � (�� ∗��:�+ℎ−1 + �) (14)

�ℎ = [�1, �2, . . . , ��−ℎ+1] (15)

where �� ∈ R
� is the �-dimensional word vector; ⊕ is the concatenation operator;�� ∈ R

�×ℎ is a ilter involved
in the convolution operation, which is applied to a window of ℎ words to produce a feature; � ∈ R is a bias
term; ∗ is the convolution operator and � is a non-linear function such as the hyperbolic tangent;�ℎ is a feature
map produced after applying the ilter to each possible window of words in the method name. What’s more,
CARLCS-CNN uses three types of ilters with varying window sizes ℎ from 2 to 4, with the number of each type
of ilter set to � . Then, it completes the convolution operation through these ilters to extract three distinctive
feature maps, i.e.,�ℎ1

, �ℎ2
, �ℎ3

∈ R�×(�−ℎ+1)ź and inally concatenates them into a feature matrix� :

� = �ℎ1
⊕ �ℎ2

⊕ �ℎ3
(16)

TabCS [123] utilizes attention mechanism-based search models to improve the eiciency of training and testing.
Let �� ∈ R

� be a �-dimensional word initial vector corresponding to the �-th word in a method name. Given a
sequence of length n {�1, . . . ,��}, the attention weight for each �� is computed as follows:

���
=

��� (���
·��

� )∑�
�=1 ��� (���

·��
� )

(17)

where the attention vector ���
is optimized during model training. The attention weight for each initial vector is

computed by applying the softmax function to the product of the initial vectors and attention vectors. Then, it
multiplies each initial vector with its corresponding attention weight, and concatenates the resulting weighted
vectors:

� = ��1
�1 ⊕ ��2

�2 ⊕ · · · ⊕ ���
�� (18)

For the tokens, considering that tokens are the informative keywords of code, CARLCS-CNN [100] uses
CNN to encode them. COSEA [119] also leverages CNN, since CNN has the natural ability to capture locality
information which can be used for capturing code blocks’ information. Moreover, COSEA utilizes layer-wise
attention to learn the code semantic representation. After transforming a code snippet into embedding vectors,
the model can get longer and longer code block representation through convolutional modules. Finally, attentive
pooling is performed on these block representations and the ultimate semantic embedding of the code snippet is
obtained.

DeepCS [37] and SQ-DeepCS [127] simply encode tokens via a multilayer perceptron (MLP), i.e., the conven-
tional fully connected layer, as tokens are unordered in the code snippet. Let �� ∈ R

� represent the embedded
representation of the token �� ,�

Γ represent the matrix of trainable parameters in the MLP, the embedding vector
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�� of the �-th token is computed as:

�� = tanh(� Γ�� ),∀� = 1, 2, . . . , �Γ (19)

Next, the individual vectors are summarized to a single vector � through maxpooling:

� = maxpooling( [�1, . . . ,��Γ
]) (20)

Zhang et al. [129] use Word2vec 15 to extract vector representations of tokens, which is an eicient implemen-
tation of the continuous bag-of-words model (CBOW) [79]. Considering that not all tokens contribute equally to
the inal semantic representation of the code snippet, MMAN [115] introduces the attention mechanism on tokens
to extract the ones that are more important to the representation of a sequence of code tokens after encoding
them via LSTM. The speciic calculation process of LSTM and attention mechanism refer to Equation (4) and
Equation (17), respectively. HyCoQA [111] transforms tokenized code snippets into numerical representations
through a BERT embedding layer [20], because the word vectors generated by BERT can be dynamically adapted
to the context provided by neighboring words.
For the API sequence, similar to the handling of the method name, DeepCS [37] encodes it into a vector

representation using an RNN with maxpooling. In view of the dynamic sequential features of the API sequence,
CARLCS-CNN [100] implements Bi-LSTM to do the embedding, using the Equation (9) mentioned in Section 4.2.2.
Then, the API sequence is encoded by concatenating all the output hidden states to a feature matrix. Finally,
TabCS [123] performs an attention mechanism on the randomly initialized feature matrix of the API sequence,
the same as its process to the method name and tokens.

Next, we will introduce the representation methods for the structural features of a code snippet as mentioned
in Section 5.1.2.
For the AST, MMAN [115] utilizes Tree-LSTM whose unit contains multiple forget gates and adopts the

hidden state of the root node as the AST modality representation. Considering a node � with the value �� in
its one-hot encoding representation, which has a left child �� and a right child �� , the Tree-LSTM recursively
computes the embedding for � from the bottom up. Assume that the left child and the right child maintain the
LSTM state (h�, c�) and (h�, c�), respectively, then the LSTM state (ℎ, �) of � is computed as:

(h���� , c���� ) = LSTM
( ( [

h���
��

; h���
��

]
,
[
c���
��

; c���
��

] )
,� (�� )

)
(21)

where � = 1, . . . , |� | and [·; ·] means the concatenation of two vectors.
MT-CAT [41] converts the AST representation of a code snippet by the deterministic parser to a string

using SBT [46], and then applies FastText [5] as the word embedding module to map a string to an embedding.
TabCS [123] converts tree nodes into initial vector embeddings by building vocabularies. Then, since only part
of the nodes can relect the method’s function, TabCS performs an attention mechanism and concatenates the
weighted vectors into a feature matrix, which extracts the important nodes. The inal concatenation is the feature
matrix of the AST. The computation process can be referred to Equation (17) and Equation (18), where the word
sequence {�1, . . . ,��} is replaced by a node sequence {���1, . . . , ����}. Multimodal [34] transforms the AST
into a novel tree structure named Simpliied Semantic Tree (SST) to make the tree structure semantically better
for code search, and then serializes SST to a linear token sequence by sampling tree-paths [3, 54] or traversing
tree-structures [14, 46]. Finally, multimodal adopts a SelfAtt model to encode the tree sequence. The SelfAtt
model is a transformer-based model that leverages a self-attention mechanism and BERT’s positional embedding
to learn from contextual information [20, 114].

For the CFG, as it is a directed graph, MMAN [115] applies a gated graph neural network (GGNN) to represent
it, which is a neural network architecture developed for graphs. Deine a graph as G = {V, E}, whereV is a set
of vertices (�, ℓ�) and E is a set of edges (�� , � � , ℓ� ). ℓ� and ℓ� are labels of vertex and edge, respectively. In the code

15https://code.google.com/archive/p/word2vec/
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search scenario, each vertex is the node of CFG, and each edge denotes the control low of code. GGNN learns the
graph representation through the following procedures: First, the hidden state for each vertex � ∈ V is initialized

as h
� � �
�,0 = � (ℓ�), where� is the one-hot embedding function. Then, for each round � , each vertex receives the

vector m�,�+1, which is the łmessagež aggregated from its neighbours. It can be formulated as follows:

��,�+1 =

︁

�′∈N(�)

Wℓ�h�′,� (22)

where N(�) are the neighbours of vertex � . Message from each neighbour is mapped into a shared space via Wℓ�

in round � . GGNN updates each vertex � ’s hidden state using the gated recurrent unit (GRU) [17], which can be
formulated as follows:

h
� � �
�,�+1 = GRU(h

� � �
�,� ,m�,�+1) (23)

Finally, after � rounds of iteration, the embedding representation of the CFG is obtained by aggregating the
hidden state of all vertices.
For the DFG, given a source code � = {�1, �2, . . . , ��} with its comment� = {�1,�2, ...,��}, GraphCode-

BERT [39] irst obtains the data low graph. G(�) = (� , �) as discussed in Section 5.1.2. Next, it concatenates the
comment, source code, and the set of variables� in the DFG as the sequence input, and converts the sequence into
an input vector by summing the corresponding token and position embeddings. Then, the model applies N trans-
former layers over the input vector to produce contextual representations. Speciically, it deines a graph-guided
masked attention function to incorporate the graph structure into a transformer. At last, after being pre-trained
on three tasks, namely masked language modeling, edge prediction, and node alignment, GraphCodeBERT can
be applied to some downstream tasks, such as code search.
For the PDG, CRaDLe [35] irst constructs a dependency matrix Υ ∈ {0, 1} (� )×(� ) according to the extracted

PDG, where � is the number of statements in the code snippet. The element �� � = 1 if the �-th statement has a
data/control dependency on the �-th statement; otherwise �� � = 0. Then, it uses a one-layer MLP to encode the
matrix Υ according to Equation (19). Note that �� in the Equation (19) is replaced by �� , and �� is the embedding of
the dependency information for each statement here. After that, CRaDLe concatenates the dependency embedding
with statement-level token embedding to get the representation of the statement. Next, it adopts Bi-LSTM to
encode the sequence of the statement embeddings and uses the same encoder to get the description embeddings.
Finally, after calculating the cosine distance, the model will rank the code snippets and return the higher-ranked
ones to the developer.

For the program graph, DGMS [64] adopts one variant of GNNsÐRelational Graph Convolutional Networks
(RGCNs) to learn its node embedding. Particularly, given the program graph of a code snippet�� = (V� , E� ,R� )

with nodes �� ∈ V� and edges (�� , � , � � ) ∈ E� , where � ∈ R� represents edge type, RGCN calculates the updated
embedding vector �� of each node �� ∈ V� as follows:

�
(�+1)
� = ReLU

(
�
(� )
Θ

�
(� )
� +

︁

� ∈R�

︁

�∈N�

�

1

|N�
� |
�
(� )
� �

(� )
�

)
(24)

where �
(�+1)
� is the updated embedding vector of node �� in the (� + 1)th layer of RGCN, N�

� is the set of the

neighbors of node �� under the edge type � ∈ R� ,�
(� )
Θ

and�
(� )
� are parameters of the RGCN model to be learned.

Thus, the node embeddings �� = {� � }
�
�=1 ∈ R

(�,� ) for the program graph �� is obtained, where � represents the

embedding dimensions of each node.
GraphSearchNet [70] introduces a Bidirectional Gated Graph Neural Network (BiGGNN) to encode the program

graph, which learns node embeddings from both incoming and outgoing directions for the program graph �(� ,�)
extracted from the code snippet. During each hop �, for node � , it applies an aggregation function to take a set
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of incoming (or outgoing) neighboring node vectors as input and outputs a backward (or forward) aggregation
vector. The summation function is selected as the aggregation function, where � (�) denotes the neighbors of
node � and ⊣ / ⊢ is the backward or forward direction.

��N⊣(�) = SUM({��−1� ,∀� ∈ N⊣(�) }) (25)

��N⊢(�) = SUM({��−1� ,∀� ∈ N⊢(�) }) (26)

Then, the node embeddings for both directions are fused as follows:

��N(�) = Fuse(��N¬(�) ,�
�
N⊢(�)
) (27)

The fusion function is formulated as a gated sum of two inputs:

Fuse(�, �) = � ⊙ � + (1 − �) ⊙ � (28)

� = � (�� [�; � ; � ⊙ � ; � − �] + ��) (29)

where ⊙ is the component-wise multiplication, � is a sigmoid function and � is gating vector. Then, GRU is used
to update node representations. At last, after � hops of computation, the inal node representation ��� is obtained

and max-pooling is applied over all nodes {��� ,∀� ∈ � } to get a �-dim graph representation ��:

�� = maxpool(FC({��� ,∀� ∈ � })) (30)

where FC is the fully-connected layer.
In summary, DL-based code feature representation possesses powerful learning capabilities, which enable

it to learn to process complex semantics from large-scale data and better understand code snippets. However,
it requires the design and training of complex neural network models, consuming more computing and time
resources. The training of models also relies on large-scale and high-quality data.

Summary for RQ2: Similar to the query end, existing code search techniques mainly optimize the code
end from two aspects: code feature mining and code feature representation. Regarding code feature mining,
The usage frequency of the three code textual features (i.e., method name, API sequence, tokens) is similar.
Moreover, there are many works that simultaneously utilize multiple types of code textual features. Among
code structural features, AST is used most frequently, followed by DFG, CFG, and PDG. Some recent works
have explored some new code structural features, e.g., VFG, program paragraph, and program slice. Also, some
works simultaneously utilize multiple code structural features. It is worth noting that there are many code
search techniques that consider both code textual features and code structural features. Regarding code feature
representation, existing code search techniques have designed distinct code representation methods for various
code features. Works in recent years have widely adopted DL-based methods to generate numerical vector
representations of code textual or structural features.

6 ANSWERING RQ3: WHAT ARE THE MATCH-END OPTIMIZATION METHODS IN CODE

SEARCH STUDIES?

In general, developers anticipate that a code search system will prioritize the most relevant and possible code
snippets as search results to facilitate their development. However, identifying the code snippet that best matches
a query from thousands of snippets can be highly complex. Even with a decent understanding of the semantics of
the query and the code snippet, it may still cost a large amount of time. In order to ind the code snippet that
matches the query eiciently and correctly, numerous methods and algorithms have been devised to optimize the
match-end of the code search. In short, a better match-end optimization method can improve the performance of
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code search. It inds the most efective and eicient method to match the code snippet and query after making
comprehensive use of their syntax and semantics.

According to the feature representation form of the query and code, existing match-end optimization techniques
can be divided into three distinct groups: text-based matching, vector-based matching, and classiication-based
matching, as shown in Figure 2. The text-based matching techniques aim to utilize the keywords from query and
code snippet to make the matching, detailed in Section 6.1. The vector-based matching techniques are widely
used in recent work. They can be further divided into two categories: vector distance-based, and embedding
distance-based, detailed in Section 6.2. The classiication-based matching techniques aim to regard the matching
tasks into classiication tasks, detailed in Section 6.3. Figure 10 showcases the evolution of the above three types
of match-end optimization techniques. In the following subsections, we will discuss them in detail and summarize
their development trends.

Match
End

Text-based Matching
(ğ6.1)

[74] [82] [124] [48, 52] [68] [30, 44]
[8, 67]
[1]

[75]

Vector-based Matching
(ğ6.2)

Vector
Distance-based
(ğ6.2.1)

[84] [102, 129] [15]

Embedding
Distance-based
(ğ6.2.2)

[124]
[37, 96]
[13]

[115, 125]

[35, 41]
[18, 100]
[45, 95]
[63, 110]
[26, 121]

[34, 123]
[64, 69]
[25, 78]
[39]

[122, 127]
[19, 59]
[116, 133]
[83]

[7, 128]
[111]

Classiication-based
Matching
(ğ6.3)

[51] [134] [32] [36]

(year) 2015 2016 2017 2018 2019 2020 2021 2022 2023

Fig. 10. Evolution of techniques in match end

6.1 Text-based Matching

As a traditional matching method, text-based matching utilizes textual features such as word frequency or
keywords to match code snippets with queries. These matching methods are simple and eicient and are usually
adopted by the early code search methods. As shown in Figure 10, we have summarized a total of 12 articles that
have used text-based matching methods and provided detailed summaries and overviews of them.
A basic method of text-based matching is calculating the number of common keywords shared in the text of

code snippets and queries. CodeMatcher [67] is a good example of directly utilizing the keywords for matching.
CodeMatcher is an IR-based code search model that inherits the advantages of DeepCS [37] (i.e., the capability
of understanding the sequential semantics in important query words). CodeMatcher performs well and clearly
outperforms existing solutions, such as CodeHow [74]. CodeMatcher irst collects metadata for query words to
identify irrelevant/noisy ones. According to this preprocessed step, the collected keywords are used to launch an
iterative fuzzy match on indexed method names. Then, iteratively performs the fuzzy search with important
query keywords on the codebase to obtain the top � candidate code snippets. To reine the fuzzy search results,
CodeMatcher designs a reranking step to measure the matching degree between query and candidate code
snippets. During the reranking, the method name and body are regarded as two diferent components for the
search. This is because the method name is often deined in natural language whose semantic representation is
close to the query, but the method body implements the goal of the method name in programming languages.
Therefore, when matching keywords for a candidate code snippet, CodeMatcher calculates the characters matched
keywords in the method name of code snippets as ����� . It indicates a level of the ranked method with more
overlapped tokens between the query and code snippet. CodeMatcher reorders code snippets based on ����� in
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descending order to retrieve the inal search results. In the case of tied scores, a similar approach is employed to
calculate the keyword coverage scores on code methods as ����� . A higher ����� implies better keyword matching
between query and code snippets in the method body. Thus, the candidate code snippet with a higher ����� will
rank ahead.

Lu et al. [73] also calculate common keywords as a matching strategy for the expanded query and code snippets.
Speciically, they irst preprocess the code snippets and extract the identiiers. Then, they calculate the number of
common keywords between each code snippet’s identiier set and the expanded query, and use the proportion of
this number to the maximum word count in either the identiier set or the expanded query as the similar score.
Finally, they use this score to determine the matching results.
Extended Boolean Model (EBM) is an information retrieval model that incorporates features of both the

traditional Boolean model and the VSM. It combines the advantages of precisely matching from the Boolean
model with the semantic similarity from VSM. CodeHow [74] applies the EBM to consider the impact of both
text similarity and APIs on code search. According to the CodeHow introduction in Section 4.1.2, it can calculate
similar scores to obtain the potentially relevant APIs that match the query. Thus, CodeHow considers both
the text and APIs in EBM to match the query with code snippets. EBM conducts keyword retrieval on method
name and method body of code snippets through Boolean operators and obtains similar scores. As mentioned in
CodeMatcher, the method name and body are regarded diferently in matching the query and code snippets. The
method name is more important than the method body. Therefore, the similarity scores for method name and
method body are weighted diferently in the calculation of the total score, with weights of 1.5 and 1.0, respectively.
Besides, the inal score also includes the API score obtained during the API understanding phase, with a weighting
coeicient of 1.5. IECS [124] also utilizes EBM to conduct the similarity between the original query with code
and the expanded query with code, respectively. The sum results are used to match the code snippets with the
query as the inal output.

BM25 is a well-known information retrieval technique that is designed to improve the traditional TF-IDF model.
BM25 is employed to assess the relevance between textual and queries, so it is commonly applied to optimize the
matching end. Both query expansion code search models, NQE [68] and QECK [82] leverage BM25 to match code
snippets with queries. Similar to the computation for TF-IDF, it uses the following formula to give the score for
the code snippets document d and a given query word � :

BM25(�, �) = IDF(�) ·
TF(�, �) · (� + 1)

TF(�, �) + � ·
(
1 − � + � ·

|� |
avgdl

) , (31)

where �� (·) is a function that calculates the term frequency; ��� (·) is a function that computes the inverse
document frequency; and ����� is the average document length of all code snippets. � and� are tunable parameters
that adjust the impact of term frequency on the inal score, thereby enhancing the lexibility of the BM25 model.
Based on the scores calculated using BM25, NQE, and QECK output the code snippets with the highest score as
the matching result for the given query. Furthermore, many code search methods that do not involve deep neural
networks also utilize BM25 as a retrieval model to match queries with code snippets [44, 48, 52]. This indicates
that BM25 is not only efective but also easy to use.

Lucene is a conventional text search engine behind many existing code search tools. It is a versatile tool that
can be embedded in various code search methods, providing eicient code retrieval capabilities. It incorporates
text similarity, FQN (full quality name) of entities, and code popularity to rank the code snippets. DCSE [8],
FACER [1], and SSQR [75] use Lucene as a retrieval tool to match the expanded queries with code snippets,
demonstrating the efectiveness of their query expansion technique.

Fu et al. [30] regard each method as recommendation objects, denoted as documents, and store the objects in
the indexes in the Lucene framework. Each document will be divided into multiple ields according to diferent
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code characteristics. When matched with the given query, they get a series of keyword tokens from the query
and implement the keyword-based search in Lucene to ind the retrieved results.
In summary, text-based matching primarily draws on traditional IR models or algorithms, and it is easy to

implement these methods to code search for matching the query with code snippets. However, these methods
typically capture the textual information and do not consider the deep semantic connections between queries
and code snippets. This is precisely a limitation of such text-based matching methods.

6.2 Vector-based Matching

According to Section 4.2 and Section 5.2, it can be found that vector is the most common form of feature
representations of queries and code snippets. Therefore, there are naturally more code search techniques that
use vector-based matching methods to ind relevant code snippets. Vector-based matching methods calculate
distances using vectors that extract ine-grained semantic and syntactic features from code snippets and queries.
Therefore, compared to text-based matching, these methods can retrieve code snippets that have similar features
to the query, and improve overall code search performance. The second line of Figure 10 shows that most current
code search papers adopt vector-based matching methods. Generally, there are two categories of methods for
generating feature vector representations for code snippets and queries: using traditional IR methods to generate
feature vectors and using DL neural networks to generate embeddings (vectors generated by DL-based methods
referred to collectively as embeddings). Thereby, in this section, we divide vector-based matching into vector
distance-based methods and embedding distance-based methods. Then, we will discuss and analyze vector
distance matching and embedding distance matching as two separate parts.

6.2.1 Vector Distance-based Matching.

As mentioned earlier, vector distance-based matching methods retrieve the relevant code snippets by calculating
the distance between the IR-based feature representation of both query and code snippet. In intuition, the closer
the code snippet and the query are in these spatial distances, the more likely they are compatible in the semantics.
Therefore, inding the code snippet in the vector space that is closest to the query is the core of distance-based
matching.
Before calculating the distance between code snippets and queries, representing them in the vectors is the

irst step of vector distance-based matching methods. Traditional IR methods are always used to establish the
vectors. These vectors represent the semantics information of queries and code snippets and are used to match
the query with code snippets in the distance and retrieve the ranking results. The most general way to measure
the distance is cosine distance or Euclidean distance [97]. In the following, we will introduce 4 representative
code search works that execute the vector distance-based matching.
As a traditional IR technique, researchers ind that the Vector Space Model (VSM) is suitable for basic code

search matching tasks [84, 102]. VSM utilizes the common representation method TF-IDF to convert queries and
code into vectors and then calculates their similarity using the cosine similarity formula:

cos(�� , ��) =
��

� ��

∥�� ∥∥�� ∥
(32)

where �� and �� are the vectors of the code snippet and query, respectively. The higher the similarity, the more
related the code is to the query. Thus, we categorize the technique that employed the VSM as a part of vector
distance-based matching.
Zhang et al. [129] also utilize VSM to calculate vector cosine distances, but in addition, they consider other

features to measure the matching results between queries and code snippets. Therefore, their proposed weighted-
sum ranking schema incorporates a total of ive feature components in the calculation, including � � , which is the
similarity score generated by Lucene; � � , which is the cosine distance similarity; � �, which represents keyword
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term frequency; � � , which is the number of parameters in the code example; and � �, which denotes the score for
recommended API class names in query expansion. The scores of these components are weighted and summed
to produce the inal matching result.
Chen et al. [15] propose a semantics-based search for Java methods named Quebio. Compared with most

methods in the matching end, Quebio combines a customized keyword-based search with a distance-based search
to check the relevant code snippets with a given query quickly. Quebio designs the matching method in two steps.
In the irst step, a keyword-based search is employed for quick iltering, which calculates the query keyword
frequencies in the code text. Only code snippets with results exceeding the threshold enter the second step. In
the second step, the selected code snippets are preprocessed and sorted using the TF-IDF method, with the top 5
most frequently appearing words selected as the code snippet’s summary. Then, VSM is used to construct vectors
for these summaries, and the cosine distance between the summary vector of the code snippet and the query
vector is calculated as the inal retrieval result.

6.2.2 Embedding Distance-based Matching.

As its name implies, embedding distance-based matching methods utilize the embeddings of the code snippet and
query to calculate the distance, and optimize the ranking results. The embeddings are obtained by the deep neural
network model, which can capture the semantics and structure in ine-grained, thus the ranking performance
can be signiicantly improved.

Similar to the vector distance-based matching method mentioned above, it is necessary to measure the degree
of match between queries and code snippets by computing the distance between their embeddings. Cosine
distance is the most widely used in the ield of feature similarity comparison [120]. Cosine distance evaluates
the similarity of embeddings by calculating the cosine of their angle. The computation is similar to Equation 32
but replaces �� and �� with �� and �� , representing the embeddings of code and query. Speciically, most
works [7, 13, 18, 19, 25, 34, 35, 37, 45, 59, 63, 64, 69, 78, 83, 95, 96, 100, 110, 115, 122, 123, 127, 128, 133] match the
code snippets with the query on their cosine distance in the embedding space.
Actually, cosine similarity can be widely used not only in Euclidean spaces but also in non-Euclidean spaces

(i.e., hyperbolic spaces). As we mentioned in Section 4, HyCoQA [111] introduces the Hyperbolic space to
express connections between code snippets and their corresponding queries. Unlike traditional Euclidean spaces,
hyperbolic spaces excel in representing hierarchical structures, which frequently underlie the connection between
code and its corresponding natural language description. Thus, after utilizing the BERT embedding layer to
represent code snippets and queries into embeddings, HyCoQA utilizes a hyperbolic embedder to transform the
initial embeddings into hyperbolic space. Finally, using Equation (32) to calculate the cosine similarity between
code snippet embeddings and query embeddings in hyperbolic spaces, the obtained rankings are used for the
retrieved result.

Both CoaCor [125] and �����3 [121] generate comments for code snippets to assist in code search. Therefore,
they combine two cosine similarities as the inal score:

score(�,�) = � ∗ cos
(
��, ��

)
+ (1 − �) ∗ cos

(
��, ��

)
(33)

where �� , �� , and �� are the embeddings of query, comments, and code snippets, respectively. � is a weight
parameter that ranges from 0 to 1, and ��� (·) is the cosine similarity function. The irst cosine similarity is
calculated based on the query and code snippet, and the second one is calculated based on the query and
generated comments. While it applies a weighting parameter to each of the two cosine distances and then
combines the results to obtain the inal similarity score for ranking code snippets for a given query.
Similar to Equation (33), QueCos [116] also employs a hybrid ranking approach that combines the weighted

sum of two cosine similarities as the inal similarity score. The diference lies in that the irst cosine similarity is
calculated between enriched queries and code snippets, and the second cosine similarity is calculated between
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the original query and code snippets. QueCos can enrich the original query semantically through reinforcement
learning, generating enriched queries. Therefore, the designed hybrid ranking approach considers both the
original query and enriched queries to return the ultimate search results.
The inner product distance is also a widely used measure of the similarity between embeddings. Both Code-

BERT [26] and GraphCodeBERT [39] leverage the inner product distance to match the code snippets with the
query. CodeBERT and GraphCodeBERT are the pre-trained models for the programming language, which can be
used in a series of downstream tasks, including code search. In their experiments, six programming language
datasets are used to ine-tune the downstream code search tasks. All the tasks calculate the inner product of code
and query embeddings as relevant scores to rank candidate code snippets.

Euclidean distance (i.e., L2 distance) calculates the straight-line distance between two points in a multidimen-
sional space. It is also a commonly used measure of the similarity between embeddings. MP-CAT [41] computes
the L2 distance in the similarity module:

sim
(
�� , ��

)
= 1 − �

(
��

∥�� ∥2
,

��

��



2

)
(34)

where � (·) denotes the L2 distance calculation for the dimensional code embeddings �� and query embeddings �� .
The similarity module selects the code snippet with a close similarity to the given query. Finally, the output of
the similarity module is regarded as the inal output of the retrieved result.
In summary, vector-based matching uses feature vectors or embeddings generated from IR models or DL

models to calculate the distance in the feature space. Therefore, it can match queries and code snippets that have
similar syntactic and structural features. However, there are potential problems, such as overlap problems (e.g.,
łmessagež and łmsgž), which may inevitably impact the accuracy of matching queries with code snippets.

6.3 Classification-based Matching

The classiication-based matching methods are diferent from the distance-based method. Instead of calculating
the distance of vectors or embeddings from the code snippets and queries or using the textual information to
match the code snippets with the query, classiication-based matching methods transform the matching task into
a classiication task. Such methods utilize the classiier to predict the probability of semantics matching and use
the predicted probabilities to rank the candidate code snippets. In the following, we will discuss them in detail.
To implement an efective and eicient code search system, Gotmare et al. [32] propose a hybrid ranking

framework called CASCODE, which includes the fast encoder and slow classiier to improve the performance
of retrieving the search results. They prove that leveraging classiication tasks involving NL-PL sequence pairs
for code retrieval can achieve an optimal result. However, adopting this approach would be impractical due to
the large number of candidates to be considered for each query. Therefore, they divide the retrieval process
into two stages. In the irst stage, the transformer encoders jointly transform the natural language query and
code snippet into the embeddings and calculate the cosine distance to provide the top � candidate code snippets.
In general, this fast encoder stage ensures that the framework can quickly retrieve the top few candidate code
snippets that are relatively close to the query from the code repository. In the slow classiier stage, they utilize
a transformer encoder-based classiier to predict the top � candidate code snippets from the irst stage. The
researchers’ experiments demonstrate that the well-trained classiier retrieves code snippets by returning the
match probabilities between queries and code snippets in semantics, resulting in excellent performance. However,
using a classiier is costly and slower. As for the limited number of candidate code snippets, a transformer classiier
jointly processes the query sequence with each of the candidates to predict the probability of their semantics
matching has become feasible. The predicted score of each candidate is regarded as the metric to rank the inal
retrieved results.
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To address the problem of overlaps (e.g., łmessagež and łmsgž), which has a negative impact on retrieved
results, Zhuet et al. [134] propose a novel neural architecture called OCoR. In the matching end, similar to the
slow classiier stage of CASCODE [32], OCoR also utilizes a transformer classiier to predict the probability of
two classes. The irst class denotes that the input natural language query and the input code are related, whereas
the second class denotes that the input natural language query and the input code are unrelated. The predicted
classiication probability of the irst class is the relevance score between the input natural language query and
the code snippet. The relevance scores are used for ranking the relevant code snippets.

To provide a better code retrieved result, Jiang et al. [51] propose a novel method combining both information
retrieval and code classiication, called ROSF. ROSF decomposes code search into two stages. Speciically, in the
irst stage, ROSF utilizes the IR-based method (BM25) to retrieve a candidate set that contains � code snippets.
This is a coarse-grained search for identifying a few relevant candidate code snippets. In the next ine-grained
re-ranking stage, ROSF views the problem of ranking the candidate code snippets as a multi-class classiication
task. For each instance of the candidate set for a new query, ROSF employs the learned linear predictor function
to predict the probabilities of four possible relevance scores. In other words, each instance has four probability
values corresponding to four relevance scores, denoted as �����1, �����2, �����3, �����4. Then, the relevance
score with the maximum probability value is selected as the predicted relevance score for the instance. Among
the candidate sets, ROSF irst sorts the subset containing the code snippets with predicted �����4 according to the
predicted probability values in descending order. Then, ROSF selects the top � code snippets as the inal results.
If the size of this subset is less than � , ROSF considers the subset with �����3 until it collects � code snippets.
To accelerate the retrieval eiciency of deep learning-based code search approaches, Gu et al. [36] propose

a novel approach called CoSHC, which adopts the recall and re-rank mechanism with the integration of code
classiication and deep hashing to improve code search performance. CoSHC irst generates the code and
description embeddings from deep learning networks. Then, a deep hashing module is utilized to generate the
corresponding binary hash codes for the embeddings in binary hashing space. Since the capacity of binary hashing
space is very limited compared to Euclidean space, they cluster the source code whose representation vectors are
close to each other into the same category. After obtaining the code representation categories in hashing space,
the classiier in the category prediction module will calculate the probability distribution of categories for the
given query. The number of code candidates �� for each category � will be recalled according to this probability
distribution, which can be computed as:

�� = min (⌊�� · (� − �)⌋ , 1) , � ∈ 1, . . . , �, (35)

where �� is the predicted probability for category �; � is the total recall number of source code and � is the
number of categories. In the inal re-ranking stage, the original representation vectors of these recalled code
candidates will be retrieved and utilized for the cosine similarity calculation.

In summary, classiication-based matching transforms the matching task into a classiication task and utilizes
DL models to predict the matching relationship between queries with candidate code snippets. Classiication-
based matching leads to high-precision matching results. The obvious downside is the high computational
resources required for the classiier. In the process of conducting code searches on large datasets, classiication-
based matching consumes more time than text-based or vector-based matching methods. Therefore, typical
classiication-based matching methods generally rely on iltering and optimization strategies to reduce the
number of candidate sets of code snippets for matching.
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Summary for RQ3: There are three optimization methods utilized in the match end by existing code search
techniques, i.e., textmatching-basedmethods, vectormatching-basedmethods, and classiication-basedmethods.
All three types of methods have received widespread attention. Among them, with the popularity of DL
technology, vector matching-based methods (especially embedding distance-based methods) are the most
common. Although classiication-based methods are also based on embeddings, they require training additional
classiication layers, which means they have higher training costs. It is foreseeable that embedding distance-
based methods will remain mainstream for some time in the future.

7 CHALLENGES AND OPPORTUNITIES FOR FUTURE WORK

After analyzing the existing code search techniques in both advantages and disadvantages, we can suggest that
further research will also have practical and research signiicance. From the practical signiicance of implementing
code search, these excellent techniques will certainly help us solve the diiculties in the development of software.
On the other hand, code search still has many challenges to be solved. We pose some of the challenges and
opportunities that have emerged from the papers below.

7.1 Challenges

7.1.1 Accurate query understanding. Similar to information retrieval, accurately understanding the query intent
is a prerequisite for accurate code search. Accurately understanding query semantics contributes to bridging the
semantic gap between queries and code snippets. As mentioned in Section 4, code search techniques typically
enhance the understanding of the query through feature mining and feature representation on the query
end. Clearly, feature mining and representation for a query is a highly challenging task. The answer to RQ1
demonstrates that existing code search techniques have devised a variety of solutions for query feature mining
and representation. Therefore, the challenge of accurate query understanding can further be attributed to the
diiculties encountered in accurate query feature mining and representation.

Accurate query feature mining. In Section 4.1, we meticulously detailed three approaches for mining query
features, including query reduction, query expansion, and query transformation. However, numerous challenges
remain in mining query features to achieve better query understanding. For instance, query reduction can be used
to remove noisy/redundant terms of the query and preserve important query features. However, the identiication
of noisy/redundant terms is not trivial. Incorrect removal of certain terms will result in a loss of semantic
context, making it challenging to capture the user’s intent accurately. In addition, users might have diferent
expectations regarding the reduction process, and striking a balance between code search precision and recall is
challenging. Query expansion aims to add new terms to the original query to enrich query features. However, the
relevance and quality of the newly added terms play a signiicant role. Using irrelevant or inaccurate terms can
hinder the search process. How to control the quality of extensions is challenging. Query transformation aims to
transform the original query feature into an alternative form feature, e.g., code API. However, transforming a
query into an appropriate code-related feature while preserving its semantic meaning is challenging. Ensuring
accurate transformation is crucial for retrieving relevant results. Additionally, some users search for code in
domain-speciic programming languages that might not have direct mappings from natural language queries.
Adapting query transformation rules to handle domain-speciic code retrieval is a challenge.

Accurate query feature representation. Similarly, in Section 4.2, we showcased the variety of query feature
representation techniques adopted in existing code search research. We salute the researchers for their dedicated
explorations into feature representation techniques. Obviously, accurately representing the features of a query
still poses many challenges. For example, IR-based query feature representation methods represent queries
as some form of index (such as keyword terms and vectors). However, queries and code snippets might use
diferent vocabularies or terminologies, leading to a mismatch in the representation. How to align the vocabulary
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efectively is crucial and challenging for accurate retrieval. DL-based query feature representation methods
apply deep neural networks to encode the given query feature to produce embeddings. However, queries often
contain ambiguous terms or phrases that can have multiple meanings in the context of code. It is challenging
for DL models to discern the intended meaning of ambiguous queries accurately. In addition, queries can vary
signiicantly in length, making it challenging to process them uniformly. The applied models need to handle
variable-length inputs efectively.

7.1.2 Accurate code understanding. Accurately understanding the functionality (semantic) of the code snippet
is also a prerequisite for accurate code search. It contributes to illing the semantic gap between queries and
code snippets. The answer to RQ2 demonstrates that existing code search techniques have devised a variety of
methods for code feature mining and representation. Therefore, the challenge of accurate code understanding
can further be attributed to the diiculties in accurate code feature mining and representation.
Accurate code feature mining. In Section 5.1, we meticulously sorted out the various code features that

existing research has extracted and utilized to enhance code understanding accuracy. However, there are still
many challenges in adequately extracting features to achieve optimal code search performance. In addition, there
is information overlap between diferent code features. For example, Token and the labels of AST leaf nodes
overlap. Therefore, how to deal with this redundant information is also a challenge when considering multiple
features simultaneously. Finally, whether structural features without Token information (e.g., syntactic structure
in AST, control low in CFG, and data low in DFG) actually help facilitate code representation and code search
tasks still lacks systematic research. The diversity of feature parsing tools and preprocessing methods makes
such systematic research challenging.
Accurate code feature representation. Similarly, based on our summary of research on code feature

representation in Section 5.2, we ind that this ield presents challenges. Using DL techniques to represent
code features has become mainstream nowadays. Compared to traditional IR-based code feature representation
methods, the code representations generated by DL-based cod feature representation methods can better capture
the semantics of code. However, DL-based methods require large, high-quality labeled datasets for efective
training. Obtaining such datasets with accurately labeled code snippets can be challenging, especially for speciic
programming languages or domains. In addition, code snippets also vary signiicantly in length, from short
expressions to lengthy functions. Designing representations that handle variable-length inputs efectively is a
challenge. Moreover, as mentioned earlier, code contains multiple textual and structural features. Integrating
these diverse features into a cohesive representation without losing essential information is challenging.

7.1.3 Eficientlyuery-Code Matching. Asmentioned in RQ3, optimizing the methods for matching code snippets
with queries is also one of the keys to improving the efectiveness of code search. Since diferent developers
have diferent wording habits, this will cause the text-based matching method to fail to retrieve the expected
results. Therefore, mapping relationships between query vocabulary and code vocabulary is challenging for
the text-based matching method. For vector distance-based matching methods, it is necessary for the query
vectors and code vectors to be in a uniied vector space, and the distance between vectors should accurately
relect semantic relevance. However, whether utilizing IR techniques or DL techniques, mapping queries and
code snippets to a uniied vector space while preserving their respective semantics is a challenging task. Instead
of directly calculating distance using query and code vectors, classiication-based matching methods involve
concatenating the two vectors and utilizing a classiier for binary classiication. However, correctly concatenating
query and code vectors is challenging because vectors are abstract, and DL is low in interpretability. Last but
not least, an aspect that requires more attention is the eiciency challenge faced by all query-code matching
methods when dealing with extensive code search corpus. Therefore, designing eicient matching methods is
also a challenging task.
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7.1.4 Practical Applications of Code Search techniques. Existing research on code search primarily focuses on
designing advanced code search models to enhance search accuracy. There is less attention to the practical
implementation and application of code search techniques/models in production environments. Creating usable
and user-friendly code search tools or plugins is a highly challenging task. Advanced code search tools have a
considerable distance to cover before they can be practiced in production environments. The main challenges
in the practical application of code search tools lie in the updates of the backbone models and in achieving
user-friendly interactions.

Updating of the backbone models. The actual software development is very complex, and the code snippets
that developers search for may exceed the training data used in the current code search models. Therefore, if
code search tools want to solve real-world problems, it is important to update the backbone model in a targeted
manner. However, how to update the backbone model of tools in production environments based on user feedback
has not yet received suicient attention and research.
Implementation of user-friendly interaction. Despite the numerous code search models that have been

proposed, there are still many potential barriers before these models can be practically implemented in practical
applications. Developing excellent programming assistance tools, including code search tools, is a complex and
systematic engineering task. This requires not only a full stack of programming skills from developers but also
consideration of the actual user experience. How to achieve eicient search result recommendations and how to
make it easier for developers to use have not yet received suicient attention and research.

7.2 Opportunities

7.2.1 Addressing the Challenges Mentioned in Section 7.1. Typically, challenges in research can also be seen
as opportunities from another perspective. Focusing on the challenges outlined in Section 7.1 and designing
corresponding solutions ofer many excellent research opportunities and directions. The achievements in these
directions will signiicantly enhance the performance and practical usability of code search.

7.2.2 Applying LLM in code search. Recently, with the success of large language models (LLMs) in natural
language processing (NLP) [22, 88], an increasing number of software engineering (SE) researchers have started
integrating them into the resolution process of various SE tasks [24, 43, 131], such as code generation [12, 118],
program repair [11, 130, 132], and code summarization [108, 109]. The recent work by Li et al. [62] has also
demonstrated the potential of using LLMs to improve code search performance. They irst utilize LLMs to
retrieve exemplar code snippets, and then synthesize the original query and these exemplar codes to formulate
an augmented query. Essentially, they utilized LLMs for query expansion, thereby improving code search.

In addition, we envision two research opportunities for leveraging LLMs to enhance code search as follows. (1)
Using LLMs to mine and represent query and code features. It is known that LLMs are trained on vast corpora
(including code corpora), which endow them with powerful natural and programming language understanding
capabilities. Therefore, leveraging LLMs for mining and representing query and code features holds promise
for achieving more accurate semantic matching between queries and code snippets. (2) Using LLMs to bridge
programming languages and natural languages. Several recent studies have shown that LLMs have code summa-
rization capabilities [108, 109], i.e., generating natural language descriptions (also known as summaries) of code
snippets. These summaries can be further used to substitute the original user queries for code retrieval.

8 THREATS TO VALIDITY

In this chapter, we explore the validity threats to our study. Validity concerns the relationship between the
research results and the actual situation, as well as how the conclusions might be incorrect. We have categorized
the threats to the validity of our study into two types, including internal validity and external validity. Our
discussions on these identiied threats are as follows:
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8.1 Threats to Internal Validity

The threats to internal validity refer to experiment errors and human biases [112]. In our study, we employ a
cautious research strategy to mitigate threats to internal validity. Firstly, we establish three speciic research
questions covering the diferent essential dimensions of the code search technique (detailed in Section 3.1).
Subsequently, we utilize the PIO approach to generate keywords from these research questions and collect papers
from six widely used electronic databases (including DBLP, Google Scholar, IEEE Explore, etc.). These collected
papers under multiple rounds of manual iltering and screening based on our deined research scope and criteria
(detailed in Section 3.2, 3.3). From the remaining 1427 papers, we meticulously review 68 of them, analyzing their
technical aspects according to the three research perspectives. Additionally, we explore and discuss potential
future developments based on existing work within each perspective. As a result, the systematic exploration has
instilled conidence in our work and established a certain level of efectiveness in the research outcomes.

8.2 Threats to External Validity

External validity concerns the extent to which the results can be generalized beyond the scope of the study,
even when speciic cause-and-efect relationships have been established in the study. Threats to external validity
involve the generalizability of reported research indings [112]. For our study, we meticulously select 68 papers
from six commonly used electronic databases. Hence, these papers likely cover the core studies in the code
search ield. Therefore, the conclusions and indings drawn in our study can potentially apply to the techniques
inadvertently missed in this paper or those emerging as new techniques in the near future. Furthermore, within
each research question section, we have conducted theoretical qualitative analyses. Hence, we believe that
external validity threats are not particularly challenging for this study.

9 CONCLUSION

This article provides a 3-dimensional survey of the technological developments in code search over the past thirty
years. This survey focuses on the three core components of code search technology, i.e., query understanding
component, code understanding component, and query-code matching component. We classify and discuss the
optimization techniques proposed for each component. Speciically, we divide the techniques for optimizing
the query and code ends into two parts, namely feature mining and feature representation, respectively. For the
match end, we categorize existing optimization techniques into three major classes, i.e., text-based matching,
vector distance-based matching, and classiication-based matching. For each end (each optimization category), we
provide a detailed introduction to some representative optimization technologies and summarize the technology
development trends. Based on the comprehensive observation of optimization techniques proposed in existing code
search papers, we summarize some challenges that still need to be addressed and suggest research opportunities.
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