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Machine translation systems have been widely adopted in our daily life, making life easier and more convenient.

Unfortunately, erroneous translations may result in severe consequences, such as financial losses. This requires

to improve the accuracy and the reliability of machine translation systems. However, it is challenging to

test machine translation systems because of the complexity and intractability of the underlying neural

models. To tackle these challenges, we propose a novel metamorphic testing approach by syntactic tree

pruning (STP) to validate machine translation systems. Our key insight is that a pruned sentence should

have similar crucial semantics compared with the original sentence. Specifically, STP (1) proposes a core

semantics-preserving pruning strategy by basic sentence structures and dependency relations on the level

of syntactic tree representation; (2) generates source sentence pairs based on the metamorphic relation; (3)

reports suspicious issues whose translations break the consistency property by a bag-of-words model. We

further evaluate STP on two state-of-the-art machine translation systems (i.e., Google Translate and Bing

Microsoft Translator) with 1,200 source sentences as inputs. The results show that STP accurately finds 5,073

unique erroneous translations in Google Translate and 5,100 unique erroneous translations in Bing Microsoft

Translator (400% more than state-of-the-art techniques), with 64.5% and 65.4% precision, respectively. The

reported erroneous translations vary in types and more than 90% of them are not found by state-of-the-art

techniques. There are 9,393 erroneous translations unique to STP, which is 711.9% more than state-of-the-art

techniques. Moreover, STP is quite effective in detecting translation errors for the original sentences with a

recall reaching 74.0%, improving state-of-the-art techniques by 55.1% on average.
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1 INTRODUCTION
Machine translation aims to translate source content into target languages automatically. Due to

the advent of neural machine translation models, the performance of machine translation has been

improved significantly. In particular, some advanced machine translation systems are approaching

human-level performance in terms of quality score and human parity [19, 62]. More and more

people are getting used to employing machine translation systems in their daily lives, such as

reading articles from other countries. For example, Google Translate [16] attracts more than 500

million users around the world and translates more than 100 billion words per day [57].

Similar to traditional systems, neural machine translation systems are not perfect and suffer from

unreliable results sometimes. For example, they can produce erroneous target outputs when source

inputs are adversarially manipulated (e.g., uppercasing some characters or injecting grammatical

noise in a sentence) [2, 15]. These adversarial inputs are usually syntactically wrong. Besides,

there exist many cases where machine translation systems may return erroneous translations for

syntactical and semantical inputs (e.g., an industrial case by WeChat) [76].

However, there are several challenges to test machine translation systems. Firstly, testing tra-

ditional systems significantly differs from testing DNN-based systems in general due to the pro-

gramming paradigm [74]. In the traditional system, the decision logic is manifested in source

code. In contrast, the output of DNN-based systems depends mainly on the millions of parameters,

which are optimized through training. Secondly, recent testing approaches for DNN-based systems

mainly focus on models with a small number of possible outputs (e.g., image classifiers). Rather, it

is an intractable problem for machine translation to enumerate all possible outputs [44], making

machine translation systems challenging to test. Thirdly, most existing machine translation testing

techniques [18, 21, 54] generate test cases (i.e., generated source sentence) by replacing one word

in the input (i.e., original source sentence) based on some pre-trained language representation

models (i.e., BERT and Spacy). Thus, the testing performance is mainly limited by the maturity of

the adopted language model [22] and huge device resources are required in the deployment [51].

To address the above challenging problems, we introduce syntactic tree pruning (STP) testing, a

novel and general approach for evaluating machine translation systems. The core idea of STP is

inspired by the phenomenon that machine translation systems usually perform significantly better

on the simple sentence than on the complex sentence [52]. Thus, people prefer to conduct source

sentence simplification to get accurate translation results in practice [12]. The key insight is that

eliminating contextual information from a source sentence should not influence the translation

results of the trunk [38, 43] To realize this concept, inspired by the linguistic rhetorical structure

theory [38] that specifies each sentence component as either a basic nucleus or a context satellite,

STP generates new source sentences by removing words or phrases from an original source

sentence without losing core semantics and undermining the sentence validity. In particular, STP

first performs a novel semantics-preserving pruning strategy by extracting crucial semantics via

the basic sentence structure and designing pruning operators via dependency relations. Then the

original and the newly generated source sentences are paired via the defined metamorphic relation.

Besides, a bag-of-words model is adopted to measure the consistency of the source sentence pair (i.e.,

original and generated source sentence), and a suspicious issue will be reported if the translation

results have a significant difference in core semantics via a pre-defined threshold value.
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We conduct an empirical study to evaluate the effectiveness of STP on two state-of-the-art

translators (i.e., Google Translate and Bing Microsoft Translator) with 1,200 English sentences

from ten major article categories as inputs [16, 40]. The experimental results show that STP

successfully reveals 5,073 and 5,100 erroneous unique translations in Google Translate and Bing

Microsoft Translator with high precision (i.e., 64.5% and 65.4%), respectively. The detected erroneous

translations are 400% more than state-of-the-art techniques under all dataset categories. We also

demonstrate that the precision can be further improved under a large threshold value 𝑡 . For example,

STP with 𝑡 = 6 achieves 80.9% and 84.3% precision for both translators, outperforming the most

recent technique CAT by 19.8% and 18.2% with a comparable amount of erroneous issues. The types

of reported erroneous translations are diversified, including under-translation, over-translation,

word/phrase mistranslation, incorrect modification, and unclear logic. Compared with state-of-

the-art techniques, STP is able to report more erroneous translations with higher precision. Due

to its conceptual difference, STP reveals many erroneous translations that have not been found

by existing techniques. For example, there are 4,700 and 4,692 erroneous translations unique to

STP in Google Translate and Bing Microsoft Translator, which are 227% and 221% more than the

most recent technique CAT. STP also achieves a higher recall than state-of-the-art techniques by

53.4% and 56.8% on average for original sentence errors when testing Google Translate and Bing

Microsoft Translator, respectively. Besides, STP spends 0.09 seconds in sentence generation and

0.02 seconds in erroneous translation detection, achieving comparable efficiency to state-of-the-art

techniques. All the reported issues and source code have been released for further research.

The main contributions of this paper are as follows.

• Novel Technique.We introduce a novel and widely applicable methodology, syntactic tree
pruning (STP), to validate machine translation systems by generating sentences with different

syntactic structures.

• Practical Implementation. We describe a practical implementation that generates new

sentences via the proposed core semantic-preserving pruning strategy, and detects erroneous

translations by measuring the semantics consistency of the source sentence pair, which is

created by the designed metamorphic relation.

• Extensive Study.We evaluate STP on 1,200 sentences against five state-of-the-art techniques

for Google Translate and Bing Microsoft Translator. To the best of our knowledge, this is the

largest empirical evaluation for machine translation testing. The results demonstrate that

STP successfully finds 5,073 erroneous translations in Google translate and 5,100 in Bing

Microsoft Translator with high precision, most of which cannot be found by state-of-the-art

techniques. On average, the recall of original sentence errors reaches 74%, which is 55.1%

higher than that of state-of-the-art techniques.

• Available Artifacts. We release all experimental data (including the raw data, source code,

and result analysis) for replication and future research on machine translation testing [72].

The rest of this paper is organized as follows. Section 2 reviews some background information

and presents a motivation example. Section 3 introduces the proposed approach design. Section 4

presents the research questions, and explains the details of the empirical study. Section 5 provides

the detailed results of the study and answers the research questions. Section 6 presents some

additional discussion, and Section 7 discloses the threats to validity of our experiments. Section 8

discusses some related work. Section 9 presents the conclusions and discusses future work.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 1. Publication date: 2023.



1:4 Quanjun Zhang, Juan Zhai, Chunrong Fang, Jiawei Liu, Weisong Sun, Haichuan Hu, and Qingyu Wang

2 BACKGROUND & MOTIVATION
2.1 Basic Sentence Structure
In linguistics, given a source sentence, every word serves a specific purpose within the structure

[24]. Sentence structure can sometimes be quite complicated according to the grammar rules. In

syntax, four types of sentence structures are distinguished: simple sentences, compound sentences,

complex sentences and compound-complex sentences [47]. Each sentence is defined by the usage

of independent and dependent clauses, conjunctions and subordinators. The type of sentence is

determined by how many clauses, or subject–verb groups are included in the sentence.

Although the sentences are diverse in types, a complex linguistic structure sentence can be

converted into a set of simple sentences, with each of which presents a simpler and more regular

structure that is easier to process by machine translation systems [39]. A simple sentence is a

sentence that comprises exactly one independent clause, i.e., a group of words that has both a subject

(S) and a verb (V), optionally an indirect or direct object (O), and complement (C). In linguistic

typology, most simple sentences are derived based on the five basic clause types: subject–verb (SV),

subject–verb–object (SVO), subject–verb–complement (SVC), subject–verb–indirect object–direct

object (SVOO), subject–object–complement (SVOC) [36]. However, simple sentences may still

include optional constituents that render them overly complex. For instance, the adverbial “in

Princeton” in the simple sentence “Albert Einstein died in Princeton.” specifies additional contextual

information that can be left out without producing ill-formed output. Rather, the remaining clause

“Albert Einstein died.” still carries semantically meaningful information.

The constituents that belong to the clause type are essential components of the corresponding

simple sentence, all other constituents are optional and can be discarded without leading to an

incoherent or semantically meaningless output. In this paper, given a source sentence, we attempt to

identify and simplify the sentence types, and then extract the basic clauses as the crucial semantics.

2.2 Syntactic Tree Representation
A syntactic tree is a tree representation of different syntactic categories of a sentence and helps to

understand the syntactic structure of a sentence. There are two common syntactic tree structures:

constituency syntactic and dependency syntactic[39], which are illustrated in Figure 1. Given a

source sentence, a constituency syntactic tree presents a set of constituency relations, which shows

how a word or group of words form different units within a sentence, while a dependency syntactic

tree presents a set of relations describing the direct relationships between words rather than how

words constitute a sentence. Dependency syntactic trees represent the grammatical relations that

hold between constituents. Compared to constituency syntactic trees, dependency syntactic trees

are more abstract, as they do not restrict or prescribe a particular word order. They are more specific

in terms of semantics, and the notion of relations across words is explicit.

A dependency tree for a sentence is a directed acyclic graph with words as nodes and relations as

edges. Each word in the sentence either modifies another word or is modified by a word. The root

of the tree is the only entry that is modified but does not modify anything else. The relation that

the two words participate in is given as a name on the edge connecting the nodes. More formally,

the dependency structure tree can be expressed as follows: given a sentence 𝑆 = {𝑤0, ...,𝑤𝑛}, a set
of edges or dependencies 𝐸 = {𝑒1, ..., 𝑒𝑛} are defined such that each 𝑒𝑖 connects two words in the

sentence, and𝑤0 is a root word that only connects a word to another word.

2.3 A Motivating Example
In this section, we will present a real-world erroneous translation example shown in Figure 2 and

illustrate how it is detected by syntactic tree pruning. As a non-native English speaker, Echo often
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(a) Constituency Structure
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A similarly affecting scene comes a little later in the movie.

(b) Dependency Structure

Figure 1. Syntactic tree representation

𝑆: A similarly affecting scene comes a little later in the movie.

(a) Original Sentence

(b) Generated Sentences

(d) Target Sentences

(g) Suspicious Pairs

Syntactic 
tree 
pruning

Detecting translation errors

𝑆!: A similarly affecting scene comes a little later in the movie.
𝑆!: A affecting scene comes a little later in the movie. 

𝑆!: A affecting scene comes a little later in the movie.
𝑆": A scene comes a little later in the movie.

𝑆": A scene comes a little later in the movie.
𝑆#: A scene comes in the movie.

(c) Source Pairs

𝑇!:电影稍后出现了一个类似的影响场景。
𝑇!: 电影稍后出现了一个感人的场景。

𝑇!: 电影稍后出现了一个感人的场景。
𝑇": 电影稍后出现了一个场景。

𝑇": 电影稍后出现了一个场景。
𝑇#: 电影出现了一个场景。

……

Generating source pairs 

Calculating consistency distance

(e) Bag-of-Words

dist (𝑇𝑃1) = 𝐵𝑜𝑊 𝑇! \𝐵𝑜𝑊 𝑇 =	1

Core Semantics + Context

𝑆𝑃1

𝑆𝑃2

𝑆𝑃3

𝑇𝑃1

𝑇𝑃2

𝑇𝑃3

𝐵𝑜𝑊 𝑇 = {‘电影’:	1,	‘稍后’ :	1,	‘出现':	1,	‘了’:	1,	‘一个’ :	1,	‘类似’ :	1,	‘的’ :	
1,	‘影响’:	1,	‘场景’:	1	}

𝑑𝑖𝑠𝑡 𝑇𝑃2 = 𝐵𝑜𝑊 𝑇" \𝐵𝑜𝑊 𝑇! = 0

𝑑𝑖𝑠𝑡 𝑇𝑃3 = 𝐵𝑜𝑊 𝑇# \𝐵𝑜𝑊 𝑇" = 0

set 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 as 0

> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Relation Details
det (A, scene)
advmod (similarly, affecting)
amod (affecting, scene) 
nsubj (scene, comes)
det (a, little)
obl:npmod (little, later)
advmod (later, comes)
det (the, movie)
case (in, movie)
obl (movie, comes) 

Pruning

Collecting target sentences

𝑆𝑃1

𝑆! 𝑆" 𝑆#
…… …………

𝑆!: A similarly affecting scene comes a little later in the movie. 
𝑆!: A affecting scene comes a little later in the movie. 

𝐵𝑜𝑊 𝑇! = {‘电影’:	1,	‘稍后’ :	1,	‘出现':	1,	‘了’:	1,	‘一个’ :	1,	‘感人’:	1,	‘的’ :	
1,	‘场景’:	1	}

scene

affecting
later

comes

in

movie 

Root

theA
little

a

scene
later

comes

in

movie 

Root

theA
little

a

scene
later
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in

movie 

Root

theA

…… ……

scene

affecting

similarly

a

A

later

comes

in

movie

Root

little the

≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

The word affecting is mistranslated in 𝑆.

Figure 2. Overview of STP

adopts machine translation systems to read news from other countries. Echo reads a review article

about the movie “Single All the Way” from CNN news website
1
, and sees the the following English

sentence (i.e., 𝑆 in Figure 2):

A similarly affecting scene comes a little later in the movie.

To figure out its meaning, Echo uses Google Translate, a popular translation service powered by

neural machine translation models. Google Translate returns a corresponding Chinese sentence

(i.e., 𝑇 in Figure 2).

1
https://edition.cnn.com/2021/12/02/entertainment/single-all-the-way-race-deconstructed-newsletter/index.html. Accessed

August, 2022.
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电影稍后出现了一个类似的影响场景。

However, Echo finds he misunderstands the article because of the incorrect translation returned

by Google Translate. That is a real-world erroneous translation that leads to a confusing, unpleasant

reading experience. The correct translation should be:

电影稍后出现了一个类似的感人场景。

It is difficult for most existing techniques to find the translation error. For example, the most

recent technique CAT generates new sentences by replacing some words with other semantically

similar words (e.g., 𝑆 ′: “comes”→ “occurs”, 𝑆 ′′: “comes”→ “appears” and 𝑆 ′′′: “movie”→ “film”).

However, CAT fails to detect the erroneous translation as the generated sentences have the same

translation as the original sentence. Similar to CAT, SIT also performs word replacement to form a

sentence pair (e.g., “scene”→ “moment”). The pair is considered to have an erroneous translation

if a large difference exists between the structures of translations in the pair. However, Google

Translate returns the translations with the same sentence structures and the erroneous translation

is also beyond the scope of SIT.

In fact, more and more people are getting used to relying on machine translation systems in

their daily lives. The robustness of the machine translation system is particularly crucial in a

practical scenario. It is observed that machine translation systems often make mistakes for complex

sentences and perform well for simple sentences [52]. Inspired by this, we propose to extract the

core semantics of a sentence and leverage the pruned sentence to test machine translation systems.

For the example sentence mentioned above, STP first performs syntactic tree scanning to identify

"A scene comes a little later" as the core semantics and the remaining words as the context (shown

in the upper left part of Figure 2(b)). Then STP generates new sentences by removing context

words in turn, which are then used to compare with the original sentence (shown in the upper

right part of Figure 2(b)). For example, in Figure 2(c), 𝑆1 can be generated by removing the adjunct

"similarly", and the translation should not influence the trunk of the original sentence. We observe

their translations 𝑇 and 𝑇1 have different meanings, which means the sentence pair < 𝑆, 𝑆1 > has

erroneous translations. In fact, the word “affecting” is mistranslated in the original sentence 𝑆 and

some generated sentences 𝑆 ′, 𝑆 ′′ and 𝑆 ′′′ with the same sentence structure. However, the word

is translated correctly if the adjunct “similarly” is removed. Thus, in this work, we attempt to

eliminate contextual information from the original source sentence without influencing the core

semantics meaning (i.e., basic sentence structure) and propose STP, a novel syntactic tree pruning

methodology for testing machine translation systems with arbitrary source sentences.

3 APPROACH AND IMPLEMENTATION
This section introduces syntactic tree pruning testing (STP) and describes our practical implemen-

tation. In general, STP takes an unlabeled original source sentence as input at a time and outputs a

list of suspicious issues. Figure 2 presents the overview of STP implementation. STP carries out the

following steps:

(1) Core semantics-preserving pruned sentences generation. For each unlabelled original source

sentence, we generate a list of new source sentences by pruning the context at syntactic tree

representation (shown in Figure 2(b)).

(2) Metamorphism-based source pair generation. We pair each source sentence with all the new

sentences generated from it to form source sentence pairs (shown in Figure 2(c)).

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 1. Publication date: 2023.



Machine Translation Testing via Syntactic Tree Pruning 1:7

(3) Consistency-based translation error detection. The core semantics of the translated generated

sentences is compared to the core semantics of the translated original sentence via a bag-of-

words model (shown in Figure 2(d) and Figure 2(d)(e)). If there is a large difference between

the core semantics, STP reports a potential translation issue (shown in Figure 2(g)).

Algorithm 1 presents the process of syntactic tree pruning. The algorithm takes a list of arbitrary

sentences as input and returns a list of suspicious pairs as output. The main implementation process

of this algorithm is first to establish a syntactic tree representation (line 3-4) for each original

sentence by a recent neural network-based parser implemented in Stanford CoreNLP library [17]

and then generate a list of new sentences via a novel core semantics-preserving pruning strategy

(lines 22-43). Then the source sentence pairs are fed to the machine translation systems based on

the metamorphic relation (lines 7 -14), which are used to report suspicious translation errors via

consistency detection (lines 17-21).

3.1 Core Semantics-preserving Pruned Sentences Generation
Given an arbitrary sentence in the source language, STP aims to generate new syntactically and

semantically valid sentences by removing words or phrases from the original sentence. However, it

is not trivial to choose words or phrases from a sentence without missing any crucial semantics

and even undermining the sentence validity. A naive implementation may be done by recursively

removing a word or phrase until a predefined threshold (e.g., the minimum length of the generated

sentence). Although this implementation surely can generate all possible valid pruned sentences, it

leads to too many candidate sentences with a low acceptability rate. For example, the sentence in

Section 2.3 has nine words and we can generate 604,800 (10 ∗ 9 ∗ 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4) new sentences

if the predefined threshold is set to 3, as each word removal leads to a new sentence. In the real

world, the sentences fed to the machine translation systems tend to be more complex (e.g., more

than 19 words on average for the dataset [21]), and this implementation is unaffordable in practice

(discussed in Section 6.6).

Determining which word to remove from the original sentence can be aided by understanding

the semantics of the word. Inspired by the advance in natural language processing (NLP), several

semantics-based tasks (e.g., sentence simplification or compression) may be well suited for this

task [30, 52]. Specifically, given a source sentence, we extract semantics relations between words or

phrases on its syntactic tree structure. As a part of the grammar, syntax refers to the set of rules in a

natural language that governs the structure of a sentence, determining how each component, such

as words, phrases, and clauses, forms into their super-ordinate components, until the formation of

the sentence [9]. When removing a word from the sentence, the effect of the removal operation on

other words should be considered. Thus, the dependency syntactic tree is employed in this paper,

as it effectively reflects the changes in how words interact [75].

However, after the given sentence is represented as a dependency syntactic tree, several challenges

remain in the pruning process. Now we discuss several problems of generating new sentences by

removing irrelevant content while preserving core semantics on the syntactic tree level. Firstly,

it is not trivial to define the core semantics and its contextual information for a source sentence.

Natural languages often have complex syntactic structures, and it is essential to consider which

dependencies can be used as the key semantics of a sentence. Mann et al. [38] describe a rhetorical

structure theory (RST), which specifies each sentence component as either a nucleus or a satellite.

The nucleus component embodies the central piece of information, whereas the role of the satellite

is to specify the nucleus further. In linguistics, most sentences are combined by basic clause patterns

(e.g., subject-predicate-object) and adjuncts (e.g., the attributive, adverbial). The former as nucleus
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can express the sentence meaning clearly and the latter as the satellite is used to express the

meaning more accurately. Then, we define the core semantics and context as follows.

Definition 3.1. Core semantics and context: Given a sentence 𝑆 = {𝑆𝑒 , 𝑆𝑐 } where 𝑆𝑒 is a set of
words denoting the core semantics and 𝑆𝑐 is the remaining words denoting the associated context.

A 𝑠𝑒 ∈ 𝑆𝑒 is a triple (𝑠, 𝑣, 𝑜) ∈ 𝐵𝑇 , where 𝐵𝑇 = {𝑆𝑉 , 𝑆𝑉𝑂, 𝑆𝑉𝐶, 𝑆𝑉𝑂𝑂, 𝑆𝑉𝑂𝐶} represents the set
of basic sentence structures. Hence, 𝑠 ∈ 𝑆 denotes a subject, 𝑣 ∈ 𝑉 a verb and 𝑜 ∈ {𝑂,𝐶,𝑂𝑂,𝑂𝐶}
denotes a direct or indirect object, or complement.

For example, in Figure 2(b), the nodes circled in orange represent the core semantics and the

nodes circled in blue represent the context. In that way, the source sentence is reduced to the

basic structure as the core sentence and augmented with some adjuncts that disclose associated

contextual information. On syntactic tree representation, the basic clause patterns are the trunk of

the sentence, and the adjuncts are the branches of the sentence.

Secondly, the number of words that can be removed is difficult to determine at each step, as

some words are dependent, such as “a little later” in Figure 2. Although we could adopt a strategy

of removing one word at each case recursively, this approach would result in a large number of

syntactically invalid sentences. For example, we cannot only remove the word “later” from the

example sentence “A similarly affecting scene comes a little later in the movie.”. When removing

such words, we have three possible situations: (1) Unprunable. The word constitutes the five basic

clause types. The deletion of these words will result in the absence of core semantics. (2) Prunable.

The word does not constitute the five basic clause types and the removal operation of the word

does not affect the validity of the sentence. (3) Partially-Prunable. The word does not constitute the

five basic clause types and only the removal operation of the word and other words it depends on

does not affect the validity of the sentence.

To address the above challenges, we perform a four-step cascaded pruning strategy: sentence type

identification, sentence simplification, core semantics extraction and pruned sentence generation.

(1) STP performs a syntactic tree scanning and divides the given original sentence into four types,

i.e., simple, compound, complex and compound-complex sentences based on the edges connecting

the nodes. The type of sentence is determined by how many clauses, or subject-verb groups,

are included in the sentence. (2) After determining the sentence type, STP attempts to split the

compound and complex sentence into simple sentences. For example, a compound sentence will

be split according to the co-dependency relation (i.e., cc edge). The sub-trees before and after

the edge are divided into new sentences at the same time, and the process is recursive until no

compound sentence exists. The noun clause in complex sentences will also be split according

to the dependency relation, and the new sentence after splitting only shares conjunctions. The

remaining clauses in complex sentences will not affect the core semantics of the sentence, so

they will be pruned. (3) For each simple sentence, STP identifies the shortest path among the

syntactic tree, which is used to represent the crucial semantics of the original sentence. As most

sentences are derived from the five basic sentence structures (i.e., subject–verb, subject–verb–object,

subject–verb–complement, subject–verb–object-object, subject–verb–object-complement), the

nodes constituting the structures are considered as the shortest path. Thus, although the generated

sentence has a different structure from the original one, they share the same basic structure. (4) STP

performs a removal operation for each node according to the edges (i.e., dependencies) until the

shortest path remains. Among the nodes, there are some constraints between them. In the syntactic

tree, when pruning a specific node, its dependent node also needs to be considered. We consider all

available dependency types implemented in Stanford’s CoreNLP library
2
and manually analyze

2
English dependencies description. https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf. Accessed

August, 2022.
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Algorithm 1 Implementation of STP

Input: 𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡𝑠 : a list of sentences in the source language

Output: 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑖𝑠𝑠𝑢𝑒𝑠 : a list of suspicious pairs
1: 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑖𝑠𝑠𝑢𝑒𝑠 ← 𝐿𝑖𝑠𝑡 ( )
2: for each 𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡 ∈ 𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡𝑠 do
3: 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑡𝑟𝑒𝑒 ← 𝑃𝐴𝑅𝑆𝐸 (𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡 )
4: ℎ𝑒𝑎𝑑 ← 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑡𝑟𝑒𝑒.ℎ𝑒𝑎𝑑 ( )
5: 𝑔𝑒𝑛_𝑠𝑒𝑛𝑡𝑠 ← 𝑃𝑅𝑈𝑁𝐼𝑁𝐺 (𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡,𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑡𝑟𝑒𝑒,ℎ𝑒𝑎𝑑 )
6: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡 ← 𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡 )
7: for each 𝑔𝑒𝑛_𝑠𝑒𝑛𝑡 ∈ 𝑔𝑒𝑛_𝑠𝑒𝑛𝑡𝑠 do
8: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑔𝑒𝑛_𝑠𝑒𝑛𝑡 ← 𝑇𝑅𝐴𝑁𝑆𝐿𝐴𝑇𝐸 (𝑔𝑒𝑛_𝑠𝑒𝑛𝑡 )
9: if DISTANCE(𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑔𝑒𝑛_𝑠𝑒𝑛𝑡 ) > 𝑑 then
10: 𝑠𝑜𝑢𝑟𝑐𝑒_𝑝𝑎𝑖𝑟 ← {𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡, 𝑔𝑒𝑛_𝑠𝑒𝑛𝑡 }
11: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑎𝑖𝑟 ← {𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑔𝑒𝑛_𝑠𝑒𝑛𝑡 }
12: 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑖𝑠𝑠𝑢𝑒𝑠.𝑎𝑑𝑑 (𝑠𝑜𝑢𝑟𝑐𝑒_𝑝𝑎𝑖𝑟, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑎𝑖𝑟 )
13: end if
14: end for
15: end for
16: return 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑖𝑠𝑠𝑢𝑒𝑠

17: function DISTANCE(𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑔𝑒𝑛_𝑠𝑒𝑛𝑡 )

18: 𝑠𝑜𝑢𝑟𝑐𝑒_𝐵𝑂𝑊 ← 𝐵𝐴𝐺𝑂𝐹𝑊𝑂𝑅𝐷𝑆 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡 )
19: 𝑔𝑒𝑛_𝐵𝑂𝑊 ← 𝐵𝐴𝐺𝑂𝐹𝑊𝑂𝑅𝐷𝑆 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑔𝑒𝑛_𝑠𝑒𝑛𝑡 )
20: return |𝑠𝑜𝑢𝑟𝑐𝑒_𝐵𝑂𝑊 \ 𝑔𝑒𝑛_𝐵𝑂𝑊 |
21: end function

22: function PRUNING(𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡,𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑡𝑟𝑒𝑒,ℎ𝑒𝑎𝑑)

23: if 𝑙𝑒𝑛 (ℎ𝑒𝑎𝑑.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ( ) ) > 0 then
24: 𝑛𝑜𝑑𝑒𝑠 ← ℎ𝑒𝑎𝑑.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ( )
25: 𝑑𝑒𝑝_𝑛𝑜𝑑𝑒𝑠 ← 𝐷𝐸𝑃_𝑃𝑅𝐼𝑂𝑅 (𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑡𝑟𝑒𝑒 ) ⊲ prioritize the nodes in the dependency tree

26: 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑒𝑡 ← 𝑅𝐸𝐿𝐴𝑇𝐼𝑂𝑁 ( ) ⊲ predefined operation set

27: for each 𝑛𝑜𝑑𝑒 ∈ 𝑑𝑒𝑝_𝑛𝑜𝑑𝑒𝑠 do
28: 𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡 ← 𝑅𝐸𝑀𝑂𝑉𝐸 (source_sent, relation_set, node)
29: if 𝑙𝑒𝑛 (𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ( ) ) > 0 then
30: PRUNING(𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡,𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑡𝑟𝑒𝑒, 𝑛𝑜𝑑𝑒)

31: end if
32: if node.is_removed() then
33: 𝑔𝑒𝑛_𝑠𝑒𝑛𝑡𝑠.𝑎𝑑𝑑 (𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡 )
34: end if
35: end for
36: else
37: 𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡 ← 𝑅𝐸𝑀𝑂𝑉𝐸 (source_sent, relation_set, head) ⊲ determine whether to delete the node according

to the relation dictionary

38: if head.is_removed() then
39: 𝑔𝑒𝑛_𝑠𝑒𝑛𝑡𝑠.𝑎𝑑𝑑 (𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡 )
40: end if
41: end if
42: return 𝑔𝑒𝑛_𝑠𝑒𝑛𝑡𝑠

43: end function

the dependency structure trees on 1000 sentences randomly selected from the news [21]. We then

determine which of the above possible situations each dependency type belongs to and design the

corresponding pruning operator. Specifically, the unprunable situation maps 𝑢𝑝 operator, which

denotes the node should be retained, as it belongs to the five basic clause types. The prunable

situation maps 𝑝𝑟 operator, which denotes the node can be deleted, as it does not belongs to the
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five basic clause types and not affect the validity of the sentence. The partially-prunable situation

maps 𝑝𝑝 , which denotes the node should be deleted with its dependent node simultaneously, as

only deleting both of them does not affect the validity of the sentence. With these corresponding

operators, we establish a mapping table to determine whether the dependent node needs to be

cascaded. Details of the dependencies and the corresponding map table are presented in Table 1.

Table 1 contains four main columns, each of which has two sub-columns. The first sub-column lists

the dependency types. The second sub-column lists the three types of pruning operators (i.e., 𝑢𝑝 ,

𝑝𝑟 and 𝑝𝑝). Through the mapping table, we can determine the least nodes that can be pruned each

time. For example, given a simple sentence 𝑆 in Figure 2, we first identify the crucial semantics (i.e.,

the circled part) and then iterate over all nodes to determine if they should be deleted based on

Table 1.

Table 1. Dependency relation mapping table.

Relation Type Relation Type Relation Type Relation Type

ROOT 𝑢𝑝 iobj 𝑢𝑝 predet 𝑝𝑟 poss 𝑝𝑟

dep 𝑝𝑝 nsubj 𝑢𝑝 preconj 𝑝𝑟 prt 𝑝𝑝

aux 𝑝𝑝 dobj 𝑢𝑝 mwe 𝑝𝑝 compound 𝑝𝑟

auxpass 𝑝𝑝 det 𝑝𝑝 mark 𝑝𝑝 goeswith 𝑝𝑝

cop 𝑢𝑝 expl 𝑝𝑝 advmod 𝑝𝑟 ref 𝑝𝑝

ccomp 𝑝𝑝 amod 𝑝𝑟 neg 𝑝𝑟 xsubj 𝑢𝑝

xcomp 𝑝𝑝 nmod 𝑝𝑟 tmod 𝑝𝑟 case 𝑝𝑝

obj 𝑢𝑝 nummod 𝑝𝑝 punct 𝑢𝑝 obl 𝑝𝑟

3.2 Metamorphism-based Source Pair Generation
Once all possible pruned sentences have been generated, they should be translated into the target

language for semantics validation (Section 3.3). STP is designed to perform the metamorphic testing

for the machine translation systems 𝑀 . The most significant advantage of metamorphic testing

lies in its capability of identifying oracle information for the tests via metamorphic relations (MR).

Given a source sentence set S and the pruning operators 𝑃 , the MR is defined as a set of sentences

that can be derived from each sentence 𝑠 ∈ 𝑆 without influencing the crucial information. This MR

to test𝑀 with additional transformed sentences can be formalized as follows:

∀𝑠 ∈ 𝑆 ∧ ∀𝑝 ∈ 𝑃, 𝑀 (𝑠) = 𝑀 (𝑝 (𝑠)) (1)

Given this MR, we can simply obtain the oracle information by verifying whether it is satisfied

in the testing process of𝑀 . Under this setting, each generated sentence must be paired with the

original sentence, which will be used to check whether the relation is satisfied or violated. If a

violation is detected, we can then say that𝑀 is faulty. Specifically, each source sentence pair should

have two different pieces of text that contain the same phrase. To generate these pairs, we pair

each source sentence (i.e., original and generated) with all the generated sentences pruned from

the source sentence. For example, as illustrated in Figure 2, source sentence 𝑆1 is pruned from the

original source sentence 𝑆 by removing the word “similarly”. Meanwhile, new source sentence

𝑆2 can also be pruned from the generated source sentence 𝑆1 by removing the phrase “affecting”.

Thus, three source sentence pairs will be constructed: (1) the original sentence 𝑆 and the generated

source sentence 𝑆1; (2) the generated sentence 𝑆1 and the generated source sentence 𝑆2; and (3) the

generated sentence 𝑆2 and the generated source sentence 𝑆3.
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3.3 Consistency-based Translation Error Detection
After pruned source sentences have been generated, we feed them and the corresponding original

source sentences to the machine translation systems under test. For each original source sentence

and all generated source sentences, each machine translation system takes a source sentence and a

target language (i.e., Chinese) as inputs, and then returns a translation sentence in a target language.

Once the target sentences are collected, we need to detect erroneous translations. It is non-trivial

to detect whether a pruned sentence preserves the core semantics of the original sentence without

reporting false positives. Given an original source sentence 𝐸 = {𝑒1, 𝑒2, · · · , 𝑒𝑛}, we generate

a corresponding pruned source sentence 𝐸′ = {𝑒′
1
, 𝑒′

2
, · · · , 𝑒′𝑚} by removing several words, and

their translations are 𝑇 (𝐸) and 𝑇 (𝐸′). It is challenging to map the relation between the source

language pair (i.e., 𝐸 and 𝐸′) to the target language pair (i.e., 𝑇 (𝐸) and 𝑇 (𝐸′)). Machine translation

systems may return a sentence with a different structure for imperceptible perturbations due to the

brittleness of the neural network. Thus, following existing work [22], we adopt a bag-of-words

(BoW) model, a simple representation disregarding grammar and even word order but keeping

multiplicity, to capture the inconsistent semantics between the original and pruned sentences.

Although simple, it has been proven quite effective in some NLP tasks, such as neural machine

translation [22, 61]. For each translated pairs𝑇 (𝐸) and𝑇 (𝐸′), the distance between𝑇 (𝐸) and𝑇 (𝐸′)
is calculated by

𝑑𝑖𝑠𝑡 (𝑇 (𝐸),𝑇 (𝐸′)) = |𝐵𝑜𝑊 (𝑇 (𝐸′)) \ 𝐵𝑜𝑊 (𝑇 (𝐸)) | (2)

where 𝐵𝑜𝑊 (𝑇 (𝐸)) and 𝐵𝑜𝑊 (𝑇 (𝐸′)) denote the BoW representation of 𝑇 (𝐸) and 𝑇 (𝐸′). The \
operator denotes the set difference (i.e., how many word occurrences in 𝐵𝑜𝑊 (𝑇 (𝐸′)) but not in
𝐵𝑜𝑊 (𝑇 (𝐸). For example, the distance between “A similarly affecting scene comes a little later in

the movie” and “A affecting scene comes a little later in the movie” is 1. Following most existing

machine translation testing work [18, 21, 22, 54, 55, 60, 76], we report suspicious issues via a

pre-defined threshold value 𝑡 . If the distance is larger than the threshold value 𝑡 , the translated

pair is considered to break the consistency property and will be reported as a suspicious issue.

For example, 𝑡 = 0 represents the distance of all reported issues is larger than the threshold 0, i.e.,

there exist new word occurrences in the pruned translation but not in the original translation.

The threshold value demonstrates the degree of inconsistency in core semantics between the

original and pruned sentences, and controls the trade-off between the precision and the number of

reported suspicious issues. When we increase the threshold value 𝑡 , there exist more new words

introduced in the translation of the pruned sentence, leading to more accurate reported issues. Such

a threshold setting is also adopted in previous work[18, 21] and proves its effectiveness in detecting

translation errors. Specifically, for each original source sentence, STP reports either no issue or a

list of suspicious issues. There may exist three possible translation error types in an issue: (1) the

original source sentence has an erroneous translation, (2) the generated source sentence has an

erroneous translation, and (3) both the source sentences have erroneous translations. A suspicious

issue consists of the original source sentence, a generated source sentence, and their translations.

4 EXPERIMENTAL SETUP
4.1 ResearchQuestions
Our main research questions are as follows.

RQ1. How precise is STP at finding erroneous issues?

RQ2. How many erroneous translations does STP report?

RQ3. What type of erroneous translations does STP report?

RQ4. How efficient is STP in terms of running time?
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Table 2. Statistics of input sentences for evaluation

Corpus # of words/sentence Average # of words/sentence Total # of words Distinct # of words

Politics 12-69 23.82 2,382 1,089

Business 11-49 25.85 2,585 1,109

Culture 11-49 24.02 2,402 1,160

Sports 11-49 23.83 2,383 1,035

Tech 11-38 21.17 2,117 1,009

Travel 10-63 21.74 2,174 1,018

Health 11-47 22.30 2,230 877

Life 11-46 24.88 2,488 1,112

Legal 11-52 23.74 2,374 967

Opinion 11-48 22.07 2,207 796

Politics* 4-32 19.20 1,918 933

Business* 4-33 19.50 1,949 944

4.2 Machine Translation Systems
Our experiment considers two state-of-the-art industrial machine translators. The former is Google

Translate, and the latter is Bing Microsoft Translator [16, 40]. Both of them are widely used machine

translation services developed by Google and Microsoft, and have been widely adopted in recent

machine translation testing work [18, 21, 22, 54]. Specifically, we invoke the APIs provided by

Google Translate and Bing Microsoft Translator to obtain the translation results, which are identical

to those returned by their Web interfaces.

4.3 Dataset
Following previous machine translation testing work [18, 21], we collect real-world source sentences

from the news. Specifically, we randomly collect the latest articles from CNN (Cable News Network)

[10], China Daily [11], BBC (British Broadcasting Corporation) [1] and Reuters [48]. To evaluate

whether STP consistently performs well on sentences of different semantic contexts, the articles

are extracted from ten categories: Business, Culture, Lifestyle, Sports, Politics, Travel, Technology,

Healthy, Opinion and Legal. For each category, we extract its main text contents, and split them into

a list of sentences. Then we randomly select 100 syntactically and semantically correct sentences

from each category. We also experiment on a widely-adopted dataset from previous machine

translation testing work [18, 21, 22] containing 200 sentences. Specifically, the dataset consists

of articles from two categories: Politics and Business, where each dataset contains 100 English

sentences. In total, we have 1,200 sentences from ten major categories of news sites as the initial

sentence corpus for STP and other baselines in the experiment. To the best of our knowledge, this

is the largest evaluation dataset for machine translation testing so far.

Statistics of the dataset are illustrated in Table 2. The first column lists the twelve dataset

categories, where the first ten rows denote the sentence collected in our work and the last two rows

denote the sentences from He et al. [18, 21, 22]. The second column lists the minimum-maximum

number of words and the third column lists the average number of words for all sentences in the

category. Similarly, the fourth column lists the total number of words that appear in all sentences.

The fifth column lists the number of non-repetitive words in all sentences. For example, sentences

in Culture dataset contain 11-49 words (the average is 24.02 words) and they contain 2,402 words

and 1,160 non-repetitive words in total.
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4.4 Labelling
An issue contains a pair of source sentences, where the first one is the original sentence and the

second is the generated sentence. To construct the labelling process, we invite 20 graduate students

in our experiment. All of them have more than 10 years of English learning experience and are

all native speakers of Chinese. Before the formal labelling process, we provide documents and

presentation videos as a guide to all participants, to ensure they fully understand the labelling

procedure. Specifically, the participants identify whether the source sentences in the reported

issue contain any syntax or semantic error. If both source sentences are invalid in the issue, it is

labeled as a false positive. Then, for the remaining issues, the participants check whether there is

an erroneous translation for the valid source sentence(s). If so, the participants count the reported

issue as a true positive. Otherwise, the reported issue is labeled as a false positive. Finally, the

participants decide which source sentence(s) in this issue cause(s) the translation error(s).

As we manually label the issues, it is inevitable to introduce subjectivity. To minimize such

subjectivity, we assign each issue to two different participants. When there exists a disagreement,

all the participants would involve to have an open discussion to resolve it
3
. Moreover, we mix issues

reported by our system and the ones from other systems, and thus the participants are unaware of

whether an issue is reported using our system or not. Thus, we believe that the human labelling

process can provide reliable ground truth information in our experiment.

4.5 Comparison
To evaluate the performance of STP, following the most recent work [55], we compare it with five

state-of-the-art machine translation testing techniques: SIT, TransRepair, RTI, PatInv and CAT.
To our knowledge, our work is the largest evaluation study on machine translation testing so far.

We obtain the source code of the first four techniques from the TestTranslation toolkit [20] and

CAT from the previous study [55].

Specifically, TransRepair adopts four similarity metrics (i.e., LCS-based metric, ED-based metric,

tf-idf-based metric and BLEU-based metric) for measuring inconsistency. Following existing work

[22], we select ED-based metric (referred to as TransRepair-ED) in our study because it achieves the

highest precision and detects the second largest number of translation errors among four metrics

on Google Translate. PatInv has two variants to generate sentences with a different meaning, i.e.,

replacing one word in a sentence with a non-synonymous word (referred to as PatInv-Replace)

and removing a meaningful word or phrase from the sentence (referred to as PatInv-Remove). In

this work, we select PatInv-Replace because it performs significantly better than PatInv-Remove in

terms of precision and the number of erroneous translations. SIT adopts three different metrics (i.e.,

edit distance, constituency set distance, and dependency set distance) for evaluating the distance

between target sentences. We select the dependency set distance metric (referred to as SIT-Dep) in

our study as it has the best performance on top-1 precision for both Google Translate and Bing

Microsoft Translator [21]. CAT identifies word replacement with isotopic replacement and adopts

the same similarity metrics in TransRepair. Following the original work [55], we use LCS-based

metric to represent CAT (referred to as CAT-LCS) in our evaluation.

4.6 Experimental Environments
All experiments (including STP and baselines) are conducted on Ubuntu 16.04 with 16GB RAM and

6 Intel Core i7-10710U CPUs. For sentence parsing, we adopt a shift-reduce parser [79] which is

implemented in Stanford CoreNLP toolkit [17]. Our experiments consider the English→ Chinese

language setting because of the knowledge background of the authors.

3
The Cohen’Kappa score is 0.93 on average.
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5 EVALUATION

5.1 Precision on Finding Erroneous Issues
STP aims to automatically detect erroneous issues for machine translation systems using arbitrary

sentences. Thus, we evaluate the effectiveness of STP from two aspects: (1) how many erroneous

issue STP is able to report; and (2) the precision of the erroneous issue reported by STP.

5.1.1 Evaluation Metric. Given a list of unlabeled, monolingual source language sentences, the

output of STP is a list of suspicious issues 𝐼 . A suspicious issue 𝔦 contains (1) an original sentence, 𝐸,

in the source language, and its translation sentence,𝑇 (𝐸), in target language; (2) a pruned sentence,

𝐸′, in the source language, and its translation sentence, 𝑇 (𝐸′), in target language. We define the

precision as the percentage of erroneous issues, where there exist translation error(s) in 𝑇 (𝐸) or
𝑇 (𝐸′). Formally, for a suspicious issue 𝑝 , we set 𝑒𝑟𝑟𝑜𝑟 (𝑝) to 𝑡𝑟𝑢𝑒 , if 𝑇 (𝐸) or 𝑇 (𝐸′) has translation
error(s), otherwise we set it to 𝑓 𝑎𝑙𝑠𝑒 . Given a list of suspicious issues, the precision is calculated by

the number of erroneous issues divided by the total number of reported suspicious issues:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑
𝑝∈𝑃 1{𝑒𝑟𝑟𝑜𝑟 (𝑝)}

|𝑃 | (3)

where 1 denotes whether a suspicious issue 𝑝 contains translation error(s) and |𝑃 | denotes the
number of suspicious issues returned by STP.

5.1.2 Results. The details of the comparison results are presented in Table 3. The first column

lists the twelve dataset categories and two machine translation systems. The second column lists

the precision results of STP under different thresholds 𝑡 . STP reports the suspicious issue if the

distance between the translated original sentence and translated pruned sentence is larger than a

threshold 𝑡 . For example, STP with 𝑡 = 0 means there exist new word occurrences in the pruned

sentence translation but not in the original sentence translation. Similarly, STP with 𝑡 = 12 means

the number of new word occurrences in the pruned sentence translation but not in the original

sentence translation is larger than 12. The remaining columns list the precision results of the

five compared techniques. We also present the total results calculated by the all twelve dataset

categories in the middle part and bottom part of Table 3. Each cell is represented as 𝑥 (𝑦), where 𝑥
refers to the precision value (defined in Equation 3) and the 𝑦 refers to the number of all issues

reported by the studied techniques.

Table 3 shows when the threshold value is at its lowest (i.e., 𝑡 = 0), STP is able to report 2,140

and 2,128 erroneous issues with a 64.5% and 65.4% precision on average for Google Translate and

Bing Microsoft Translator. For example, when testing Google Translate with Business* dataset, STP

reports 1,254 erroneous issues, while 1,094 of them contain translation errors. We also show STP

results under different threshold values, which represent the degree of inconsistency in reported

issues. In general, we will reasonably achieve less number of issues by setting a larger threshold

value, but with a higher precision. For example, we can obtain 118 erroneous issues overall for

Google Translate when 𝑡 = 10, which achieves 27% precision improvement against 𝑡 = 0. More

importantly, we can achieve 100% precision with Politics* dataset for the both translators when

𝑡 > 4.

We also compare STP under different threshold values against state-of-the-art techniques. For

direct comparison, we focus on the top-1 (i.e., the translation that is most likely to contain errors)

results of SIT, because SIT returns top-𝑘 results for each original sentence. In particular, the top-1

output of SIT contains (1) the original sentence and its translation and (2) the top-1 generated
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Table 4. The number of detected translation errors

STP SIT PatInv RTI TransRepair CAT

Google Politics 379 11 36 31 11 134

Google Business 683 15 3 46 18 124

Google Culture 552 7 17 40 17 102

Google Sport 320 17 217 42 42 84

Google Tech 363 5 15 12 9 217

Google Travel 604 3 10 32 14 189

Google Health 305 16 15 27 20 171

Google Life 380 7 18 33 16 158

Google Legal 354 13 15 32 7 157

Google Opinion 344 10 19 37 9 100

Google Politics* 372 69 79 62 85 136

Google Business* 417 57 76 51 75 173

Google Sum 5,073 230 520 445 323 1,745

Bing Politics 485 13 13 39 12 134

Bing Business 535 17 6 41 18 130

Bing Culture 579 5 3 65 11 149

Bing Sport 257 17 24 62 31 177

Bing Tech 388 9 4 13 6 225

Bing Travel 718 5 9 26 12 169

Bing Health 312 16 12 39 17 144

Bing Life 395 12 7 49 25 130

Bing Legal 352 19 15 50 11 167

Bing Opinion 422 7 25 39 7 84

Bing Politics* 334 67 50 55 45 132

Bing Business* 323 52 44 61 69 162

Bing Sum 5,100 239 212 539 264 1,803

sentence and its translation. TransRepair reports a list of suspicious sentence pairs and we regard

each reported pair as a suspicious issue.

If we want to detect as many erroneous issues as possible, STP with a lowest threshold (i.e.,

𝑡 = 0) is able to find 831 ∼ 3,185 erroneous issues, improving state-of-the-art techniques by at

least 400% on all datasets with competitive precision. For example, when testing Google Translate

with Business* dataset, STP reports 1,094 erroneous issues with 87.2% precision, while SIT, PatInv,

RTI, TransRepair and CAT only reports 38, 75, 58, 74 and 168 erroneous issues with less than

80% precision, respectively. If we want to get more accurate results, STP is able to outperform

state-of-the-art techniques for both translators on average when 𝑡 > 0. For example, compared

with SIT, PatInv, RTI, TransRepair and CAT, STP with 𝑡 = 6 improves the precision by 22.9%,

19.9%, 38.9%, 17.7% and 19.8% when testing Google Translate, by 22.0%, 47.2%, 38.9%, 27.4%, 18.2%

when testing Bing Microsoft Translator with a comparable amount of erroneous issues. In Table 3,

bold cells indicate the optimal precision among STP with 𝑡 = 6, SIT, PatInv, RTI, TransRepair and

CAT. In detail, STP achieves better precision performance on 22 testing scenarios, while CAT and

SIT outperform on Tech and Health datasets when testing Google Translate and Bing Microsoft

Translator, respectively. We believe the results have shown the superiority of STP. As real-world

source sentences are almost unlimited (e.g., news network), we could always set a high 𝑡 to get

valuable erroneous issues with high precision.
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Figure 3. Erroneous translations by different approaches

5.2 Erroneous Translations
We have presented that STP achieves a much better performance in terms of the number of reported

issues with comparable precision. In this section, we further analyze how many translation errors

STP is able to detect. For all reported erroneous issues in Table 3, we use exact matching to remove

duplicated erroneous translations. Thus, we identify all unique translation errors in erroneous

issues (i.e., the same translation error will be counted only once no matter how many times it

appears).

5.2.1 Number of Erroneous Translations. We present the number of translation errors in Table

4. The first column also lists the twelve dataset categories and two machine translation systems,

and the remaining columns show the number of erroneous translations detected by STP and five

compared techniques, respectively. The results of total detected erroneous translations under all

the twelve dataset categories when testing Google Translate and Bing Microsoft Translator are also

listed in the middle part and bottom part of Table 4. The best results are shown in bold. From Table

4, STP detects 257∼ 718 erroneous translations, which is significantly better than other techniques

(3∼69 for SIT, and 3∼217 for PatInv, 12∼65 for RTI, 7∼85 for TransRepair and 84∼225 for CAT). On
average, STP outperforms the most recent technique CAT by 290% and 282% for Google Translate

and Bing Microsoft Translator, respectively. It is fundamentally difficult for STP to achieve much

better performance in terms of the number of reported erroneous translations with comparable

precision. We observe that STP can generate a large number of pruned sentences for almost all

original sentences by recursively removing contextual words, while existing work can only test a

small number of original sentences due to the limitation of adopted DL models. If we intend to have

a higher precision by setting a larger threshold value, we will reasonably obtain fewer erroneous

translations.

5.2.2 Overlap of Erroneous Translations. We further analyze the overlap of translation errors found

by STP and other techniques. We show STP with four best-performing compared techniques due

to page limit. Specifically, TransRepair is not included, as CAT is an extension of TransRepair and

achieves better performance in terms of precision and the number of erroneous issues. Figure 3

presents the erroneous translations reported by different approaches via Venn diagrams.
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Figure 3 shows 7,500 erroneous translations from Google Translate and 7,337 erroneous trans-

lations from Bing Microsoft Translator can be detected by the combination of all approaches,

resulting in 14,837 erroneous translations in our experiment. Particularly, there are 9,392 erroneous

translations unique to STP, while there are 293, 713, 727, 2,894 erroneous translations unique to SIT,

PatInv, RTI and CAT, respectively. The improvement reaches 711.93% on average. After inspecting

all the erroneous translations, we observe that STP is effective at reporting translation errors for

both original and pruned sentences (illustrated in Section 2.3). Meanwhile, the unique errors to

RTI are mainly from the extracted phases, which have similar translations in different contexts.

The unique errors to CAT mainly come from similar sentences of one number difference (e.g.,

“good”→ “bad”). We also find there are 219 and 249 erroneous translations that can be detected by

both STP and CAT. After our careful analysis, the overlapped errors are mostly the original source

sentences. The high degree of overlap demonstrates that STP and the most recent technique CAT

are quite effective in detecting errors for original sentences. We will discuss it further in Section

5.2.3. For example, in Table 5, we present an example that Google Translate mistranslates where

“to thread right now” is not translated. This erroneous translation can be detected by both STP

and CAT. STP generates a pruned sentence “It’s a very, very difficult path for banks to tread right

now, Knightley said.” by removing a word “central”, while CAT generates a similar sentence “It ’ s a

very, very difficult line for central banks to tread right now, Knightley said.” by replacing “path”

with “line”. The translation results of the two generated sentences contain the missing translation

text in the original sentence. Based on these results, we believe our approach complements the

state-of-the-art approaches.

Table 5. Example of overlapping erroneous translation

Source sentence

It’s a very, very difficult path for central banks to tread right now, Knightley

said.

Target sentence

奈特利说，对于中央银行来说，这是一条非常非常困难的道路。 (By

Google) [Erroneous Translation: “to tread right now" is not translated.]

Target meaning It’s a very, very difficult path for central banks, Knightley said.

5.2.3 Number of Original Erroneous Translations. Although STP is able to report a large number of

erroneous translations for a given sentence corpus, its performance in detecting original erroneous

translations is also crucial. For example, as shown in Section 2.3, if the user adopts existing

machine translation testing tools to examine the news translated by Google Translate, most of the

reported erroneous translations are sentences generated by the machine translation tools. Such a

low detection probability of the original sentences may limit the application of existing machine

translation testing techniques in practice.

Thus, we further investigate the results of translation errors for the original sentences, which is

presented in Table 6. The first column lists the twelve dataset categories and twomachine translation

systems, and the remaining columns show the number of erroneous translations for the original

sentences detected by STP and five compared techniques, respectively. Each cell is represented as

𝑥 (𝑦), where 𝑥 is the recall value (i.e., the ratio of reported translation errors only for the original

sentences over all the real translation errors) and 𝑦 is the number of all erroneous translations for

the original source sentences. The best results are shown in bold. We also show the total number of

original erroneous translations on all twelve dataset categories and its corresponding recall value

in the middle part and bottom part of Table 6 for Google translate and Bing Microsoft Translator,

respectively.
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Table 6. The recall of translation errors for original sentences

STP SIT PatInv RTI TransRepair CAT

Google Politics 69%(54) 6%(5) 3%(2) 19%(15) 5%(4) 50%(39)

Google Business 66%(53) 9%(7) 3%(2) 19%(15) 7%(6) 45%(36)

Google Culture 81%(64) 3%(2) 0%(0) 20%(16) 8%(6) 35%(28)

Google Sport 75%(41) 13%(7) 5%(3) 25%(14) 24%(13) 45%(25)

Google Tech 72%(57) 3%(2) 0%(0) 3%(2) 5%(4) 77%(61)
Google Travel 91%(49) 2%(1) 2%(1) 17%(9) 9%(5) 83%(45)

Google Health 56%(37) 9%(6) 0%(0) 14%(9) 12%(8) 73%(48)
Google Life 68%(44) 3%(2) 0%(0) 12%(8) 8%(5) 66%(43)
Google Legal 62%(41) 9%(6) 3%(2) 23%(15) 5%(3) 65%(43)
Google Opinion 69%(35) 8%(4) 0%(0) 25%(13) 8%(4) 55%(28)

Google Politics* 80%(64) 45%(36) 4%(3) 28%(22) 4%(3) 45%(36)

Google Business* 81%(65) 30%(24) 0%(0) 23%(18) 0%(0) 64%(51)

Google Sum 73%(604) 12%(102) 2%(13) 19%(156) 7%(61) 58%(483)

Bing Politics 82%(69) 8%(7) 1%(1) 15%(13) 4%(3) 42%(35)

Bing Business 87%(69) 11%(9) 0%(0) 11%(9) 11%(9) 35%(28)

Bing Culture 77%(63) 0%(0) 0%(0) 22%(18) 4%(3) 49%(40)

Bing Sport 52%(38) 11%(8) 1%(1) 29%(21) 15%(11) 74%(54)

Bing Tech 73%(63) 2%(2) 0%(0) 2%(2) 5%(4) 74%(64)
Bing Travel 80%(64) 3%(2) 0%(0) 5%(4) 9%(7) 53%(42)

Bing Health 59%(42) 10%(7) 1%(1) 25%(18) 11%(8) 65%(46)
Bing Life 85%(58) 6%(4) 0%(0) 16%(11) 13%(9) 51%(35)

Bing Legal 65%(52) 11%(9) 0%(0) 14%(11) 5%(4) 72%(58)
Bing Opinion 92%(54) 3%(2) 0%(0) 19%(11) 5%(3) 32%(19)

Bing Politics* 78%(58) 42%(31) 3%(2) 28%(21) 3%(2) 41%(30)

Bing Business* 74%(62) 29%(24) 1%(1) 29%(24) 1%(1) 58%(49)

Bing Sum 75%(692) 11%(105) 1%(6) 18%(163) 7%(64) 54%(500)

From Table 6, we find STP achieves a recall of 73% for detecting original erroneous translations

when testing Google Translate, which outperforms state-of-the-art techniques by 53.4% on average

(61% for SIT, 71% for PatInv, 54% for RTI, 66% for TransRepair and 15% for CAT). Similar comparison

performance can be observed for Bing Microsoft Translator (the improvement is 56.8% on average).

The performance of detecting original erroneous translations is crucial in practice. Existing works

can only test a small number of original sentences, leading to a small recall of errors. STP can

generate pruned sentences with different structures for a given original sentence, and detect

more original erroneous translations per category. We believe the improvements (especially for

original sentences) can make contributions to pushing machine translation testing forward in the

SE community.

5.3 Types of Reported Erroneous Translation
In this section, we evaluate the effectiveness of STP by further analyzing the diversity of detected

translation errors. In the literature [18, 21, 22], the translation errors are mainly divided into

five types: under-translation, over-translation, word/phrase mistranslation, incorrect modification,

and unclear logic. We analyze all unique translation errors detected by STP in Section 5.2 and

classify each error into at least one type. We report that STP is able to detect all these five types of

translation errors.

Table 7 presents the number of translations that have a specific type of error. The first column

lists the twelve dataset categories and two machine translation systems, and the remaining columns
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Table 7. The number of translation errors in each category

under over word/phrase incorrect unclear

translation translation mistranslation modification logic

Google Politics 53%(246) 10%(48) 13%(61) 10%(46) 13%(61)

Google Business 28%(255) 13%(122) 34%(312) 7%(59) 17%(158)

Google Culture 25%(172) 12%(85) 38%(266) 7%(50) 18%(124)

Google Sport 20%(89) 4%(19) 45%(200) 8%(34) 23%(101)

Google Tech 64%(265) 8%(32) 19%(78) 4%(17) 5%(20)

Google Travel 67%(472) 3%(20) 17%(122) 2%(16) 11%(77)

Google Health 38%(149) 20%(79) 28%(109) 8%(32) 7%(27)

Google Life 39%(198) 10%(53) 22%(110) 10%(50) 19%(94)

Google Legal 61%(230) 8%(29) 29%(107) 1%(5) 1%(3)

Google Opinion 41%(159) 34%(132) 10%(39) 11%(42) 3%(13)

Google Politics* 26%(111) 15%(63) 32%(137) 9%(38) 18%(77)

Google Business* 38%(210) 18%(98) 22%(119) 5%(26) 17%(96)

Google Sum 41%(2,556) 12%(780) 27%(1,660) 7%(415) 14%(851)

Bing Politics 36%(221) 19%(119) 28%(170) 9%(57) 8%(47)

Bing Business 46%(297) 16%(102) 21%(136) 3%(17) 15%(100)

Bing Culture 70%(435) 10%(60) 6%(38) 8%(52) 6%(39)

Bing Sport 22%(77) 13%(44) 36%(124) 12%(41) 17%(58)

Bing Tech 68%(307) 12%(56) 8%(36) 3%(15) 9%(40)

Bing Travel 50%(396) 9%(68) 23%(183) 5%(39) 14%(112)

Bing Health 47%(173) 15%(56) 24%(88) 6%(21) 9%(32)

Bing Life 40%(204) 4%(22) 30%(152) 7%(38) 18%(94)

Bing Legal 49%(191) 6%(22) 32%(125) 7%(28) 7%(26)

Bing Opinion 29%(151) 22%(115) 27%(140) 9%(47) 12%(61)

Bing Politics* 31%(143) 10%(46) 33%(152) 8%(35) 18%(82)

Bing Business* 23%(96) 15%(61) 35%(144) 8%(33) 20%(81)

Bing Sum 44%(2,691) 13%(771) 24%(1,488) 7%(423) 13%(772)

list the comparison results for the five error categories. The total results under all the twelve dataset

categories are also shown in the middle part and bottom part of Table 7. The comparison result

in each cell is represented as 𝑥 (𝑦), where 𝑥 is the ratio of translation errors in this error category

over the translation errors in all five error categories and 𝑦 is the number of erroneous translations

in this category. We can observe that Google Translate and Bing Microsoft Translator have a very

similar distribution of error types overall. For example, under-translation is the most common

translation error, with over 2,500 errors for both translators. We think the occurrence is related to

our pruning mechanism, as the removed words in the source sentence can be effectively reflected on

the translation result. Moreover, different dataset categories have diverse performances regarding

the error types. For example, the Travel dataset has more than 700 erroneous translations, while the

Legal dataset has only less than 400 errors for both translators. We think the occurrence is closely

related to the training data. This indicates there exists an imbalance issue with existing training

data in different categories of datasets, which is out of the scope of our work. We highly recommend

the researchers conduct thorough evaluations for neural machine translation imbalance issues and

explore how machine translation systems perform under different categories of datasets.

We also list examples the five types of erroneous translation detected by STP in Table 8 to Table

12. The first row shows the source sentence that is mistranslated by the translators. The second

row shows the translated sentence in the target language and explanation of the error. The third
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row shows the meaning of translated sentence in the source language. We present the types of

erroneous translation in detail as follows.

5.3.1 Under-translation. Under-translation means that some words in the source language sentence

are not translated to the target language sentence. For example, in Table 8, the source sentence

emphasizes that there is no limit on the number of things to borrow, while “as much as they need” is

not translated by Google Translate
4
. Under-translation often leads to the lack of crucial information

and different semantics meanings between the source sentence and the target sentence.

Table 8. Example of under-translation error detected

Source sentence

But parents of undergraduates and graduate students face no such limits, and

can borrow as much as they need with the price tag set by schools.

Target sentence

但是，本科生和研究生的父母没有这种限制，他们可以根据学校设定的价
格向他们借钱。(By Google) [Erroneous Translation: “as much as they need" is
not translated.]

Target meaning

But parents of undergraduates and graduate students face no such limits, and

can borrow with the price tag set by schools.

5.3.2 Over-translation. Over-translation means that some words in the target language sentence

are not translated from any words in the source sentence or translated multiple times unnecessarily.

For example, in Table 9, “the almost anxiety provoking magnitude” is translated twice by Google

Translate in the target, while this phrase only appears once in the source sentence
5
. Besides, the

“locations” is translated into “business locations” by Google Translate, while “business” does not

appear in the original sentence
5
. Over-translation often brings unnecessary information in the

target sentence and easily misleads people.

Table 9. Example of over-translation error detected

Source sentence

You should be agonizingly jealous of the sorts of problems we work on and the

almost anxiety provoking magnitude of data with which we get to work.

Target sentence

您应该非常嫉妒我们正在处理的各种问题，以及几乎令人不安的令人

不安的数据量。(By Google) [Erroneous Translation: “anxiety provoking" is
translated twice.]

Target meaning

You should be agonizingly jealous of the sorts of problems we work on and the

almost anxiety provoking anxiety provoking magnitude of data.

Source sentence

Imagine if you are a very large retailer that has a large number of locations, said

Martin Fleming.

Target sentence

马丁·弗莱明（Martin Fleming）说，想像一下，如果您是一家拥有大量营

业地点的大型零售商。(By Google) [Erroneous Translation: “location" is trans-
lated into “营业地点”, where “营业” does not appear in the source sentence.]

Target meaning

Imagine if you are a very large retailer that has a large number of

business locations, said Martin Fleming.

4
https://edition.cnn.com/2019/03/18/politics/trump-student-loan-limit-cap/index.html. Accessed August, 2022.

5
https://edition.cnn.com/2019/03/13/tech/amazon-economists/index.html. Accessed August, 2022.
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5.3.3 Word/phrase Mistranslation. Word/phrase Mistranslation means that words or phrases in

the source sentence are translated incorrectly to the target sentence. For example, in Table 10, “the

elite University of California system” is translated to “the elite university system at the University

of California”
6
. Besides, “the rugged campaign images” is mistranslated into “the election images”,

while the original sentence describes a perfume advertising campaign
7
.

Table 10. Example of word/phrase mistranslation error detected

Source sentence

The elite University of California system has significantly increased its Latino

enrollment.

Target sentence

加州大学的精英大学系统极大地增加了拉丁裔的入学率。(By Google)

[“The elite University of California system" is incorrectly translated into “加州大

学的精英大学系统” which means “The elite university system at the University
of California”.]

Target meaning

The elite university system at the University of California has significantly in-

creased Latino enrollment.

Source sentence

The actor’s fans propose that the rugged campaign images were a unanimous

societal response to the question.

Target sentence

这位演员的粉丝认为，粗犷的竞选形象是对这个问题的一致社会回

应。(By Google) [“campaign images" is incorrectly translated into “竞选形
象”, and the correct translation should be “活动图片” in the news article.]

Target meaning

The actor’s fans propose that the rugged election images were a unanimous

societal response to the question.

5.3.4 Incorrect Modification. Incorrect Modification means that some adjuncts modify the wrong

elements in the target sentence. For example, in Table 11, “leaders” is modified by “who mimic his

own brashness and disregard for political norms” in the source sentence, while the clause modifies

another element “those” in the target sentence
8
.

Table 11. Example of incorrect modification error detected

Source sentence

In a world of perceived foes, Trump has often looked to leaders who mimic his

own brashness and disregard for political norms as allies.

Target sentence

在一个充满敌意的世界中，特朗普经常寻找模仿自己的傲慢并无视政
治规范作为盟友的领导人。(By Google) [Erroneous Translation: “leaders" is
incorrectly modified by “allies”.]

Target meaning

In a world of perceived foes, Trump has often looked to those who mimic his

own brashness and disregard for political norms as allies’ leaders.

6
https://edition.cnn.com/2019/03/19/politics/college-education-scandal-inequality-higher-education/index.html. Accessed

August, 2022.

7
https://edition.cnn.com/style/article/adam-driver-burberry-ltw/index.html. Accessed August, 2022.

8
https://edition.cnn.com/2019/03/19/politics/donald-trump-jair-bolsonaro-brazil-white-house/index.html. Accessed August,

2022.
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5.3.5 Unclear Logic. Unclear Logic means that all the tokens or phrases are translated correctly but

the sentence logic is not correct. For example, in Table 12, “The UC Latino students” and “Latinos

in the community college system” are two objects for comparison
6
. However, Google Translate

does not understand the logical relation between them and thinks “the community college system”

is the context of the sentence. Although all words are correctly translated, the target sentence has

a totally different meaning from the source sentence.

Table 12. Example of unclear logic error detected

Source sentence

The UC Latino students are 25 times more likely to finish their degrees on time

than Latinos in the community college system.

Target sentence

在社区大学系统中，加州大学拉丁裔学生按时完成学位的可能性是拉丁裔

的25倍。(By Google) [Erroneous Translation: “in the community college system"

is incorrectly translated as the context in the target sentence.]

Target meaning

In the community college system, the UC Latino students are 25 times more

likely to finish their degrees on time than Latinos.

5.4 Efficiency of Our Approach
In this section, we analyze the efficiency of STP in terms of the running time. Following existing

studies [18, 21, 22, 55], we run all involved techniques and report their time consumption on the

same initial corpus (discussed in Section 4.3) and hardware environment (discussed in Section 4.6)

to ensure a fair comparison. It is worth noting that, unlike the fuzzing research [29] that usually sets

the same time budget, we execute all techniques without a corresponding time limit. The difference

lies in that, fuzzing mainly focuses on test input generation, which can generate unlimited inputs to

induce software systems crashes, thus often requiring a time limit to terminate execution. However,

machine translation testing mainly relies on metamorphic testing, which designs metamorphic

relations (discussed in Section 3.2) and generates a limited number of test inputs to violate the

relation, thus resulting a in limited running time overall. Thus, we evaluate the running time of STP

on the twelve datasets and two translators, which is a common practice in the machine translation

testing community [54]. To mitigate the effect of randomness, following existing studies [21, 22],

we repeat STP 10 times in the same experimental setting and report the average running time. Table

13 presents the average comparison results when testing the two translators. The first column lists

STP and five compared techniques. The second column lists the number of generated sentences,

the average time (in seconds) for each sentence generation, translation collection, and erroneous

translation detection. The remaining columns list the detailed running time of the twelve dataset

categories and their average time. We also present the average running time in the last row of each

technique under the twelve dataset categories. The best results per dataset category are in bold.

Each cell is represented as 𝑥 (𝑦), where 𝑥 refers to the total running time per dataset category and

𝑦 refers to the overall running time per sentence.

From Table 13, we can find that STP spends about 6 minutes per dataset category on average.

Specifically, the step of collecting translation results via the translator API takes up over 60% of

the total running time. In our implementation, we invoke the translator API once for each source

sentence and thus the network communication time is included. Table 13 also presents the running

time of state-of-the-art techniques using the same experimental settings. We find that STP takes

149.8% and 442.5% more running time than RTI and TransRepair, but it can generate 392.8% and

1886.2% more sentences per dataset category on average. Meanwhile, STP takes 15.8% and 9.3% less

running time than SIT and CAT, with 9.5% and 90.1% more sentences than SIT and CAT. We also
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find that only PatInv generate more sentence than STP by 441.0%, but it consumes 570.7% more

running time than STP.

On average, Table 13 shows STP requires 0.39 seconds for each sentence generation, transla-

tion collection, and erroneous translation detection, improving the efficiency of state-of-the-art

techniques by 22.0%∼46.6%. Specifically, STP consumes 0.09 seconds to generate a sentence, which

is 52.6% and 35.7% faster than PatInv and CAT. This improvement is attributed to the fact that,

STP, unlike most techniques, does not require the employment of large-scale language models.

Among these techniques, TransRepair relies on a dictionary of similar words to directly perform

word replacement, thus taking the least time cost (0.01 seconds per sentence). The generation of

the dictionary consumes more than 11 hours in our experiment setting, which is not mentioned

in Table 13. Compared with STP, CAT directly adopts BERT to perform word replacement and

candidate filtering, resulting in more generation time (0.14 seconds per sentence). We find STP

takes about 0.02 seconds to detect erroneous translation on average, improving state-of-the-art

techniques (except PatInv) by 50%∼92.6%, as the bag-of-words metric is very lightweight and fast

in practice. PatInv adopts a simple string comparison to compare the translations of the original

and generated sentences, so PatInv performs best for erroneous translation detection (0.01 seconds

on average). Regarding translation collection, we use the same translator API to get the translation

results, so the time cost is similar across different techniques. We also find the translation time of

STP is 15.2%∼49.1% faster than other techniques. Similar findings can be observed for RTI. This is

mainly because most of the source texts that need to be translated are phrases or pruned sentences

rather than complete sentences in the dataset. Based on the above observations, it is concluded

that STP achieves comparable efficiency to state-of-the-art techniques in terms of running time.

6 DISCUSSION
6.1 Syntactic Tree Pruning
Most existing works [18, 21, 54, 55] usually adopt language models to generate sentences with same

structures by word-replacing (e.g., synonym replacement). They can only detect errors related to

same structures, while failing to detect errors revealed by different structures (mentioned in Section

2). We propose the crucial semantics invariance metamorphic relation to generate sentences with

different structures, which is beyond the scope of existing works. The results demonstrate it is

quite effective for STP to trigger machine translation errors with different structures, and achieve a

higher recall of erroneous translations for the original sentences. We highlight this direction to

generate inputs with different structures to test machine translation systems. Meanwhile, it is more

practical to generate sentences using pre-defined operators instead of language models, as recent

work shows training and deploying language models are quite costly for developers and users [58].

Besides, the pre-defined operators are designed based on all available dependency types and can

generate simple sentences with various structures and are generally applicable to other SE tasks,

such as testing question answering systems by asking questions with different structures [4].

6.2 Robust Machine Translation
Compared with traditional software systems directly encoded in source code, it is more difficult to

repair machine translation errors because the decision logic of neural machine translation models

lies in the complex network structure and a large corpus of data. Even if a fault-triggering test case

(e.g., source language sentence) can be identified, how to automatically repair the model without

introducing new errors is still a long-standing challenging task. However, we report it is significant

to use translation errors to improve machine translation systems.
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Table 13. Running time of different approaches

PO BU CU SP TE TR HE LI LE OP PO* BU* AVE

S
I
T

Sentence 405 817 578 1259 601 195 525 611 687 710 2084 1941 867.7

Generation 0.05 0.03 0.03 0.03 0.03 0.05 0.04 0.03 0.03 0.03 0.03 0.02 0.03

Translation 0.42 0.46 0.44 0.45 0.42 0.44 0.43 0.42 0.42 0.46 0.39 0.37 0.42

Detection 0.08 0.05 0.06 0.04 0.06 0.02 0.04 0.03 0.04 0.04 0.09 0.03 0.05

Total

259.3 486.7 349.8 693.2 342.9 143.4 311.0 338.6 374.6 421.2 1089.3 865.1 472.9

(0.55) (0.54) (0.53) (0.52) (0.51) (0.51) (0.51) (0.48) (0.49) (0.53) (0.51) (0.42) (0.50)

P
a
t
I
n
v

Sentence 3293 4262 3599 6972 3877 1846 3731 3347 4036 3884 11581 11251 5139.9

Generation 0.11 0.27 0.21 0.23 0.14 0.11 0.17 0.21 0.2 0.27 0.16 0.16 0.19

Translation 0.44 0.44 0.37 0.42 0.43 0.48 0.43 0.47 0.45 0.51 0.44 0.44 0.44

Detection 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Total

1357 2743.1 2017.4 4194.8 1726.5 726.3 2001.9 2018.2 2069.9 2453.3 5552.5 5188.9 2670.8

(0.56) (0.72) (0.59) (0.66) (0.58) (0.60) (0.61) (0.69) (0.66) (0.79) (0.61) (0.61) (0.64)

R
T
I

Sentence 189 230 228 159 205 219 167 236 192 179 154 155 192.7

Generation 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.07 0.04 0.05 0.06

Translation 0.35 0.32 0.30 0.35 0.32 0.35 0.31 0.35 0.37 0.33 0.28 0.29 0.33

Detection 0.31 0.26 0.23 0.27 0.25 0.27 0.23 0.29 0.32 0.29 0.22 0.24 0.27

Total

171.2 180 167.2 145.7 162.2 184.0 131.6 200.3 182.6 157.8 110.6 119.8 159.4

(0.73) (0.65) (0.60) (0.69) (0.64) (0.68) (0.60) (0.70) (0.75) (0.69) (0.54) (0.58) (0.66)

T
r
a
n
s
R
e
p
a
i
r

Sentence 41 72 46 88 36 30 44 69 35 41 32 40 47.8

Generation 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Translation 0.46 0.51 0.48 0.53 0.47 0.51 0.43 0.59 0.49 0.46 0.37 0.38 0.48

Detection 0.05 0.04 0.05 0.05 0.04 0.10 0.05 0.07 0.07 0.07 0.04 0.05 0.05

Total

67.0 90.9 73.3 104.4 65.2 68.9 64.0 104.0 69.1 68.0 50.2 55.9 73.4
(0.52) (0.55) (0.54) (0.59) (0.52) (0.62) (0.49) (0.67) (0.57) (0.54) (0.42) (0.44) (0.54)

C
A
T

Sentence 500 500 500 500 500 500 500 500 500 500 498 500 499.8

Generation 0.15 0.18 0.16 0.15 0.14 0.16 0.13 0.17 0.16 0.13 0.09 0.09 0.14

Translation 0.59 0.59 0.56 0.58 0.56 0.6 0.53 0.59 0.59 0.51 0.45 0.46 0.55

Detection 0.04 0.04 0.07 0.04 0.03 0.04 0.03 0.04 0.04 0.04 0.03 0.03 0.04

Total

448.4 464.2 523.0 583.4 420.8 460.4 402.6 458.1 455.4 390.2 328.6 335.2 439.2

(0.78) (0.81) (0.79) (0.77) (0.73) (0.80) (0.69) (0.80) (0.79) (0.68) (0.57) (0.58) (0.73)

S
T
P

Sentence 919 1038 1155 821 852 1262 937 939 1031 1095 635 716 950.0

Generation 0.09 0.10 0.11 0.11 0.09 0.08 0.08 0.09 0.08 0.08 0.10 0.09 0.09

Translation 0.26 0.28 0.27 0.28 0.27 0.36 0.24 0.26 0.31 0.27 0.22 0.22 0.28
Detection 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02

Total

371.2 457.8 484.6 367.6 350.8 616.2 351.0 377.6 465.4 435.5 238.3 262.9 398.2

(0.38) (0.41) (0.40) (0.41) (0.38) (0.46) (0.34) (0.37) (0.42) (0.37) (0.34) (0.33) (0.39)

In our work, similar to most machine translation testing approaches (e.g., RTI, SIT and PatInv),

STP aims to validate machine translation systems without repairing detected errors. However,

it is promising to conduct some future work on top of STP to automatically repair the detected

errors and improve the robustness of the neural translation model. As an industrial online machine

translation service, similar to traditional programming paradigms, it is easy to fix the found issue

in a hard-code way without leading to negative effects. Besides, it is possible to design a post-

processing strategy to repair erroneous translations for users and developers without additional

manual repair efforts [55]. Furthermore, it is more robust to retrain or fine-tune the network with
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the source sentence of a translation error and its correct translation. The reported issues may also

be useful for some further debugging or repairing work (such as extracting some mistranslation

patterns for a given machine translation system).

6.3 Scalability of STP
In our work, we set the source language and target language to English and Chinese, respectively,

because of the knowledge background of the authors. Considering the fact that the two chosen

languages are Top-2 most spoken languages in the world [34] and the English-to-Chinese setting

is widely adopted in most existing machine translation testing studies [18, 21, 54, 60, 76], we

think this setting allows us to conduct a comprehensive comparison with selected baseline and

provide reliable comparison results in our experiments. Besides, the concept of core syntactic tree

methodology is general and can be built on various languages due to two reasons. First, the syntactic

tree pruning is based on the basic structure and rhetorical structure theory, which is not limited to

English and is a general linguistic theory across a wide array of mainstream languages. Second, the

adopted Stanford Parser currently supports six languages (i.e., Arabic, Chinese, English, French,

German and Spanish). We also notice there exist other dependency tree parsers targeting more

languages (e.g., Japanese
9
). Thus, it is practical and simple to implement STP to other languages

with little engineering efforts. About translators, Google Translate and Microsoft Bing Translator

are adopted in our work because they are widely used industrial online machine translation services

and represent the state-of-the-arts. Other popular translators (e.g., Youdao Translator [67]) can

also be integrated into STP easily by standard translation interfaces. Meanwhile, the method to

generate new sentences (Section 3.1) and detect translation errors (Section 3.3) is implemented as

flexible modules and can be enriched by other methods in the future.

The core concept of the syntactic tree methodology is also general to other NLP testing fields.

For example, similar to STP, we can generate complex sentences by context insertion to test

machine translation systems based on the hypothesis that adding contextual information into a

source sentence should not influence the translation results of the trunk. It is practical to generate

sentences by context insertion on top of the existing STP framework with engineering efforts. We

can replace the context-removal-based sentence generation module with a context-insertion-based

one, as other existing modules are quite suitable for the new context-insertion testing scenario.

For example, our translation error detection module equipped with a bag-of-the-words metric is

effective in finding inconsistent errors between a simple source sentence and a complex source

sentence.

6.4 False Positives
Despite remarkable precision being achieved by STP, there are still some false positives and false

negatives in our approach. We conclude them from three main sources. First, a pruned phrase could

have a different correct translation compared with the original phrase. For example, “the owner”

has several correct meanings (e.g.,拥有者and主人), while “the owner of Carrier” has a specific

meaning (i.e.,公司拥有者) in the context “Carrier”. However, we could maintain an alternative

translation dictionary to alleviate this kind of false positive. Meanwhile, a filtering mechanism

can be introduced to ensure the degree of preserved context between the newly generated and

original sentence (in Section 3.2). Second, the dependency parser that we use to parse the sentence

could return wrong or inaccurate results. For example, the relation between “that” and “employ” is

misidentified as obj for the sentence “It is believed in the field that Amazon employs more PhD

economists than any other tech company”, which leads to the generation of invalid sentences.

9
https://github.com/ku-nlp/bertknp. Accessed August, 2022.
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Third, several generated sentences are not valid because the pruning strategy we define does not

guarantee to take into account all situations in real-world sentences. For example, STP will remove

the words “of the WTO” simultaneously because the dependency relation between “of” and “WTO”

is “case" (detailed in Table 1) for the sentence “China is not the litmus test of the WTO or the

world trade.”. However, STP fails to consider the fact that the “case” relation is further below the

conjunction relation between the phrase “the WTO” and “the world trade”.

To address the risks posed by the pruned sentences, we confirm that the erroneous translations

labeled as true positives are syntactically and semantically correct (discussed in Section 4.4). As a

result, although a translation in a reported issue is erroneous, if its sentence in the source language

is invalid, we count the translation as a false positive. Besides, although we conduct a well-designed

human labelling experiment, it is inevitable that a few sentences that have very small grammatical

errors are not labelled by the participants. In such a case, we consider the grammatical errors

are typos that people introduce when typing, and mature translation systems need to handle this

situation. Natural language is unstructured and complex in the real world, and it is extremely

challenging for rule-based techniques (such as STP) to take all possible situations into consideration.

It is promising and valuable to conducting a more in-depth analysis to investigate the impact of

different rules on the testing performance. However, considering the numerous designed rules and

the extremely required manual inspection efforts in the analysis, it goes beyond the scope of our

current work and can be explored in the future. Despite that, STP still achieves state-of-the-art

precision for testing machine translation systems. In the future, we attempt to design more mature

pruning rules for different types of sentences and analyze the impact of such rules on sentence

validity.

6.5 Comparison with PatInv-Remove
In our work, following existing machine translation testing work, five state-of-the-art approaches

are selected to compare against STP with 1,200 sentences from 10 major categories of news sites.

To the best of our knowledge, the selected baselines are the largest set on machine translation

testing in the literature. As discussed in Section 4.5, some baselines may have multiple variants (e.g.,

word-replacement based one PatInv-replace and word-removal based one PatInv-remove). In such

a case, we select the best-performing one among multiple variants according to existing relevant

studies. There may exist other possible variants that could have been used in our experiment. For

example, we select PatInv-Replace because of its superior performance against PatInv-Remove

in terms of detected translation errors and precision. However, different from selected baselines

that mainly generate new test cases by replacing words, PatInv-Remove is a word-removal-based

approach, which is the closest removal approach to STP. Thus, in this section, we perform an

additional evaluation by comparing STP against PatInv-Remove.

The results are presented in Table 14. The first column lists the twelve dataset categories and the

total results calculated by all the twelve dataset categories. The remaining columns list the two

machine translation systems and two compared approaches. Each cell is represented as 𝑥 (𝑦/𝑧),
where 𝑥 refers to the precision value, 𝑦 and 𝑧 refer to the number of all detected and reported issues

by the studied techniques. In particular, due to page limit, we compare PatInv-Remove against STP

with the threshold value of 6, which is proven to achieve remarkable precision with a comparable

amount of erroneous issues in Section 5.1. The detailed results are presented in our Appendix [72].

From Table 14, we can find STP achieves 62.20%∼100.00% precision on Google Translate, improving

the metric by 6.70%∼61.90% when compared with PatInv-Remove. Besides, STP always detects

more translation issues than PatInv-Remove (e.g., 1025 additional issues are detected on Google

Translate). When testing Bing Microsoft Translator, STP is able to improve the precision by 34.40%

while detecting 949 more translation issues in total. We think the significant improvement of STP
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Table 14. Comparison with a state-of-the-art removal-based technique PatInv-Remove

Google Bing

STP PatInv-Remove STP PatInv-Remove

Politics 71.4%(35/49) 64.7%(33/51) 75.5%(37/49) 69.0%(20/29)

Business 76.3%(58/76) 39.1%(18/46) 73.0%(27/37) 52.0%(13/25)

Culture 62.2%(153/246) 57.1%(24/42) 79.9%(270/338) 12.2%(5/41)

Sport 80.1%(125/156) 55.2%(16/29) 88.1%(126/143) 66.7%(26/39)

Tech 71.0%(44/62) 70.6%(24/34) 100.0%(49/49) 40.7%(11/27)

Travel 86.6%(335/387) 71.0%(22/31) 87.3%(261/299) 62.5%(15/24)

Health 84.9%(90/106) 39.1%(18/46) 64.4%(56/87) 47.7%(21/44)

Life 92.5%(149/161) 42.9%(21/49) 85.4%(76/89) 33.3%(11/33)

Legal 83.3%(169/203) 21.4%(6/28) 92.8%(193/208) 36.0%(9/25)

Opinion 85.0%(51/60) 54.8%(23/42) 73.5%(25/34) 60.0%(24/40)

Politics* 100.0%(38/38) 61.8%(21/34) 100.0%(17/17) 69.2%(18/26)

Business* 100.0%(14/14) 41.7%(10/24) 100.0%(5/5) 58.8%(20/34)

SUM 80.9%(1261/1558) 51.8%(236/456) 84.3%(1142/1355) 49.9%(193/387)

come from several differences with PatInv-Remove: (1) PatInv-Remove assumes that sentences with

different meanings should not have the same translation, while STP assumes translation results

of the trunk should not influenced by eliminating contextual information from a source sentence;

(2) PatInv-Remove generates new sentences by removing a meaningful word or phrase from the

sentence based on constituency trees, while STP generates new sentences by applying a set of core

semantics-preserving rules without undermining the basic structure and sentence validity based

on dependency trees. Overall, the results demonstrate that, benefiting from the novel metamorphic

relation and sentence generation strategy, STP is able to perform better than PatInv-Remove in

terms of both the number of detected translation issues and the reported precision.

6.6 Robustness of Pruned Sentences
As mentioned in Section 3.1, a random word detection approach would result in a low acceptability

rate, while STP is able to generate a large number of valid sentences based on structure syntactic

relations. We conduct a human study to check the validity of sentences generated by random

work detection and STP. As recursively removing words usually results in too many sentences,

we generate 200 sentences by selecting some sentences and dropping words randomly from the

dataset [22]. We then adopt STP to generate 200 sentences randomly from the same dataset. The

first two authors manually check whether the generated sentences are grammatically correct and

semantically reasonable. Our manual inspection indicates that only three sentences generated by

the random work deletion approach are valid, while 191 sentences generated by STP are valid.

These results show that STP effectively picks words to drop without breaking the validity of the

original sentences.

We notice that although massive manual efforts are devoted to analyzing all available dependency

types guided by classical linguistic rhetorical structure theory, the designed pruning strategy suffers

from invalid generated sentences, which is a long challenge for existing rule-based techniques [43,

52]. In the literature, a majority of existing machine translation studies adopt a word-replacement-

based strategy that mainly replaces a word in the original sentence. In particular, they usually mask

out aword and query languagemodels (e.g., BERT) to fill themasked hole with a semantically-similar

and syntactically-equivalent word (e.g., smart→ cute). Such word-replacement-based approaches

design metamorphic relations to generate sentences with the same structures, thus guaranteeing

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 1. Publication date: 2023.



Machine Translation Testing via Syntactic Tree Pruning 1:29

the validity of generated sentences. However, such same-structure-based metamorphic testing

may ignore the errors revealed by sentences with different structures. Machine translation may

return a sentence with a different structure for imperceptible perturbations due to the brittleness of

the neural network. Thus, STP using sentences with different structures can explore behaviors of

machine translation systems more fully, which is beyond the scope of existing same-structure-based

works.

6.7 Actionability and Recommendation
In this work, following most existing machine translation testing studies [22, 55], we report

suspicious translation issues according to a customized threshold. The experimental results reveal

that STP outperforms state-of-the-art approaches on a wide range of threshold values in terms

of precision and the number of reported suspicious issues, discussed in Section 5.1. On top of

impressive results achieved by STP, we further discuss a crucial question when deploying STP to

assist developers to validate machine translation systems in practice, i.e., how to choose the threshold
value under different testing scenarios?
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Figure 4. The trade-off between the precision and the number of erroneous issues.

Figure 4 presents the relationship between the number of detected erroneous issues and the

corresponding precision under different threshold values. We only present the overall performance

of two studied translators across all datasets due to page limit. As can be seen from Figure 4,

we observe a trade-off between the precision and the number of reported suspicious issues. In

particular, when we increase the threshold value, more translations are regarded as erroneous (i.e.,

the larger the number of issues reported), while more false positives may be introduced, resulting

in a lower precision. Similar performance can also be found in existing studies, such as RTI (Table

2 in [22]) and PatInv-Repalce (Table 10 in [18]). Thus, we recommend different threshold values for

developers to employ for testing to improve the actionability of STP in practice, listed as follows: (1)

When testing resources are limited, it is obviously recommended that the highest threshold value

(i.e., 12) is chosen for developers. In such a scenario, only inspecting fewer reported suspicious

issues that have a high probability of being incorrect is more practical and reduces valuable manual

effort. (2) When there are sufficient testing resources available, the lowest threshold value (i.e.,

0) is recommended for developers, because of the more translation errors STP can detect. On
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the one hand, developers need to spend a lot of effort to assess the correctness of the reported

suspicious issues manually. On the other hand, developers can check a considerable amount of the

reported suspicious issues and reasonably find more translation errors. (3) When a good trade-off

between testing resources and testing effectiveness is required, the medium threshold value (i.e., 6)

is recommended for developers because of its impressive performance in terms of both precision

and the number of translation errors. In such a scenario, developers can detect more translation

errors while consuming less manual inspection time than state-of-the-art approaches. Thus, we are

confident that STP is effective and easy to use for users and developers in practice.

6.8 Translation Error Detection Metrics
In this work, we adopt a simple but effective bag-of-words strategy to calculate the distance between

the original and its pruned sentence translations. The reasons for using the bag-of-words metric

are threefold. First, the metric is suitable for our pruning design and error detection scenario.

We generate new source sentences by performing some hand-crafted word-removal operations

from the original source sentence. In other words, we confirm that the words in the generated

source sentence appear in the original sentence. We hope a perfect machine translation can map

this relationship into the target sentences, i.e., the original target sentence contains all words

that appear in the generated target sentence. In such a case, we adopt a bag-of-words model to

denote the set difference, i.e., how many word occurrences are in the generated target sentence

but not in the original target sentence. The experimental results also prove its effectiveness in

measuring inconsistencies among translated sentences. Second, the bag-of-words metric is already

adopted in the literature and proves its supernormal performance in detecting translation errors.

For example, similar to our STP finding inconsistent bugs between an original sentence and its

pruned sentence, RTI aims to detect the translation errors between an original sentence and its

noun phrases. Thus, we are confident that the bag-of-words metric is reasonable to capture the

inconsistent core semantics between the translations of the original and pruned sentences. Third,

the bag-of-words model is pretty lightweight and fast when deployed in practice. Some existing

machine translation approaches tend to design complex strategies to detect translation errors

(e.g., subsequence-based metric in TransRepair and structure-based metric in SIT). As discussed in

Section 5.4, such mechanisms usually lead to more detection time, hindering the application of such

techniques in practice. In daily life, people rely on machine translation systems for education and

communication (e.g., reading political news or articles from other countries and visiting websites

with content in various languages). Such testing tools can help people to check the translation

results in real time, which needs to be done in a very short time. STP adopts a bag-of-words strategy

to directly calculate word occurrences with less calculation time while achieving outstanding

performance.

The experimental results demonstrate the remarkable fault detection performance of the adopted

bag-of-the-words when the sentence pair is made up of an original sentence and its simplified

sentence [22]. We further explore some other metrics that consider sentence structure (e.g., con-

stituency tree and dependency tree) from related studies, which may be more semantic-aware.

Existing studies usually generate a sentence with the same structure as the original sentence and

calculate the edit distance or relation distance (e.g., the number of each phrasal type or the number

of each type of dependency relations) between two similar tree structures of the translations.

However, STP generates a sentence with a different structure from the original sentence and it is

improper to apply such metrics directly. Inspired by the bag-of-words strategy that considers the

word frequency in the pruned sentence translation relative to the original sentence translation, we

propose a constituency tree-aware bag-of-words metric and a dependency tree-aware bag-of-words

metric. In particular, the former evaluates the distance between two sets of constituency relations
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by considering the set difference in the count of each phrasal type based on the intuition that the

constituents of core semantics should stay the same with the original and pruned sentence where

only context information differs. Similarly, the latter evaluates the distance between two lists of

dependencies by considering the set difference in the count of each type of dependency relations

based on the intuition that the relationships between words that constituent core semantics will

ideally remain unchanged when context information is removed. We also consider the tree edit

distance to detect suspicious issues. In particular, we parse the original translated and generated

translated sentences into their constituency parse trees and then calculate the edit distance (i.e.,

Levenshtein distance) between the two trees. The tree edit distance determines how closely they

match each other by calculating the minimum number of character edits (deletions, insertions, and

substitutions) needed to transform one tree into the other.

The results are presented in Table 15. The first column lists the testing scenarios (i.e., twelve

dataset categorizes × two machine translation systems). The remaining columns list the precision

results under different threshold values and evaluation metrics. We only present the results with

the threshold value as 0, 6 and 12 (recommended in Section 6.7) due to page limit (details in our

Appendix [72]). From Table 15, we find that the constituency tree-aware bag-of-words metric

and dependency tree-aware bag-of-words metric achieve better precision performance slightly

against the original bag-of-words metric. For example, the constituency tree-aware bag-of-words

metric improves the precision by 0.5% and 1.6% with 𝑡 = 0 when testing Google Translate and

Bing Microsoft Translator. We also find that the original bag-of-words metric detects much more

erroneous issues against other metrics. For example, the original bag-of-words metric finds 1261

erroneous issues with 𝑡 = 6 when testing Google Translate, 1126 and 695 more than other metrics.

Besides, we find that the tree edit metric does not achieve a better performance against our bag-

of-words metric. The precision does not increase and the number of reported issues does not

decrease when we set a larger threshold value. In other words, the threshold has no effect on the

results when we consider the edit distance on the constituency parser tree. The possible reason

lies in the difference in the design of our STP and existing studies. In particular, existing studies

usually generate a sentence with the same structure as the original sentence and calculate the

edit distance or relation distance (e.g., the number of each phrasal type or the number of each

type of dependency relations) between two similar tree structures of the translations. However,

STP generates a sentence with a different structure from the original sentence and it is improper

to apply such metrics directly. Overall, the original bag-of-words metric is effective in detecting

more translation errors with considerable precision, highlighting its substantial benefit in our work.

In addition to the mentioned metrics, the results also demonstrate promising results with other

tree-aware [21, 22] or semantic-aware metrics [54, 55], which is interesting to further explore in the

future. Besides, it is recommended to consider recent neural models (e.g., BERT) as the metrics to

detect translation errors in our work. However, whether to directly adopt existing trained models

or to retrain using a large amount of labeled data, as well as how to measure the consistency of

core semantics in sentence pairs, requires further exploration in the future, which goes beyond the

scope of our work.

7 THREATS TO VALIDITY
To facilitate the investigation of potential threats and to support future work, we have made the

relevant materials (including source code, and translation results) available at our project website

[72]. Despite that, our study still faces some threats to validity, listed as follows.

The selection of the dataset might be biased. With respect to the representativeness of the dataset,

all of them are crawled from the news networks. To mitigate the threat that the used dataset may

not be representative of all real-world sentences, we adopt the dataset, which has been widely used
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in recent studies [18, 21, 22]. Meanwhile, we randomly extract 1,000 sentences from ten different

categories with varied complexity. As such, we believe the selection strategy may not be a key

point to our user study.

The second threat to validity is that the adopted dependency parser might return inaccurate

even wrong dependencies. Although, the most recent neural network-based parser made available

by Stanford CoreNLP is adopted in our implementation, which parses about 100 sentences per

second. However, the parser still has several wrong dependencies. For example, for the sentence “It

is believed in the field that Amazon employs more PhD economists than any other tech company.”,

the relation between “that” and “employs” is recognized as obj, which should be mark. Thus, we use

the Universal Dependencies as our annotation scheme, which has evolved based on the Stanford

Dependencies. Meanwhile, two authors manually check all the generated sentences to ensure the

syntax and semantics legitimacy.

The third threat to validity lies in the selection of baselines. Recently, quite a few techniques

have been proposed to validate machine translation systems. We first consider all available machine

translation testing techniques (i.e., [18, 21, 22, 25, 54, 55]) according to [55] when we conducted

the work. Among them, the implementation of [25] is not public (last accessed in February 2022)

and we fail to reproduce this work after contacting the authors. The remaining techniques are

included in our work, and the included techniques are the same as the most recent work [55].

Several variants may exist for the included techniques, and we select the best one according to the

existing work (shown in Section 4.5).

The final threat to validity comes from the human labelling. In the phase of label construc-

tion, following existing studies [22, 25], 20 participants with both English and Chinese language

backgrounds are responsible for deciding whether the reported issue contains a real erroneous

translation. To alleviate the influence of potential bias (e.g., imprecise labelling results) introduced

by particulars, an introduction to human labelling in the form of both documents and presentation

videos is given to all participants, to ensure they fully understand the experimental procedure. To

further reduce the bias when comparing different approaches, we blend all issues reported by STP

and baselines to confirm the approach each issue belongs to remains unknown to the particulars.

We then guarantee that each reported issue is checked by two independent participants to reduce

human impact further. Besides, we invite participants to have an additional discussion to resolve

the issues with inconsistent labels. The high kappa scores also indicate that the bias in human

labelling may not be a key point in our experiments.

8 RELATEDWORK
Our work aims to validate the robustness of machine translation systems via a novel metamor-

phic testing approach. We divide the related work of our paper into three parts: robust machine

translation, machine translation testing and metamorphic testing.

8.1 Robust Machine Translation
Artificial intelligence (AI) systems have been widely adopted in our daily lives thanks to the success

of deep learning. Despite much recent research, AI systems are not as robust as we might hope

sometimes. For example, recent research has reported a variety of adversarial examples could

mislead AI systems, resulting in fatal accidents, such as autonomous cars [13, 69] and object

classifiers [63, 64]. Thus, a huge body of research effort has been dedicated for promoting the

robustness of such AI software, focusing on testing [14, 27], debugging [37, 59] and training [32, 45].

In the NLP field, various tasks have achieved outstanding performance, such as text summariza-

tion [66], question answering [4] and incomplete utterance rewriting [35]. However, these NLP
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systems still often fail catastrophically when the given inputs are adversarially perturbed slightly,

which has encouraged researchers to investigate the robustness of NLP systems. For example,

Jia et al. [26] propose an adversarial evaluation scheme for the Stanford Question Answering

Dataset (SQuAD) and find no published open-source model is robust for paragraphs that contain

adversarially inserted sentences. Besides, Mudrakarta et al. [41] analyze the robustness of three

question answering models (i.e., mages, tables, and passages of text) by perturbing questions to

craft a variety of adversarial examples. However, testing machine translation is more difficult, as

one source sentence could have several correct target sentences, while the output of these systems

is unique (e.g., the output of reading comprehension could be a specific person name).

As a typical NLP task, machine translation aims to automatically translate text from a source

language to text in a target language. It is recently common practice to improve the robustness of

machine translation software via adversarial machine learning, which aims to mislead machine

translation systems with adversarial examples. In general, the generation of these adversarial

examples falls into two categories: black-box and white-box manners. The white-box manner

usually applies small perturbations that are jointly learned together with the NMT model, where

complete knowledge of network structure and parameters of the machine translation model are

available. For example, Chen et al. [8] propose a gradient-based method to craft adversarial examples

guided by the translation loss of clean inputs. On the contrary, the black-box manner perturbs or

paraphrases sentences without accessing the implementation of machine translation systems. For

example, Zhang et al. [73] build black-box adversarial examples based on the round-trip translation,

which assumes a practical adversarial example can naturally lead to a semantics destroying round-

trip translation result. Such work can easily lead to invalid sentences, while this paper aims to

generate syntactically and semantically correct test cases.

8.2 Machine Translation Testing
Machine translation testing aims to generate translation error-triggering sentences with syntacti-

cally and semantically correct [18, 21, 22, 54, 55, 60, 76]. Pesu et al. [46] present the first machine

translation testing approach based on metamorphic testing without human intervention or refer-

ence translation. In particular, they design a novel metamorphic relation with the help of multiple

intermediate languages, and adopt English as the source language and consider eight target lan-

guages (e.g., Chinese and Japanese). Furthermore, they extend the above work by introducing an

additional metamorphic relation, which assumes that a small change to the source sentence should

not have an impact on the overall structure of the target sentence [53].

After that, more metamorphism-based machine translation testing approaches get published in

software engineering top conferences and journals, demonstrating the usefulness and potential of

metamorphic testing for applications in the machine translation domain. He et al. [21] propose a

novel structure-invariant testing technique (i.e., SIT) based on the hypothesis that similar source

sentences should typically exhibit similar translation results. In particular, they generate similar

source sentences by leveraging BERT to replace one word in an original sentence with semantically-

similar and syntactically-equivalent words. They then report suspicious issues if the distance

between the structure (e.g., constituency and dependency tree) of the translated original sentence

and generated sentence is larger than a threshold. Furthermore, He et al. [22] propose a novel

referential transparency test technique (i.e., RTI) based on the hypothesis that a piece of text

should have similar translations in different contexts. In particular, they extract noun phrases

from the original sentence as its referential transparency by analyzing the constituent structure.

They then employ a BoW model to calculate the distance between the translation results of the

original sentence and extracted phrases and report a suspicious issue if the distance is larger than a

pre-defined threshold. Similarly, Ji et al. [25] introduce a constituency-invariant testing technique,
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which indicates the constituency structure of a sentence should be similar to the sentence derived

from it. We do not include this work in our paper because the core implementation about sentence

generation is not publicly available. Gupta et al. [18] propose a novel pathological invariance

metamorphic testing approach (i.e., PatInv) based on the hypothesis that the sentences of different

meanings should not have the same translation. In particular, they generate syntactically similar

but semantically different sentences by (1)replacing one word in an original sentence with a non-

synonymous word via BERT (2) or removing a meaningful word or phrase from an original sentence

via its constituency structure. They then suspect an erroneous translation if the translation results

of the original and generated sentences are the same via a simple string comparison. Recently, Cao

et al. [3] propose a semantic-based machine translation testing approach (i.e., SemMT) based on

the hypothesis that regular expressions can effectively extract the semantics concerning logical

relations and quantifiers in sentences. In particular, they first conduct the round-trip translation

to collect the intermediate and translated sentences and transform the sentences into regular

expressions with existing tools. They then capture semantic similarities over regular expressions

by a set of regex-related metrics and report suspicious issues if the similarity is higher than a

predefined threshold. However, instead of arbitrary sentence semantics, SemMT focuses on the

semantics of quantifiers and logical relations, which is out of the scope of our work. Sun et

al. [54] propose a novel approach to test machine translation (i.e., TransRepair) by combining

mutation with metamorphic testing to detect inconsistency bugs and attempt to automatically

repair reported errors in a black-box or grey-box manner. In particular, they conduct context-similar

word replacement to generate a mutated sentence and assume that translation results from both the

original sentence and its mutant should have a certain degree of consistency modulo the replaced

word. Furthermore, Sun et al. [55] propose a novel word-replacement-based approach (i.e., CAT)

to test machine translation on the top of TransRepair based on the insight that controlling the

semantic difference between the replaced words is crucial in the impact of word replacement. In

particular, they employ BERT to encode the sentence context during replacement and calculate

context-aware semantic similarity to identify an isotopic replacement on the top of TransRepair.

The key idea of STP is conceptually different from most existing approaches [18, 21, 54], which

replace a word or extract a phrase to generate new sentences. In contrast, STP assumes that the

translation of a source sentence should be similar to the newly generated sentence generated by

eliminating contextual information.

8.3 Metamorphic Testing
Metamorphic testing [6, 7, 49] is a well-known technique to check the functional correctness of

various systems in the absence of an ideal oracle. Its key idea is to detect violations of domain-

specific metamorphic relations among the inputs and outputs of multiple executions of the program

under test. As an effective method to alleviate the oracle problem, metamorphic testing has seen

successful applications in a variety of domains, including compilers [28, 31], database systems [33]

and scientific libraries [70]. In addition, the effectiveness of metamorphic testing has also been

shown repeatedly in AI systems testing because of its ability to test non-testable applications, such

as search engines [77, 78], autonomous driving systems [56, 71] and classifiers [42, 65]. For example,

Chen et al. [5] propose three novel metamorphic relations for testing question answering software

by checking its behaviors on multiple recursively asked questions that are related to the same

knowledge. To further eliminate false positives, Shen et al. [50] propose a precise metamorphic

testing approach for question answering softwares, involving five sentence-level metamorphic

relations (e.g., inserting a redundant sentence as a clause of the original question). Yu et al. propose

[68] the first metamorphic approach to test image captioning systems, which attempt to generate

a brief depiction of the salient objects in an image. They assume that the object names should
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exhibit directional changes after object insertion and design two metamorphic relations (i.e., object

appearance and singular-plural form). Besides, Huang et al. [23] propose a novel approach to

evaluate the NLP test cases generated by metamorphic testing approaches based on similarity

consistency and language naturalness. STP is a novel metamorphic testing approach for machine

translation software based on the insight that the new sentence generated by eliminating contextual

information should retain the core semantics of the original sentence.

9 CONCLUSION
In this paper, we present a widely applicable methodology, syntactic tree pruning, to detect erro-

neous translations for machine translation systems. In contrast to existing approaches, which rely

on perturbing a word or extracting specific phrases (i.e., noun phrases) in natural sentences, STP

assumes the pruned sentence should retain the core semantics of the original sentence. In particular,

given an arbitrary sentence, STP generates new sentences via a novel core semantics-preserving

pruning strategy on the syntactic tree level, and then pairs the generated and original sentence by

the designed metamorphic relation. STP reports suspicious issues if the translation results break the

consistency property in semantics via a bag-of-words model. Benefitting from the distinct concept,

STP has reported a diversity of erroneous translations, most of which can not be found by existing

approaches. As a result, STP successfully detect 5,073 translation errors for Google Translate and

5,100 translation errors for Microsoft Translator, respectively, with comparable precision (i.e., 64.5%

and 65.4%). STP also achieve a recall of 74% when detecting erroneous translation for the 1,200

original sentences, improving state-of-the-art techniques by 55.1% on average.

In the future, we will generalize the core concept of STP to other implementation scenarios, such

as inserting an unimportant word into a source sentence without changing crucial information.

Meanwhile, it would be interesting to conduct a series of research on automated program repair

for machine translation systems with the reported translation results.
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