
TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 1

ESALE: Enhancing Code-Summary Alignment
Learning for Source Code Summarization

Chunrong Fang, Weisong Sun*, Yuchen Chen, Xiao Chen, Zhao Wei, Quanjun Zhang, Yudu You, Bin Luo,
Yang Liu, Zhenyu Chen

Abstract—(Source) code summarization aims to automatically generate succinct natural language summaries for given code snippets.
Such summaries play a significant role in promoting developers to understand and maintain code. Inspired by neural machine translation,
deep learning-based code summarization techniques widely adopt an encoder-decoder framework, where the encoder transforms given
code snippets into context vectors, and the decoder decodes context vectors into summaries. Recently, large-scale pre-trained models
for source code (e.g., CodeBERT and UniXcoder) are equipped with encoders capable of producing general context vectors and have
achieved substantial improvements on the code summarization task. However, although they are usually trained mainly on code-focused
tasks and can capture general code features, they still fall short in capturing specific features that need to be summarized. In a nutshell,
they fail to learn the alignment between code snippets and summaries (code-summary alignment for short).

In this paper, we propose a novel approach to improve code summarization based on summary-focused tasks. Specifically, we
exploit a multi-task learning paradigm to train the encoder on three summary-focused tasks to enhance its ability to learn code-summary
alignment, including unidirectional language modeling (ULM), masked language modeling (MLM), and action word prediction (AWP).
Unlike pre-trained models that mainly predict masked tokens in code snippets, we design ULM and MLM to predict masked words
in summaries. Intuitively, predicting words based on given code snippets would help learn the code-summary alignment. In addition,
existing work shows that AWP affects the prediction of the entire summary. Therefore, we further introduce the domain-specific task AWP
to enhance the ability of the encoder to learn the alignment between action words and code snippets. We evaluate the effectiveness
of our approach, called ESALE, by conducting extensive experiments on four datasets, including two widely used datasets JCSD and
PCSD, a cross-project Java dataset CPJD, and a multilingual language dataset CodeSearchNet. Experimental results show that ESALE

significantly outperforms state-of-the-art baselines in all three widely used metrics, including BLEU, METEOR, and ROUGE-L. Moreover,
the human evaluation proves that the summaries generated by ESALE are more informative and closer to the ground-truth summaries.

Index Terms—Source Code Summarization, Deep Learning, Multi-task Learning

✦

1 INTRODUCTION

CODE comments play a key role in facilitating code
comprehension [1], [2], [3], [4] and software mainte-

nance [5], [6], [7], [8], [9]. For example, prior works [1],
[2], [10] show that code comments can help improve
code readability. Commenting code has been recognized
as a good programming practice [6], [8]. However, writing
high-quality code comments is a labor-intensive and time-
consuming task [6], [11]. As a result, good comments are
often absent, unmatched, and outdated during the software
evolution [12]. (Source) code summarization is an active
research field [4], [9], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], which aims at designing advanced techniques
to support automatic generation of code comments (also
called summaries). Given a code snippet (a method or func-

• Chunrong Fang, Yuchen Chen, Xiao Chen, Quanjun Zhang,
Yudu You, Bin Luo and Zhenyu Chen are with the State
Key Laboratory for Novel Software Technology, Nanjing Univer-
sity, Nanjing, China and also with the Software Institute, Nan-
jing University, Nanjing, Jiangsu 210008, China. E-mail: fangchun-
rong@nju.edu.cn, yuc.chen@outlook.com, shawnchan@smail.nju.edu.cn,
quanjun.zhang@smail.nju.edu.cn, fzuyyd@163.com, luobin@nju.edu.cn,
zychen@nju.edu.cn.

• Weisong Sun and Yang Liu are with the College of Computing and
Data Science, Nanyang Technological University, Singapore. E-mail:
weisong.sun@ntu.edu.sg, yangliu@ntu.edu.sg.

• Zhao Wei is with Tencent Inc., China. Email: zachwei@tencent.com.
• *Weisong Sun is corresponding author.

Manuscript received xxx xxx, 2023; revised xxx xxx, 2024.

tion) by the developer, code summarization can generate
summaries describing the functionality of the code snippet.

Existing code summarization techniques can mainly be
categorized into keywords-based methods, retrieval-based meth-
ods, and deep learning-based methods. Keywords-based methods
extract critical terms from code snippets to constitute their
summaries [13], [24]. Such methods may fail to generate
accurate summaries if the source code contains poorly
named identifiers or method names [25], [26]. Retrieval-
based methods first leverage code clone detection techniques
to retrieve similar code snippets and then use their cor-
responding comments to summarize other code snippets.
Similar code snippets can be retrieved from existing open-
source platforms (e.g., GitHub [25]) or software Q&A sites
(e.g., Stack Overflow) [27]. Such methods rely on whether
similar code snippets can be retrieved [28] and how similar
the code snippets are [26]. In addition, code snippets may
contain some information inconsistent with the content
in comments of their similar code snippets [29], making
retrieval-based methods ineffective in many cases. Deep
learning-based methods leverage powerful generative models
trained on a large-scale code-comment corpus to translate
code snippets in programming languages into summaries
in natural language [26], [30]. Such methods can model
the semantic mapping relations between code snippets and
summaries and can generate high-quality summaries [30].

Recently, with the success of the pre-training and fine-

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 2

tuning paradigm in the field of natural language processing
(NLP) (e.g., BERT [31] and T5 [32]), many works in software
engineering (SE) have introduced this paradigm to boost
further code-related tasks, including code summarization
(e.g., CodeBERT [33], CodeT5 [34], and UniXcoder [35]).
In practice, these works typically pre-train a model with
general language modeling tasks, such as masked lan-
guage modeling (MLM) [31] and unidirectional language
modeling (ULM) [36], followed by fine-tuning on code
summarization tasks. In deep learning-based methods, code
summarization is widely considered as the neural machine
translation (NMT) task where the source text is the code
snippet in programming language and the target text is the
summary in natural language [4], [37], [38], [39]. Inspired
by NMT, code summarization models widely adopt the
encoder-decoder framework. The encoder is responsible for
transforming the code snippet into a context vector. The
decoder is responsible for decoding the context vector into
a natural language summary. Intuitively, context vectors tell
the decoder what content needs to be translated, which
indicates that the encoder plays a significant role in a code
summarization model. Therefore, to achieve high-quality
code summarization, a good encoder should be able to
produce context vectors that capture the code features that
need to be translated by the decoder. However, although
the advanced pre-trained encoders have achieved signifi-
cant progress in producing general vector representations
(i.e., context vectors) for given code snippets, they are still
insufficient in capturing specific code features that need
to be translated. These pre-trained encoders are primarily
trained with code-focused tasks that teach them to learn the
relationship among the tokens of code snippets rather than
the relationship between code snippets and summaries. In
other words, these pre-trained encoders are still insufficient
in capturing the alignment between code snippets and sum-
maries (i.e., code-summary alignment), detailed in Section 2.

In this paper, we propose a novel approach to improve
code summarization. Our approach is built upon large-scale
pre-trained code encoders that have been shown to be su-
perior in capturing and representing general code features.
To improve the ability of our encoder to learn the code-
summary alignment, we exploit the multi-task learning
(MTL) paradigm to train it. In the MTL paradigm, multiple
tasks are simultaneously learned by a shared model [40],
[41], [42]. Such a paradigm can improve data efficiency,
reduce overfitting through shared representations, and ac-
celerate learning speed by leveraging auxiliary information.
SE researchers have also introduced MTL to address SE
tasks. For example, Aung et al. [43] find that both two
important tasks, i.e., developer recommendation and issue
type classifying involved in the bug triage process, rely on
historical bug descriptions and code snippet information.
Therefore, they train a multi-triage model to resolve both
tasks simultaneously via MTL, and demonstrate this model
can reduce task repetition and leverage the correlating
information between tasks. MTL has also demonstrated
promise in training a pre-trained code representation model
(e.g., MulCode [44] and UniXcoder) and achieved promising
efficacy on various downstream SE tasks. In our setting,
we perform MTL on three summary-focused pre-training
tasks, including ULM, MLM, and action word prediction

(AWP) [20]. The three tasks are simultaneously learned by
a shared encoder. ULM and MLM are two general tasks
borrowed from the field of NLP. ULM and MLM are im-
portant because they can facilitate the language model to
capture the relationships of words in the text [31], [36].
Unlike pre-trained models (e.g., CodeBERT and UniXcoder)
that predict masked code tokens based on unmasked parts
of code snippets, we design ULM and MLM to predict
masked words in summaries based on code snippets. In-
tuitively, predicting masked words in summaries based on
code snippets would help the encoder learn the alignment
between masked words and code snippets. In addition,
existing work [20] shows that AWP affects the prediction of
subsequent words and thus the prediction of the entire sum-
mary. Therefore, we further introduce the domain-specific
task AWP to enhance the ability of the encoder to learn
the alignment between action words and code snippets. In
summary, all three summary-focused tasks can enhance the
encoder to learn the code-summary alignment such that
it can capture the specific code features that need to be
summarized. In practice, to reduce the training cost, instead
of training the shared encoder from scratch, we initialize
the shared encoder with an existing pre-trained encoder,
e.g., UniXcoder’s encoder. After obtaining the pre-trained
shared encoder, we further train a code summarization
model capable of generating a succinct natural language
summary for a given code snippet. Specifically, we fine-tune
the pre-trained shared encoder on the code summarization
task and simultaneously train a decoder.

In summary, we make the following contributions.

• We propose a novel approach named ESALE to
improve code summarization. ESALE devises three
summary-focused pre-training tasks (two general
tasks ULM and MLM, and one domain-specific task
AWP) to enhance the encoder to learn the code-
summary alignment.

• We introduce a domain-specific task (i.e., AWP) as
one of the important pre-training tasks. We perform
an in-depth analysis of the effect of the AWP task,
and statistical results show that this task can sig-
nificantly improve code summarization performance
(detailed in Section 4.2.2).

• We conduct extensive quantitative experiments on
four datasets, including two widely used Java and
Python datasets (called JCSD and PCSD), a cross-
projected Java dataset (called CPJD), and a multi-
lingual dataset (called CSN), to evaluate ESALE. Ex-
perimental results show that ESALE significantly out-
performs baselines in terms of all three widely used
automatic metrics BLEU, METEOR, and ROUGE-L
(detailed in Section 4.2.1). The source code of ESALE
and all the data used in this paper are released and
can be downloaded from the website [45].

• We conduct a qualitative human evaluation to evalu-
ate the summaries generated by ESALE and baselines
in terms of four aspects: similarity, naturalness, infor-
mativeness, and relevance. And statistical results of
human scores show that the summaries generated
by ESALE are more informative and closer to the
ground-truth summaries (detailed in Section 4.2.4).

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 3

1. Reference Summary: get backup partitions for specified node id.
2. Summary by SiT: copies the partitions for this node id.
3. Summary by CodeBERT: return partitions of a node.
4. Summary by UniXcoder: get all partitions for specified node id.
5. Summary by ESALE: get backup partitions for specified node id.

1 public Set< Integer > backupPartitions (UUID nodeId) {
2 Set<Integer> set = backup.get(nodeId);
3 return set == null ? Collections<Integer> emptySet() : set;
4 }

(a) A code snippet 𝑐!

(b) Summaries generated by different techniques for 𝑐!.

Fig. 1. Code snippet c1 and summaries generated by different tech-
niques for c1.This example is from the test set of the JCSD dataset,
numbered 8,335.

The rest of this paper is organized as follows. Section 2
illustrates the motivation of this paper. Section 3 introduces
the design of ESALE. Section 4 presents the design of the
experiments in detail and gives the details of experiment re-
sults and analysis. Section 5 presents a case study. Section 6
introduces threats to validity. Section 7 discusses the related
work. We conclude the paper in Section 8.

2 MOTIVATING EXAMPLE

This section takes a real-world code snippet and corre-
sponding summaries generated by different techniques as
examples to illustrate our motivation. The code snippet
c1 in Fig. 1(a) is from the test set of the JCSD dataset
(numbered 8,335) [12] (see details in Section 4.1.1). The first
line of Fig. 1(b) shows the comment written by the developer
for c1. We consider the comment as a reference summary.
According to the grammar rules in natural language, we can
simply divide the reference summary into three parts: “get”
(Blue font), “backup partitions” (Red font), and “for speci-
fied node id” (Orange font). Lines 2-5 show the summaries
generated by baselines SiT [46], CodeBERT, UniXcoder, and
our ESALE, respectively. SiT is one of the advanced code
summarization techniques. CodeBERT is a representative
pre-trained model for source code. UniXcoder is the state-of-
the-art pre-trained model for source code. Both CodeBERT
and UniXcoder can also be used for code summarization
tasks by fine-tuning. More details on the three baselines are
introduced in Section 4.2.1. From Fig. 1, it can be observed
that compared with the reference summary, 1) SiT and
CodeBERT can cover some words in the second and third
parts (i.e., “partitions” and “node id”); 2) UniXcoder is
better than SiT and CodeBERT, and can cover the word
“partitions” in the second part and all words in the last part
(i.e., “for specified node id”); 3) ESALE performs the best,
successfully covering all three parts. Compared to UniX-
coder, our ESALE can correctly generate the word “backup”.

To intuitively understand how ESALE can perform bet-
ter in code summarization, we visualize the cross atten-
tion between encoder and decoder (also called encoder-
decoder attention [47]) using the attention visualization tool

(a) UniXcoder (b) ESALE

Fig. 2. Visualization of cross attention

BertViz1 [48]. Attention can help interpret the model by
showing how the model attends to different parts of the
input [48], [49], [50]. Fig. 2(a) and (b) show the visualizations
of the cross attentions of UniXcoder and our ESALE. In
Fig. 2(a) and (b), the cross attention is depicted as lines
connecting the attending tokens (right) with the tokens
being attended to (left). In our setting, the left and right
show code snippets and summaries, respectively. Colors
identify the head(s), and the thickness of the line reflects
the attention weights. It can be observed that each word
of the generated summary is basically mapped from a
certain code pattern (a set of tokens with different weights).
In addition, compared to UniXcoder, ESALE can correctly
predict the word “backup”, which can be attributed to the
higher attention ESALE paid to the two “backup” tokens
in the code snippet. This example demonstrates that the
context vector produced by ESALE’s encoder captures the
code pattern that needs to be translated into “backup”. It
should be noted that the main difference between our ESALE
and UniXcoder is the encoder. We initialize ESALE’s encoder
with the parameters of the pre-trained encoder of UniX-
coder, and then fine-tune it with three summary-focused
tasks (details are described in Section 3.2.2). Hence, we can
attribute the better performance of ESALE to its encoder.
As well, we can boldly speculate that the three summary-
focused tasks we designed could teach the encoder to learn
the code-comment alignment and capture important code
features that need to be translated.

To confirm our speculation, we further study the sum-
maries generated by ESALE by deleting related code pat-
terns in the motivation case. When deleting two related code

1. https://github.com/jessevig/bertviz

https://github.com/jessevig/bertviz

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 4

TABLE 1
Summaries generated by different models when the token “backup” is

deleted from c1. ESALE w/o AWP, MLM, and ULM denote that we
pre-train the shared encoder of ESALE without AWP, MLM, and ULM,

respectively.

Model Summary
UniXcoder get partitions for a given node id.
ESALE get partitions for specified node id.

ESALE w/o AWP # of partitions for given node id.

ESALE w/o MLM provide this method to get the
partitions for the given node id.

ESALE w/o ULM # of partitions for given node id.

tokens “backup” from c1 (Lines 1 and 2 of Fig. 1(a)), the
summaries generated by UniXcoder and ESALE are shown
in the first two rows of TABLE 1. It can be observed that
compared with the respective original summaries shown in
lines 4 and 5 of Fig. 1(b), the new summaries generated by
UniXcoder and ESALE have different changes. Specifically,
the new summary generated by UniXcoder misses the word
“all”, and “a given node id” is different from “specified
node id” in the reference summary. For our ESALE, the word
“backup” is not included in the newly generated summary
because it is not present in the code any more. Even hu-
man developers cannot tell. It also proves in reverse that
ESALE’s encoder can capture the code pattern related to the
summary word “backup” when it appears in the input code
snippet while UniXcoder’s encoder cannot. All these can be
attributed to the three summary-focused tasks we designed,
on which the encoder trained is able to learn the code-
comment alignment and capture important code features
that need to be summarized. In addition, when the word
“backup” is omitted, the summaries generated by ESALE
trained without the AWP, MLM, or ULM task are shown in
the last three rows of TABLE 1. It is observed that all three
versions of ESALE do not generate the word “backup”. It
means that the three summary-focused tasks indeed help
train ESALE’s encoder to capture the code pattern related to
the summary word “backup” when it appears in the input
code snippet while UniXcoder’s encoder cannot. Certainly,
it is undeniable that each task may influence the generation
of other parts of the summary content, and the three tasks
may also affect each other. It is important to note that this
still serves to demonstrate that the superior performance of
ESALE originates from the three summary-focused tasks.

3 METHODOLOGY

3.1 Overview
Our approach produces a code summarization model via
two sequential training phases: (a) training a shared en-
coder, followed by (b) training a code summarization model
based on the encoder generated in phase (a).

In phase (a), ESALE decomposes the training procedure
of the shared encoder into two steps: preprocessing and
shared encoder training. In the first step, ESALE takes in
pairs of code snippets and comments in the training data
and produces two sequences, i.e., input sequences and
masked input sequences, detailed in Section 3.2.1. In the
second step, ESALE utilizes the two sequences to train a
shared encoder. In this paper, we aim to enhance the encoder

to learn the code-summary alignment, thereby improving
code summarization performance. Therefore, we exploit
the MTL paradigm to train a shared encoder on three
summary-focused tasks. Specifically, for input sequences,
ESALE utilizes a shared encoder to transform them into em-
bedding representations, which will be used in the AWP and
ULM tasks. For masked input sequences, ESALE utilizes the
shared encoder to transform them into embedding repre-
sentations, which will be used in the MLM task. The models
for the three tasks are jointly trained and determine the
parameters of the shared encoder, detailed in Section 3.2.2.

In phase (b), after getting the pre-trained shared encoder,
ESALE fine-tunes it and trains a decoder simultaneously
on the downstream code summarization task. The fine-
tuned shared encoder and fine-tuned decoder compose a
well-trained code summarization model, detailed in Sec-
tion 3.3. When the well-trained code summarization model
is deployed online, it can take in a code snippet given by
the developer and generate a natural language summary,
detailed in Section 3.4.

3.2 Training of Shared Encoder

3.2.1 Preprocessing

ESALE takes in raw training data where each sample consists
of a code snippet and its corresponding comment. ESALE
follows common practices [33], [35], [51] and uses the tok-
enizer provided by Roberta [52] to tokenize code snippets
and comments and produce token sequences and word
sequences, respectively. We also use Byte Pair Encoding
(BPE) within Roberta to split tokens into subtokens. As [9],
we call the basic unit of preprocessed source code a token
and the basic unit of summary a word. ESALE further masks
parts of words in word sequences to produce masked word
sequences. Specifically, we follow existing works [33], [35]
and randomly choose 15% of the words in a word sequence,
and change them into a special token <MASK>. Next,
two special tokens <SOS> and <EOS> are added at the
beginning and the end of the token sequences, respectively.
The special token <EOS> is appended as a suffix for
word sequences and masked word sequences. Then we
concatenate pairs of token sequences and word sequences
to produce input sequences. We concatenate pairs of token
sequences and masked word sequences to produce masked
input sequences. Unlike pre-trained models (e.g., CodeBERT
and UniXcoder) that first concatenate pairs of token se-
quences and word sequences and then mask parts of the
input sequences, we only mask parts of word sequences.
Both input sequences and masked input sequences will be
used to train the shared encoder in the second step.

3.2.2 Shared Encoder Training

Shared Encoder. The shared encoder is a deep neural net-
work or pre-trained model responsible for transforming the
input sequences into vector representations (i.e., embed-
dings). In practice, we build our shared encoder upon the
existing pre-trained encoder. There are two benefits to doing
this: 1) compared to training the encoder from scratch, the
scheme based on the pre-trained encoders can significantly
reduce the training cost; 2) existing pre-trained encoders

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 5

have achieved almost optimal performance on the code
summarization task, providing a high starting point.

Specifically, we tried to build our shared encoder upon
two pre-trained encoders provided by CodeBERT and UniX-
coder. We first initialize the shared encoder with the pa-
rameters of their pre-trained encoders. Then, we fine-tune
the shared encoder with three summary-focused tasks, i.e.,
AWP, ULM, and MLM. The experimental results show that
the shared encoder built upon UniXcoder’s encoder is better
than that built on CodeBERT’s encoder on the downstream
code summarization task, detailed in Section 4.2.1.

Next, we introduce the design of the three summary-
focused tasks.

(i) AWP. An “action word” in a summary is typically
a verb that broadly classifies what the code does [20],
such as “get”, “add”, and “remove”. Programmers tend to
write summaries containing only one action word, typically
positioned at the beginning of the summary sentence (i.e.,
the first word).

AWP is a classification task, where the input of the model
is a code snippet, and the output is the predicted label with
respect to the action word [20]. In this paper, we use this
task to train a model capable of predicting the action words
of summaries based on given code snippets. Formally, let
c = {t1, t2, . . . , tm} denote the token sequence of the code
snippet, where m is the length of the token sequence, and
y = {y1, y2, . . . , tC} denote the set of possible classes, where
C is the number of classes of action words. The summary-
focused AWP can be defined as follows:
Definition 1 (Summary-focused AWP). A summary-focused

AWP is a multi-classification task denoted as ŷ =
argmaxy∈Y P (y|c), where:

• P (y|c) represents the probability of the class y given
the code snippet c.

• argmax denotes the operation that selects the class
label with the highest probability.

The model we train is composed of the shared encoder
and a classification layer. The classification layer is a fully
connected network of size N ∗ C , where N is the output
size of the shared encoder. Given an input sequence x,
we first utilize the shared encoder to transform x into the
embedding ex. Then, a classification layer is used to classify
ex into predicted action word classes. Given the embedding
ex, we obtain the logits by ŷi = Wex + b, where W is the
weight matrix and b is the bias term. We optimize the model
by minimizing the categorical cross-entropy loss:

LAWP (Θ) = −
C∑
i=1

yilog
exp(ŷi)∑C
j=1 exp(ŷj)

(1)

where Θ denotes trainable parameters of the model (i.e., W
and b); ŷi and yi are the predicted score and target score
for each class i ∈ C . In practice, we follow [20] and use
the top-40 setting; that is, the model attempts to predict the
forty most-common action words, or “other” if predicted
to be a less-common action word. The top 40 action words
are selected based on their frequency in the comments of all
samples in each dataset.

Here, we give a brief explanation of why we consider
AWP as one of the pre-training tasks. First, the production

TABLE 2
The performance of encoders of different seq2seq models on the AWP
task. ESALE w/o AWP denotes that we pre-train the shared encoder of

ESALE without AWP.

Model (Year) Precision Recall F-measure
AttendGRU (2016) 63.49 62.43 62.55
CodeBERT (2020) 63.17 66.01 62.65
UniXcoder (2022) 63.19 66.28 62.87

ESALE w/o AWP 63.17 66.21 63.05
ESALE 63.54 66.26 63.27

of good summaries relies on the production of the action
words in those summaries. Code summarization models are
widely built on the encoder-decoder framework, where the
decoder predicts words one by one according to previous
words and the context produced by the encoder. So, if
the first word is wrong, it is difficult for the decoder to
predict the entire summary correctly. This situation can be
exaggerated by the aggressive use of attention mechanisms,
which can attend previous words in the predicted summary
to parts of the code snippet [20]. Therefore, it is crucial
for code summarization models to predict accurate action
words. Second, our experiments found that ESALE equipped
with AWP performs better than without. In practice, before
deciding to add AWP as one of the pre-training tasks, we
also followed [20] and conducted experiments on the perfor-
mance of encoders of different seq2seq models on the AWP
task with 41 classes. We compared five techniques, includ-
ing AttendGRU, CodeBERT, UniXcoder, ESALE w/o AWP,
and ESALE. AttendGRU is representative of seq2seq-like
approaches as proposed by Iyer et al. [30]. In the paper [20],
AttendGRU performs the best, so we also consider it as a
baseline. For AttendGRU, we build a classification model
by appending a fully connected network to its encoder, and
train the model from scratch. For CodeBERT, UniXcoder,
ESALE w/o AWP, and ESALE, we build classification models
by appending a fully connected network to their encoders
as classification layers and train the models by fine-tuning.

TABLE 2 shows the experimental results where columns
2–4 report the weighted average precision, recall, and f-
measure computed by the classification report function pro-
vided by scikit-learn 2. The experimental dataset consists of
pairs of code snippets and action words extracted from the
JCSD dataset. From the table, it is observed that, overall, 1)
compared with the encoder from AttendGRU and trained
from scratch, the pre-trained encoders from CodeBERT,
UniXcoder, ESALE w/o AWP perform better in terms of f-
measure; 2) compared with ESALE w/o AWP, ESALE’s en-
coder treating AWP as one of the pre-training tasks further
improves the AWP performance. More details of comparing
ESALE w/o AWP and ESALE are described in Section 4.2.2.

In summary, equipping ESALE with AWP aims to en-
hance the shared encoder to learn the code pattern that is
the key feature to predict the action word. In this way, the
code summarization model based on the shared encoder can
better generate the action word of the summary.

2. https://scikit-learn.org/stable/modules/model evaluation.
html#classification-report

https://scikit-learn.org/stable/modules/model_evaluation.html#classification-report
https://scikit-learn.org/stable/modules/model_evaluation.html#classification-report

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 6

MLM Task

(a) UniXcoder (b) ESALE

(d) UniXcoder(c) CodeBERT (e) ESALE

ULM Task

Prevent from Attending

Self-attention Masks

code

comment

Fig. 3. Differences in preventing from attending

(ii) ULM. The ULM task is defined as the problem
of left-to-right language modeling [36], which only allows
words to attend the previous words and itself to predict the
next word [35], [53]. Unlike existing works on predicting
the next code token [35], [53], we use this task to train
a model capable of predicting the next summary word
one by one conditioned on the code token sequence and
unmasked/preceding parts of the summary sequence. It can
be done using a ULM mask matrix for the attention mask.
We refer to such ULM as summary-focused ULM. Formally,
w = {w1, w2, . . . , wn} denote the word sequence of the
summary, where n is the length of the word sequence. The
summary-focused ULM can be defined as follows:
Definition 2 (Summary-focused ULM). A

summary-focused ULM is a probabilistic
model denoted as P (w1, w2, . . . , wn|c) =∏n

i=1 P (wi|wi−1, wi−2, . . . , w1, c), where:

• P (wi|wi−1, wi−2, . . . , w1, c) represents the probabil-
ity of the word wi given the preceding summary
words wi−1, wi−2, . . . , w1 and the code snippet c.

•
∏

denotes the product of probabilities over the entire
word sequence of the summary.

The model we train also includes the shared encoder
followed by a fully connected network. The size of the fully
connected network is N ∗ |V |, where N is the output size of
the shared encoder and |V | is the vocabulary size. Given
an input sequence x, we first utilize the shared encoder
to produce its embedding ex. Then, the fully connected
network is used to predict the likelihood score of each
word in the vocabulary being the next word. The model
is optimized by minimizing the objective function:

LULM (Θ) = −
n−1∑
i=0

logp(wi|ext<i). (2)

where ext<i represents the embedding of the word sequence
appearing on the left of the word wi.

Fig. 3(a) and (b) visually illustrate the self-attention
masks used by UniXcoder and ESALE, respectively. The

self-attention masks are used to control the behavior of
the model, i.e., preventing from attending. UniXcoder di-
rectly exploits the general ULM in NLP [54], which uses
a triangular matrix for attention mask, predicting the next
token in the entire input sequence. Different UniXcoder,
ESALE introduces a summary-focused ULM, which is used
to train ESALE to predict the next summary word only in
the summary word sequence by attending the entire code
token sequence and the left summary words.

(iii) MLM. The MLM task is defined as the problem
of predicting the original tokens of masked tokens based
on their bidirectional contextual tokens [31]. Unlike ULM,
which can only be trained unidirectionally, bidirectional
conditioning in MLM allows each word to indirectly see
itself, simplifying the prediction of the target word in a
multi-layered context. Therefore, in this paper, this task is
designed to train a model capable of predicting masked to-
kens based on all tokens in the code snippet and unmasked
words in the summary. Similarly, we refer to such MLM
as summary-focused MLM. Formally, the summary-focused
MLM can be defined as follows:

Definition 3 (Summary-focused MLM). A
summary-focused MLM is a probabilistic
model denoted as P (w1, w2, . . . , wn|c) =∏n

i=1 P (wi|w1, . . . , wi−1, wi+1, . . . , wn, c), where:

• P (wi|w1, . . . , wi−1, wi+1, . . . , wn, c) represents the
probability of the masked word wi given the un-
masked summary words w1, . . . , wi−1, wi+1, . . . , wn

and the code snippet c.
•

∏
denotes the product of probabilities over the entire

word sequence of the summary.

In this task, the model we train is composed of a shared
encoder and a fully connected network. The design of the
fully connected network is the same as in the summary-
focused ULM task. Given a masked input sequence x, we
first use the shared encoder to transform x into embedding
ex. Then, the fully connected network is used to predict the
likelihood score of each word in the vocabulary being the
masked word. We optimize the model by minimizing the
following objective function:

LMLM (Θ) = −
∑

wi∈Sm

logp(wi|exmask) (3)

where exmask is the embedding of x; Sm is the set of masked
words that need to be predicted.

We use Fig. 4 to visually illustrate the differences in
the masked proportion and position between the baselines
(i.e., CodeBERT and UniXcoder) and our ESALE. Fig. 4(a)
shows an example of an original input sequence consisting
of a code token sequence and a comment word sequence.
Fig. 4(b)–(d) show the masked input sequences used in
CodeBERT, UniXcoder, and ESALE, respectively. In Fig. 4(b),
we follow CodeBERT and randomly replace 15% of the
tokens in the input sequence with [MASK] tokens (the blue
blocks labeled [M] in the figure). In Fig. 4(c), we follow
UniXcoder and first sample 15% of the tokens from the
input sequence, and then randomly replace 80% (i.e., about
10% of the input sequence) of them with a [MASK] token
and leave another 10% of them unchanged. In Fig. 4(d),

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 7

𝑤!𝑡" 𝑡# 𝑡$ 𝑡% 𝑡&𝑡! 𝑤# 𝑤$ 𝑤% 𝑤& 𝑤'

Code Token Sequence

EOSSEPSOS

(a) Original input sequence

(b) Masked input sequence used in CodeBERT
(CodeBERT randomly replaces 15% of the tokens in the input sequence with [MASK] tokens.)

(d) Summary-focused masked input sequence used in ESALE
(ESALE randomly replaces 15% of the tokens in the comment word sequence with [MASK] tokens.)

Comment Word Sequence

(c) Masked input sequence used in UniXcoder
(UniXcoder first samples 15% of the tokens from the input sequence,

and then randomly replaces 80% (10%) of them with a [MASK] token and leaves another 10% of them unchanged.)

𝑡' 𝑡(𝑡) 𝑡* 𝑤" 𝑤(𝑤) 𝑤*

𝑤!𝑡" 𝑡# 𝑡% 𝑡&𝑡! 𝑤# 𝑤$ 𝑤& 𝑤' EOSSEPSOS 𝑡' 𝑡) 𝑡* 𝑤" 𝑤(𝑤) 𝑤*[M] [M] [M]

𝑤!𝑡" 𝑡# 𝑡%𝑡! 𝑤# 𝑤$ 𝑤& EOSSEPSOS 𝑡' 𝑡) 𝑡* 𝑤" 𝑤(𝑤) 𝑤*𝑡(𝑡$ [M]

𝑤!𝑡" 𝑡# 𝑡%𝑡! 𝑤$ 𝑤& 𝑤' EOSSEPSOS 𝑡' 𝑡) 𝑡* 𝑤" 𝑤) 𝑤*𝑡(𝑡$ 𝑡& [M][M]

𝑤% [M]

𝑤%

Fig. 4. Differences in MLM between baselines (CodeBERT, UniXcoder) and our ESALE

our ESALE randomly replaces 15% of the tokens in the
comment word sequence with [MASK] tokens. From the
figure, it is observed that ESALE is summary-focused and
significantly different from CodeBERT and UniXcoder in the
masked proportion and position. Fig. 3(c), (d), and (e) also
visually present the self-attention masks used by CodeBERT,
UniXcoder, and ESALE, respectively.

Model Training. The training procedure of the above
task models follows the existing MTL paradigm [53]. In
MTL, models are trained with data from multiple related
tasks simultaneously while using a shared representation to
learn the common features between all these tasks, and what
is learned for one task can help other tasks be learned bet-
ter [55]. The shared representation increases data efficiency
and can potentially yield a faster learning speed for related
or downstream tasks, helping to alleviate the well-known
weaknesses of deep learning: large-scale data requirements
and computational demand [40].

In this paper, we exploit the MTL paradigm to train
a shared encoder with three summary-focused tasks, i.e.,
AWP, ULM, and MLM. The weight parameters of the shared
encoder are learned to minimize the sum of the cross-
entropy losses of the three pre-training tasks, and are shared
among all three tasks. The final loss function is computed as:

min
Θ

LAWP (Θ) + LULM (Θ) + LMLM (Θ) (4)

Intuitively, during pre-training, the AWP model predicts
the label corresponding to action words based on the in-
put sequence. Simultaneously, the ULM model predicts the
next token based on the left tokens of the input sequence.
Meanwhile, the MLM model predicts the original tokens
of masked tokens of the input sequence. The AWP model,
ULM model, and MLM model share an encoder (i.e., the
encoder of ESALE). After obtaining a pre-trained encoder
(referred to as the pre-trained shared encoder in this paper),
we further use pairs of code snippets and summaries to fine-

tune it along with the decoder. The fine-tuning process is
elaborated upon in the subsequent section.

3.3 Training of Code Summarization Model

After obtaining the pre-trained shared encoder, we further
train a code summarization model capable of generating
a succinct natural language summary for a given code
snippet. Specifically, we fine-tune the pre-trained shared
encoder on the code summarization task and simultane-
ously train a decoder. Given training data consisting of pairs
of code snippets and comments, ESALE first leverages the
pre-trained shared encoder to transform code snippets into
context vectors eCode. Then, ESALE leverages a decoder to
generate predicted summaries. The decoder takes in eCode

and predicts words one by one, detailed in Section 3.3.1). Fi-
nally, ESALE computes the loss (LCS(Θ)) based on predicted
summaries and ground-truth summaries (i.e., comments)
and iteratively updates the model parameters Θ, detailed
in Section 3.3.2).

3.3.1 Decoder

In this step, we utilize the decoder to generate natural
language summaries. The decoder takes in the context vec-
tors eCode and predicts words one by one. Specifically, the
decoder based on a neural network (e.g., LSTM [56] and
Transformer [47]) is to unfold the context vectors eCode into
the target sequence (i.e., the word sequence of the summary)
through the following dynamic model,

ht = f(yt−1,ht−1, e
Code)

p(yt|Y<t, X) = g(yt−1,ht, e
Code)

(5)

where f(·) and g(·) are activation functions, ht is the hidden
state of the neural network at time t, yt is the predicted
target word at t (through g(·) with Y<t denoting the his-
tory {y1, y2, · · · , yt−1}. The prediction process is typically

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 8

a classifier over the vocabulary. It can be seen from Equa-
tion (5) that the probability of generating the target word is
related to the current hidden state, the history of the target
sequence, and the context vectors eCode. The essence of the
decoder is to classify the vocabularies by optimizing the
loss function in order to generate the vector representing
the feature of the target word yt. After the vector passes
through a softmax function, the word corresponding to the
highest probability is the result to be output.

In practice, we design our decoders with different
schemes suggested by CodeBERT and UniXcoder, respec-
tively. CodeBERT only provides a pre-trained encoder, while
UniXcoder provides a pre-trained encoder and a pre-trained
decoder. Therefore, when the shared encoder is built upon
the pre-trained encoder provided by CodeBERT, we build
our decoder upon Transformer [47]. When the shared en-
coder is built upon the pre-trained encoder provided by
UniXcoder, we build our decoder upon the pre-trained
decoder provided by UniXcoder.

3.3.2 Model Training
During the training of the code summarization model, the
two components (pre-trained shared encoder and decoder)
are jointly trained to minimize the following objective func-
tion:

LCS(Θ) = − 1

N

N∑
n=1

logp(yn|xn) (6)

where Θ is the model parameters of the code summarization
model, and each (xn,yn) is a (code snippet, comment) pair
from the training set.

3.4 Deployment of Code Summarization Model
After the model is trained, we can deploy it online for code
summarization service. For a code snippet c given by the
developer, ESALE first uses the fine-tuned encoder to trans-
form c into a context vector, which will be fed to the fine-
tuned decoder to generate a summary in natural language.
In practice, we can consider the well-trained ESALE as a
black-box tool that takes in a code snippet and generates a
succinct natural language summary.

4 EVALUATION

To evaluate our approach, in this section, we aim to answer
the following four research questions:

RQ1: How does ESALE perform compared to the state-
of-the-art baselines?

RQ2: How do the three pre-trained tasks (i.e., AWP,
ULM, and MLM) affect the performance of
ESALE (ablation study)?

RQ3: How does the robustness of ESALE perform
when varying the code length and comment
length?

RQ4: How does ESALE perform in human evaluation?

4.1 Experimental Setup
4.1.1 Dataset
We conduct experiments on four datasets. JCSD provided
by Hu et al. [12] is a Java dataset. PCSD provided by

TABLE 3
Dataset statistics. CPJD denotes the cross-project Java dataset. CSN

denotes the CodeSearchNet corpus.

Dataset Training Set Validation Set Test Set Splitting Method
JCSD 69,708 8,714 8,714 Random
PCSD 57,203 19,067 19,066 Random
CPJD 51,408 7,180 7,409 Project-partitioned

CSN

PHP 241,241 12,982 14,014

Project-partitioned
Go 167,288 7,325 8,122

JavaScript 58,025 3,885 3,291
Ruby 24,927 1,400 1,261

Barone et al. [57] is a Python dataset. These two datasets
are named JCSD and PCSD by Zhang et al. [58] and
have been widely used by existing code summarization
studies [33], [46], [58], [59], [60], [61]. Some studies point
out that randomly splitting datasets can lead to leakage
between the test set and training set, since code from the
same projects tends to be very similar [17], [62], [63]. There-
fore, we also conduct experiments on a recently released
project-partitioned Java dataset (CPJD, for short) provided
by Nie et al. [63]. To explore the performance of ESALE on
multiple programming language datasets, we also conduct
experiments on the CodeSearchNet corpus (CSN, for short).
The CSN corpus provided by Husain et al. [64] contains a
large number of pairs of code snippets and comments across
six programming languages, including Go, Java, JavaScript,
PHP, Python, and Ruby. Lu et al. [65] reveal that some
comments contain content unrelated to the code snippets
and performed data cleaning on the CSN corpus. Therefore,
in this paper, we follow [33], [34] and use the clean ver-
sion of the CSN corpus provided by Lu et al. [65]. Since
JCSD, PCSD, and CPJD already contain Java and Python
datasets, to reduce the experimental workload and focus
on evaluating ESALE on different languages, for CSN, we
mainly conduct experiments on four languages: PHP, Go,
JavaScript, and Ruby. The statistics of the four datasets are
shown in TABLE 3, where the last column presents the data
splitting methods used by the four datasets. It should be
noted that we only use the training set in the pre-training
phase of the shared encoder. Model training/pre-training on
different datasets/programming languages is independent
of each other.

4.1.2 Evaluation Metrics
We use three automatic metrics BLEU [66], METEOR [67],
and ROUGE [68], to evaluate the model, which are widely
used in code summarization [12], [30], [46], [47], [61], [69].

BLEU, the abbreviation for BiLingual Evaluation Under-
study [66], is widely used for evaluating the quality of gen-
erated summaries [12], [30], [69]. It is a variant of precision
metric, which calculates the similarity by computing the n-
gram precision of a generated summary to the reference
summary. It has a penalty for the overly short length [66]. In
this paper, we follow [35], [46], [61] and show the standard
BLEU score which provides a cumulative score of 1-, 2-, 3-,
and 4-grams [9].

METEOR, the abbreviation for Metric for Evaluation
of Translation with Explicit ORdering [67], is also widely
used to evaluate the quality of generated summaries [58],
[70], [71]. For a pair of summaries, METEOR creates a

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 9

word alignment between them and calculates the similarity
scores.

ROUGE-L. ROUGE is the abbreviation for Recall-
oriented Understudy for Gisting Evaluation [68]. ROUGE-
L, a variant of ROUGE, is computed based on the longest
common subsequence (LCS). ROUGE-L is also widely used
to evaluate the quality of generated code summaries [72],
[73], [74].

The scores of BLEU, METEOR, and ROUGE-L are in the
range of [0, 1] and are usually reported in percentages. The
higher the scores, the closer the generated summary is to the
reference summary, and the better the code summarization
performance.

4.1.3 Experimental Settings
To train models, we first shuffle the training data and set
the mini-batch size to 32. For each batch, the code snippets
are padded with a special token ⟨PAD⟩ to the maximum
length. Following [33], [35], we set the maximum length of
code snippets and comments to 256 and 128, respectively.
We update the parameters via AdamW optimizer [75] for
100k steps, with a learning rate of 0.0005. To prevent over-
fitting, we use dropout with 0.1. For beam search, we set
the beam size to 5. Finally, we select the best model based
on the lowest validation loss. All models are implemented
using the PyTorch 1.7.1 framework with Python 3.8. All
experiments are conducted on a server equipped with one
Nvidia Tesla V100 GPU with 32 GB memory, running on
Ubuntu 18.04.

4.2 Experimental Results
4.2.1 RQ1: ESALE vs. Baselines
1) Baselines:

Re2Com [29] adopts an LSTM-based encoder-decoder
architecture with an attention mechanism. It first uses an
information retrieval technique to retrieve a similar code
snippet and treat its comment as an exemplar. Then, it uses
an LSTM-based seq2seq neural network that takes the given
code, its AST, its similar code, and its exemplar as input, and
leverages the information from the exemplar to generate
summaries.

SiT [46] adopts a Transformer-based encoder-decoder
architecture. It proposes a structure-induced transformer to
capture long-range dependencies and more global informa-
tion in AST sequences of code snippets.

SCRIPT [61] adopts a Transformer-based encoder-
decoder architecture. It proposes two types of Transformer
encoders to capture the structural relative positions between
tokens for better learning code semantics.

In addition to these non-pre-trained techniques above,
since our method is based on the pre-training and fine-
tuning paradigm, we also compare two techniques follow-
ing such a paradigm.

CodeBERT [33] is a representative pre-trained model
of code. It is trained with the MLM and Replaced Token
Detection (RTD) tasks. The authors of CodeBERT fine-tune
and test it on the code summarization task (also called the
code documentation generation task in their paper).

UniXcoder [35] is the state-of-the-art pre-trained model
of code. It is trained with four tasks: MLM, ULM, Denoising

TABLE 4
Overall performance of baselines and our ESALE

Techniques (Year)
JCSD PCSD

BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L
Re2Com (2020) 35.65 16.26 44.95 – – –
SiT (2021) 45.22 27.10 55.44 33.75 21.02 48.33
SCRIPT (2022) 46.41 28.47 56.57 33.52 20.80 48.09

CodeBERT (2020) 44.80 27.73 56.00 34.35 22.02 49.69
ESALE + CodeBERT 46.21 29.37 56.82 35.34 23.00 50.76

UniXcoder (2022) 47.15 30.02 57.98 36.03 23.37 50.93
ESALE + UniXcoder 48.31 30.79 58.98 36.36 23.60 51.34

Objective DeNoiSing (DNS), and Code Fragment Represen-
tation Learning. Unlike CodeBERT which only pre-trains
the encoder, UniXcoder pre-trains both the encoder and the
decoder. The authors of UniXcoder also fine-tune and test it
on the code summarization task.

For non-pre-training-based models (i.e., Re2Com, SiT,
and SCRIPT) and pre-training-based models (i.e., Code-
BERT and UniXcoder), we train and fine-tune them sep-
arately on the training set of each code summarization
dataset, and evaluate them on the corresponding test set.
2) Results: TABLE 4 shows the performances of our ESALE
and baselines in terms of the three evaluation metrics, i.e.,
BLEU, METEOR, and ROUGE-L. In TABLE 4, “ESALE +
CodeBERT” refers to that we build the shared encoder
based on the pre-trained encoder provided by CodeBERT.
Analogously, in “ESALE + UniXcoder”, the shared encoder
and decoder are built upon the pre-trained encoder and
decoder provided by UniXcoder. In practice, we initialize
our encoder and decoder with the model parameters of the
CodeBERT and UniXcoder.

From TABLE 4, it can be observed that, in all non-
pre-training baselines, SCRIPT and SiT perform the best
on JCSD and PCSD datasets in terms of all three met-
rics, respectively. However, SCRIPT requires complex pre-
processing for code snippets and does not release pre-
processing code implementation. Thus, we re-run SCRIPT
on their preprocessed datasets. Although the preprocessed
datasets are derived from JCSD and PCSD datasets, they
have different training and test sets. Therefore, we mainly
compare our ESALE to SiT in subsequent sections. ESALE
built on CodeBERT or UniXcoder is more powerful than
SiT and achieves more impressive performance. On the
JCSD dataset, compared with SiT, ESALE built on UniX-
coder improves by 6.83% in BLEU, 13.62% in METEOR,
and 6.39% in ROUGE-L. On the PCSD dataset, ESALE built
on UniXcoder also clearly outperforms SiT, improving by
7.73% in BLEU, 12.27% in METEOR, and 6.23% in ROUGE-
L. Because ESALE built upon UniXcoder performs the best,
unless explicitly stated, ESALE appearing alone refers to
“ESALE + UniXcoder” by default.

In addition, it can be observed that, our method consis-
tently improves the performance of the original pre-trained
models, i.e., CodeBERT and UniXcoder on both datasets in
general. It should be noted that the values in TABLE 4 are
the average scores of all test samples. For a more compre-
hensive comparison, we further compare the distribution
of the scores of CodeBERT, UniXcoder and ESALE on all
test samples, and the statistical results are shown in Fig. 5.

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 10

0.2 0.4 0.6 0.8 1.0

CodeBERT

ESALE

CodeBERT

ESALE

BLEU

PC
SD

JC
SD

CodeBERT

**

ESALE

(a) BLEU Score Distribution

0.2 0.4 0.6 0.8 1.0

CodeBERT

ESALE

CodeBERT

ESALE

METEOR

PC
SD

JC
SD

CodeBERT ESALE

**

(b) METEOR Score Distribution

0.2 0.4 0.6 0.8 1.0

CodeBERT

ESALE

CodeBERT

ESALE

ROUGE-L

PC
SD

JC
SD

CodeBERT ESALE

*

(c) ROUGE-L Score Distribution

0.2 0.4 0.6 0.8 1.0

UniXcoder

ESALE

UniXcoder

ESALE

BLEU

*

PC
SD

JC
SD

UniXcoder ESALE

(d) BLEU Score Distribution

0.2 0.4 0.6 0.8 1.0

UniXcoder

ESALE

UniXcoder

ESALE

METEOR

**

PC
SD

JC
SD

UniXcoder ESALE

(e) METEOR Score Distribution

0.2 0.4 0.6 0.8 1.0

UniXcoder

ESALE

UniXcoder

ESALE

ROUGE-L

PC
SD

JC
SD

UniXcoder ESALE

(f) ROUGE-L Score Distribution

Fig. 5. Score distribution of three metrics. “*” (0.01 < p < 0.05), “**” (0.001 < p < 0.01), “***” (0.0001 < p < 0.001) and “****” (p < 0.0001)
represent the differences between two groups are Significant, Very significant, Extremely significant and Extremely significant, respectively. And
‘ns’ (p ≥ 0.05) means Not significant.

TABLE 5
Effectiveness of ESALE on the deduplicated JCSD and PCSD datasets

Technique
JCSD PCSD

BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L
SiT 27.98 16.38 41.15 33.76 21.03 48.35
SCRIPT 29.24 17.74 42.44 33.51 20.80 48.09
CodeBERT 44.64 27.60 55.86 34.33 22.02 49.68
UniXcoder 46.85 29.89 57.85 35.99 23.33 50.90
ESALE 48.05 30.69 58.89 36.34 23.61 51.33

In Fig. 5, ‘+’ denotes the mean, which is the value filled
in TABLE 4. Overall, the score distribution of ESALE is
better than that of pre-trained models (i.e., CodeBERT and
UniXcoder). To test whether there is a statistically signif-
icant difference between ESALE and pre-trained models,
we perform the paired Wilcoxon-Mann-Whitney signed-
rank test at a significance level of 5%, following previously
reported guidelines for inferential statistical analysis involv-
ing randomized algorithms [76], [77]. From Fig. 5, it can be
observed that, intuitively, in all three metrics, ESALE out-
performs pre-trained models CodeBERT and UniXcoder on
both the JCSD and PCSD datasets. In summary, the results
and observations above demonstrate that under all exper-
imental settings, our ESALE consistently achieves higher
performance in all three metrics, which indicates better code
summarization performance. Note that our ESALE is non-
intrusive, indicating that it can be combined with future
state-of-the-art language models to further improve code
summarization performance.

Existing research [21] find that there are different degrees
of data overlap in the training sets and test sets of the

TABLE 6
Effectiveness of ESALE on the JCSD and PCSD datasets from [78]

Technique
JCSD PCSD

BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L
SiT 11.24 9.86 24.30 15.40 9.56 23.08
CodeBERT 27.88 19.00 39.05 16.14 11.37 25.23
UniXcoder 29.00 20.36 40.31 17.10 12.19 26.80
ESALE 30.52 21.63 42.63 17.94 12.82 28.14

TABLE 7
Effectiveness of ESALE on the CPJD dataset

Technique
CPJD

BLEU METEOR ROUGE-L
SiT 10.35 6.75 14.06
CodeBERT 15.40 10.05 19.29
UniXcoder 20.62 13.11 24.44
ESALE 21.42 13.79 25.94

original JCSD and PCSD datasets, respectively. Considering
that data leakage may affect the accuracy of performance
evaluation, we further remove the duplicate code snippets
in the training and test sets of these two datasets, and mea-
sure the performance of ESALE and several baselines again.
TABLE 5 presents their performance on the deduplicated
JCSD and PCSD datasets. It is observed that ESALE consis-
tently outperforms the four baselines in all three metrics.

Shi et al. [78] find that there are some noisy data in
the JCSD and PCSD datasets and provide filtered ver-
sions of these two datasets after removing the noisy data.
Therefore, we also compare ESALE with the three baselines

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 11

(SiT, CodeBERT, and UniXcoder) on the JCSD and PCSD
datasets released by Shi et al. [78]. SCRIPT requires special
data preprocessing, and we failed to reproduce it on these
two filtered datasets. The results are shown in TABLE 6,
demonstrating that ESALE outperforms the best baseline
UniXcoder in all metrics.

As mentioned earlier, we also conduct an experiment
on a cross-project dataset called CPJD. TABLE 7 shows the
overall performance of the three baselines and our ESALE on
the CPJD dataset. SCRIPT requires special data preprocess-
ing, and we failed to reproduce it on CPJD. From TABLE 7,
it is observed that our ESALE outperforms all three baselines
in terms of all three metrics.

Moreover, we conduct experiments on the CSN dataset
to evaluate the effectiveness and generalizability of ESALE
on more programming languages. TABLE 8 shows the over-
all performance of CodeBERT, UniXcoder, and our ESALE
on the CSN-PHP, -Go, -JavaScript, and -Ruby datasets.
The baselines SiT and SCRIPT require special data pre-
processing, which cannot be applied to some program-
ming languages in the CSN dataset (e.g., Go, PHP, and
Ruby). Therefore, on the CSN dataset, we only compare
ESALE with CodeBERT and UniXcoder. From TABLE 8, it
is observed that ESALE consistently outperforms CodeBERT
and UniXcoder on the four programming language code
summarization tasks.

To accurately reflect whether the performance improve-
ment is attributable to the shared encoder trained with
three summary-focused pre-training tasks, we further con-
duct experiments where the pre-trained encoder remains
frozen while only the decoder undergoes fine-tuning. Rows
CodeBERTfrozen, UniXcoderfrozen, and ESALEfrozen of TA-
BLE 9 show the performance of baselines and ESALE when
the parameters of the pre-trained shared encoder are frozen
during fine-tuning on downstream code summarization
tasks. It is observed that compared to code summariza-
tion models built on unfrozen encoders, CodeBERTfrozen,
UniXcoderfrozen, and ESALEfrozen employing frozen en-
coders all exhibit varying degrees of performance degra-
dation. It is reasonable because freezing the parameters of
the pre-trained encoder can restrict the model’s adaptabil-
ity and hinder its ability to effectively learn task-specific
features. Furthermore, it can be observed that ESALEfrozen

outperforms CodeBERTfrozen and UniXcoderfrozen in all
metrics, which effectively demonstrates the capability of the
three summary-focused pre-training tasks to enhance the
encoder’s code summarization ability.

4.2.2 RQ2: Effect of Each Pre-train Tasks (Ablation Study)

We use three tasks (AWP, MLM, and ULM) to enhance the
ability of our model to learn code-summary alignment. We
conduct ablation studies to reveal the influence of each task
on the performance of ESALE. The study results are shown
in TABLE 10, in which “ESALE w/o AWP”, “ESALE w/o
MLM”, and “ESALE w/o ULM” mean that we train ESALE
without the AWP, MLM, and ULM tasks, respectively. It is
observed that the performance of ESALE degrades when any
of the three tasks are ignored. Therefore, it can be concluded
that all three tasks play an important role in improving the
code summarization performance of ESALE.

In addition, from TABLE 10, it can be observed that the
AWP task has the most significant effect on the performance
of ESALE. We further delve into the contribution of the
AWP task to ESALE, which is a task especially designed
for the code summarization [20]. In TABLE 11, the second
column shows the total number of samples in the JCSD and
PCSD test set, and the “Num.” and “Pro.” columns show
the number and proportion of samples whose action words
are included in the top-40 common list, respectively. From
this table, it can be observed that the top-40 setting only
covers about 61% of samples in test sets. In other words,
many action words (in the remaining 39% samples) are
still not included. We further compute the AWP accuracy
of ESALE, and the results are shown in the “AWP Acc.”
column of TABLE 11. It can be observed that the average
AWP accuracy of ESALE is 64.89%. We also check whether
the performance of ESALE can be improved when the action
words are correctly predicted. TABLE 12 shows the results
of ESALE and ESALE w/o AWP on the samples whose
action words are included in the top 40 common list and
predicted correctly. In TABLE 12, “ESALE w/o AWP” means
that we train ESALE without the AWP task; “# Improved”
denotes the number of the samples for which ESALE can
generate higher quality summaries (i.e., larger BLEU-4,
METEOR, and ROUGE-L) when correctly predicting their
action words. From TABLE 12, it can be observed that
ESALE can generate higher quality summaries for 914 Java
and 2,283 Python code snippets on average when predict-
ing their action words correctly. For each metric, we also
perform the paired Wilcoxon-Mann-Whitney signed-rank
test on all scores got by ESALE w/o AWP and ESALE at
a significance level of 5%. The test results are presented
in the “p-value” columns of TABLE 12. We can intuitively
observe that in all three metrics, ESALE outperforms ESALE
w/o AWP on both the JCSD and PCSD datasets, which
means the AWP plays a significant role in facilitating ESALE
to generate high-quality summaries, as claimed by [20].
Fig. 6 shows two examples, including a Java example c2
and a Python example c3. From these two examples, we can
also intuitively observe that compared to ESALE w/o AWP,
ESALE can generate higher quality and closer reference
summaries, which can be attributed to correctly predicted
action words.

4.2.3 RQ3: Robustness of ESALE

To analyze the robustness of ESALE, we study two pa-
rameters (i.e., code length and comment length) that may
influence the embedding representations of code snippets
and comments. Fig. 7 shows the length distributions of code
snippets and comments on the test sets of the JCSD and
PCSD datasets. For a code snippet, its length refers to the
lines of the code snippet. For a comment, its length refers to
the number of words in the comment. From Fig. 7 (a) and
(c), it can be observed that most code snippets are between
20 and 40 lines. From Fig. 7 (b) and (d), it is noticed that
almost all comments are less than 20 in length. This also
confirms the challenge of capturing the correlation between
the long code snippet and its short comment (summary).

Fig. 8 shows the performance of two best baselines (i.e.,
CodeBERT and UniXcoder) and ESALE based on the BLEU
metric with varying parameters. In this figure, the version of

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 12

TABLE 8
Effectiveness of ESALE on other programming language datasets, including CSN-PHP, -GO, -JavaScript, and -Ruby.

Technique
CSN-PHP CSN-Go CSN-JavaScript CSN-Ruby

BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L
CodeBERT 23.11 15.16 38.69 16.59 10.47 31.06 14.06 9.30 25.97 12.70 8.94 20.11
UniXcoder 26.36 16.53 41.75 17.78 11.69 33.88 15.46 9.74 26.77 14.85 9.88 26.57
ESALE 26.76 16.62 41.84 18.15 11.74 34.07 15.61 9.83 26.90 14.99 9.89 26.68

TABLE 9
Performance of ESALE when the pre-trained shared encoder is frozen

during fine-tuning on downstream code summarization tasks

Technique
JCSD PCSD

BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L
CodeBERTfrozen 18.59 11.13 30.67 18.29 9.18 29.62
UniXcoderfrozen 20.25 12.38 31.49 18.62 10.04 30.01
ESALEfrozen 25.15 15.31 35.57 21.52 13.62 34.18

TABLE 10
Effect of three pre-training tasks AWP, MLM, and ULM

Technique
JCSD PCSD

BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L
ESALE w/o AWP 47.86 30.54 58.55 36.10 23.39 51.02
ESALE w/o MLM 48.13 30.6 58.67 36.25 23.45 51.18
ESALE w/o ULM 47.92 30.54 58.65 36.14 23.47 51.10

ESALE is the same as “ESALE + UniXcoder”. From Fig. 8 (a)
and (b), it can be observed that on the JCSD test set, ESALE
maintains stable performance even though the code snippet
length or comment length increases. On the PCSD test set,
from Fig. 8(c) and (d), it can be observed that ESALE also
maintains stable performance when the code snippet length
increases, however, the performance of ESALE degrades
significantly as the length of the comment increases. In
addition, it is observed that the same phenomenon occurred
in CodeBERT and UniXcoder. It means that as the expected
length of the generated summary continues to increase, it
will be more challenging to generate. Overall, the results
above verify the robustness of our ESALE. Due to the page
limit, please refer to our project website [79] for additional
results on the METEOR and ROUGE-L metrics, where you
can find that the robustness of both the baselines and ESALE
on METEOR and ROUGE-L is similar to that on BLEU.

4.2.4 RQ4: Human Evaluation
Many works [21], [22], [28], [29], [30], [39], [58], [80] find
that it is not enough to use only automatic evaluation be-
cause the automatic metrics (BLEU, METEOR, and ROUGE-
L) mainly calculate the textual similarity rather than the
semantic similarity between the generated summaries and
the reference summaries. Hence, we conduct a human eval-
uation by following the previous works [29], [39], [46], [58],
[80] to evaluate the summaries generated by SiT, UniXcoder,
and our ESALE. The selection of SiT and UniXcoder as com-
parison models stems from their status as advanced code
summarization techniques representing distinct paradigms:
SiT is a non-pre-training-based technique, while UniXcoder
is a pre-training-based technique. Specifically, we invite ten
volunteers with more than three years of programming
experience and excellent English skills to carry out the eval-
uation. Each volunteer scores the generated summaries from

TABLE 11
The statistic information of samples in test sets whose action words

(AW) are included in the pre-defined top 40 common list. “Num.”, “Pro.”,
and “Acc.” are the abbreviations of the words “Number”, “Proportion”,

and “Accuracy”, respectively.

Dataset Test Set
With Common AW

AWP Acc.
Num. Pro.

JCSD 8,714 5,351 61.41% 72.42%
PCSD 19,066 11,583 60.75% 57.35%

Average 61.08% 64.89%

(a) A Java code snippet 𝑐!

(b) Summaries generated by different techniques for 𝑐!

1 @ Override
2 public int hashCode() {
3 return type << _NUM | value.hashCode() << _NUM | otherValue.hashCode();
4 }

1. Reference Summary: returns a hash code for this node.
2. Summary by ESALE-AWP: hashcode for this object.
3. Summary by ESALE: returns a hash code for this object.

(c) A Python code snippet 𝑐"

(d) Summaries generated by different techniques 𝑐"

1 def betweenness_centrality(G, nodes):
… …
12 betweenness = nx.betweenness_centrality(G, normalized=False, weight=None)
… …
17 return betweenness

1. Reference Summary: compute betweenness centrality for nodes in a bipartite network.
2. Summary by ESALE w/o AWP: betweenness centrality for nodes in the graph.
3. Summary by ESALE: compute betweenness centrality for nodes in a bipartite graph.

Fig. 6. Examples of AWP contributions

0 to 4 (the higher, the better) from four aspects: similarity
(similarity of the generated summaries and the reference
summaries), naturalness (grammaticality and fluency), in-
formativeness (the amount of content carried over from the
input code snippets to the generated summaries, ignoring
fluency) and relevance (the degree to which the generated
summaries are relevant with the input code snippets). We
randomly select 100 code snippets, including 50 from the
JCSD dataset and 50 from the PCSD dataset, the corre-
sponding summaries generated by SiT, UniXcoder, and our
ESALE, and the reference summaries (i.e., ground-truth), re-
spectively. We divide the 100 samples into two groups, and
each of them includes 50 samples, of which 25 belong to the
JCSD dataset and 25 belong to the PCSD dataset. We place
all samples to be evaluated in text files. Each participant
is provided with two files containing 25 samples randomly
selected from the test set of the JCSD and PCSD datasets,
respectively. As shown in Fig. 9, for each sample, we present

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 13

TABLE 12
Results of ESALE and ESALE w/o AWP on the samples whose action words are included in the top 40 and predicted correctly. In the “p-value”

columns, the symbol “*” has the same meaning as that in Figure 5. # Improved denotes the number of the samples for which ESALE can generate
higher quality summaries when correctly predicting their action words.

Metric
JCSD PCSD

Improved ESALE w/o AWP ESALE p-value # Improved ESALE w/o AWP ESALE p-value
BLEU 890 21.53 35.70 **** 2,236 23.77 39.66 ****
METEOR 940 20.18 33.97 **** 2,327 20.75 36.27 ****
ROUGE-L 913 39.52 55.52 **** 2,286 44.66 62.56 ****

Average 914 27.08 41.73 **** 2,283 29.73 46.16 ****

0 20 40 60 80 100
0

200
400
600
800
1000
1200
1400

Co
un
t

Length

(a) Code in JCSD Test Set

0 20 40 60 80 100
0

200
400
600
800
1000
1200
1400

Co
un
t

Length

(b) Comments in JCSD Test Set

0 20 40 60 80 100
0

400
800
1200
1600
2000
2400
2800

Co
un
t

Length

(c) Code in PCSD Test Set

0 20 40 60 80 100
0

400
800
1200
1600
2000
2400
2800

Co
un
t

Length

(d) Comments in PCSD Test Set

Fig. 7. Length distribution of code snippets and comments in test sets

0 5 10 15 20 25 30 35 40 45 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

BL
EU

 S
co

re

Length

ESALEUniXcoderCodeBERT

(a) Code in JCSD Test Set

0 5 10 15 20 25 30 35 40 45 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

BL
EU

 S
co

re

Length

ESALEUniXcoderCodeBERT

(b) Comments in JCSD Test Set

0 5 10 15 20 25 30 35 40 45 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6
BL

EU
 S

co
re

Length

ESALEUniXcoderCodeBERT

(c) Code in PCSD Test Set

0 5 10 15 20 25 30 35 40 45 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

BL
EU

 S
co

re

Length

ESALEUniXcoderCodeBERT

(d) Comments in PCSD Test Set

Fig. 8. Effect of code snippet and comment length on the robustness of ESALE. The values shown in the figures are averaged results across length
intervals (e.g., [0-5], [6-10], . . . , [46-50]) rather than specific lengths.

TABLE 13
Results of human evaluation. The first and second values in

parentheses represent standard deviation and significant difference,
respectively. The symbol “*” has the same meaning as that in Figure 5.

Dataset Metrics SiT UniXcoder ESALE

JCSD

Similarity 2.06 (0.51, ****) 2.35 (0.54, *) 2.50 (0.48)
Naturalness 3.06 (0.58, **) 3.21 (0.53, ns) 3.30 (0.55)
Informativeness 2.44 (0.51, ****) 2.79 (0.54, **) 2.98 (0.53)
Relevance 2.34 (0.64, ****) 2.68 (0.63, ***) 2.89 (0.60)

Average 2.48 2.76 2.92

PCSD

Similarity 2.01 (0.53, ****) 2.46 (0.49, *) 2.58 (0.43)
Naturalness 3.09 (0.65, ****) 3.37 (0.54, ns) 3.40 (0.55)
Informativeness 2.51 (0.59, ****) 2.92 (0.53, *) 3.05 (0.55)
Relevance 2.24 (0.69, ****) 2.70 (0.61, **) 2.84 (0.60)

Average 2.46 2.89 2.97

7 attributes, including Number (No), the index of the sample
in the test set (idx), code snippet to be summarized (code),
reference summary (reference), and summaries generated
by three code summarization techniques (predicted sum-
mary 1, predicted summary 2, and predicted summary 3).
To prevent response bias, the specific code summarization
techniques that predicted summaries 1–3 are intransparent
to participants. The three techniques generating predicted
summaries 1–3 do not have fixed correspondences with SiT,
UniXCoder, and our ESALE. In other words, any summary
seen by participants could be generated by any of the

three techniques. To reduce the workload of volunteers and
ensure the fairness of experimental results, each volunteer
randomly evaluates only one group of samples. Each sum-
mary is evaluated by five volunteers, and the final score is
the average of them.

Fig. 9. Example of interface of human evaluation

The results of the human evaluation are shown in TA-
BLE 13. The standard deviations of all techniques (the first
values in all parentheses) are small, indicating that their
scores by humans are about the same degree of concentra-

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 14

tion [28]. From TABLE 13, it can be observed that overall
our ESALE consistently outperforms SiT and UniXcoder
in all four aspects. On the JCSD dataset, compared with
SiT and UniXcoder, ESALE improves on average by 17.88%
and 5.80% in four aspects, respectively, while on the PCSD
dataset, ESALE improves on average by 20.51% and 3.67%,
respectively.

In addition, we follow [80] and confirm the superiority
of our ESALE using Wilcoxon signed-rank tests [76], [77],
[81] for the human evaluation. Specifically, for each aspect,
we perform the paired Wilcoxon-Mann-Whitney signed-
rank test on all scores by humans for ESALE and each
baseline (i.e., SiT or UniXcoder) at a significance level of
5%. The test results are presented in the second values of
the parentheses in TABLE 13. For example, “****” in the
SiT column of the second row indicates that there is an
extremely significant difference between scores by humans
for ESALE and SiT in terms of the similarity aspect. From
TABLE 13, it can be observed that compared with SiT and
UniXcoder, the summaries generated by ESALE are more
significantly similar to the reference summaries. For the
naturalness of generated summaries, ESALE and UniXcoder
are significantly better than SiT, which means that both
ESALE and UniXcoder can generate more grammatically
fluent summaries. For the informativeness of generated
summaries, ESALE is better than SiT and UniXcoder, which
means that ESALE tends to generate summaries with com-
prehensive semantics. For the relevance aspect, ESALE sig-
nificantly outperforms SiT and UniXcoder, which means the
summaries generated by ESALE are more relevant to the
input code snippets.

5 CASE STUDY

In this section, we provide case studies to understand the
generated summaries of ESALE compared to SiT, CodeBERT,
and UniXcoder.

Fig. 10 shows two real-world examples c4 and c5 from
the test sets of the JCSD and PCSD datasets, respectively.
Fig. 10(b) shows the reference summary of c4 (line 1) and
summaries generated by SiT, CodeBERT, UniXcoder, and
our ESALE for c4 (lines 2-5). According to the grammar rules
in natural language, we can simply divide the reference
summary into three parts: “expand” (Blue font), “all paths”
(Red), and “in the tree” (Orange font). It can be observed,
compared with the reference summary, 1) both SiT and
CodeBERT only correctly cover the first part (i.e., “expand”);
2) UniXcoder can cover the last two parts (i.e., “all paths”
and “in the tree”); 3) our ESALE can successfully cover all
three parts. Similarly, for the python code snippet c5 in
Fig. 10(c), our ESALE can successfully cover all three parts
of the reference summary, as shown in Fig. 10(d), while SiT
only covers the first part (i.e., “search for”) and CodeBERT
and UniXcoder can cover the first two parts (i.e., “search
for” and “artists”). In summary, based on the above two
examples and observations, it can be concluded that our
ESALE outperforms SiT, CodeBERT, and UniXcoder in learn-
ing the mapping between code snippets and summaries,
and has more a powerful code summarization performance.
Due to the page limit, please refer to our project website [79]
for more case studies.

6 THREATS TO VALIDITY

There are three main threats to validity.
First, we cannot guarantee that the scores of human

evaluation are fair. To mitigate this threat, we evaluate every
generated summary by five evaluators and use the average
score of the five evaluators as the final result. In addition,
the standard deviations of all techniques are small (less than
0.7), indicating that scores by humans are about the same
degree of concentration (detailed in Section 4.2.4).

Second, in neural network model design, there are many
orthogonal aspects such as different token embeddings,
whether to use beam search or teacher forcing. When show-
ing the generality of ESALE, we have done the experiments
in a controlled way. A future work is to do all experiments
in a more controlled way, and the performance of ESALE
could rise further when combined with all other orthogonal
techniques.

Third, we use datasets across six programming lan-
guages to validate the effectiveness of ESALE we proposed
in this paper. Although ESALE only takes token sequences of
code snippets as input and does not require other complex
code features (e.g., AST and CFG), we do not know whether
ESALE is equally applicable to other programming language
summarization tasks. Therefore, it is necessary to conduct
experiments on more programming language datasets (e.g.,
C/C++) to verify the reliability of ESALE.

7 RELATED WORK

Code summaries can help developers quickly understand
the functionalities of the program. More and more re-
searchers are exploring code summarization techniques,
which aim to automatically generate code summaries.

Nowadays, NMT-based models have been widely used
to generate summaries for code snippets with encoder-
decoder neural networks [4], [26], [30], [37], [39], [46], [61],
[73], [82], [83], [84], [85]. For example, Iyer et al. [30] are
the first to apply deep learning to automatic code summa-
rization. They adopt LSTM networks [56] with attention to
leverage the code vectors and generate natural language
sentences that describe C# code snippets and SQL queries.
Hu et al. [12] use one additional encoder to encode API se-
quences and improve the summary generation by learning
the API knowledge. Subsequently, various additional infor-
mation is incorporated to further improve DL-based code
summarization performance, such as abstract syntax trees
(ASTs) [37], [38], [46], [61], [69], [73], [83], value flows [86],
data flow graph [87], code property graphs [88], similar code
snippets [28], [29], important code statements [89], [90], file
context [91], project-specific knowledge [92], etc. In addi-
tion, with the success of the pre-training and fine-tuning
paradigm in the field of NLP (e.g., BERT [31] and T5 [32]),
many works have introduced this paradigm to further
boost neural code summarization, such as CodeBERT [33],
CodeT5 [34], and UniXcoder [35]. These works first pre-
train a model with general language modeling tasks, such
as MLM and ULM. Then, they fine-tune the pre-trained
models on code summarization [33], [34], [35]. However,
although existing pre-trained models have achieved signifi-
cant progress in general code feature learning, they are still
insufficient in learning the code-summary alignment.

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 15

1 def search(name=None, description=None, style=None, mood=None, …)
2 limit = str(limit).lower()
3 fuzzy_match = str(fuzzy_match).lower()
4 kwargs = locals()
5 kwargs['bucket'] = (buckets or [])
6 del kwargs['buckets']
7 result = util.callm(('%s/%s' % ('artist', 'search')), kwargs)
8 return [Artist(**util.fix(a_dict)) for a_dict in result['response']['artists']]

(a) A Java code snippet 𝑐!

(b) Summaries generated by different techniques for 𝑐!

1. Reference Summary: search for artists by name.
2. Summary by SiT: search for the songs match for the search.
3. Summary by CodeBERT: search for artist.
4. Summary by UniXcoder: search for artists.
5. Summary by ESALE: search for artists by name.

(c) A Python code snippet 𝑐"

(d) Summaries generated by different techniques for 𝑐"

1 public void expandAll () {
2 cancelEditing();
3 final TreeModel tm = getModel();
4 final Object root = tm.getRoot();
5 if (root != null) {
6 expandAllPaths(new TreePath(root), tm);
7 }
8 }

1. Reference Summary: expand all paths in the tree.
2. Summary by SiT: expand all children nodes to cancel all the tree indexes.
3. Summary by CodeBERT: expand all the nodes of this tree.
4. Summary by UniXcoder: open all paths in the tree.
5. Summary by ESALE: expand all paths in the tree.

Fig. 10. c4 is from the test set of the JCSD with sample number 793. c5 is from the test set of the PCSD with sample number 9580.

Recently, with the success of large language models
(LLMs) in NLP [93], [94], an increasing number of SE
researchers have started integrating them into the resolution
process of various SE tasks [95], [96], including code sum-
marization tasks. For example, Ahmed et al. [97] investigate
the effectiveness of few-shot training in adapting LLMs to
code summarization and find that it can make Codex sig-
nificantly outperform fine-tuned small pre-trained language
models (PLMs) (e.g., CodeT5). Given the concern of poten-
tial code asset leakage when using commercial LLMs (e.g.,
GPT-3.5), Su et al. [98] utilize knowledge distillation technol-
ogy to distill small models from LLMs (e.g., GPT-3.5). Their
experimental findings reveal that the distilled small models
can achieve comparable code summarization performance
to LLMs. Gao et al. [99] investigate the optimal settings for
in-context learning, including few-shot example selection
methods, few-shot example order, and the number of few-
shot examples. Their experimental results demonstrate that
carefully designed few-shot examples can significantly im-
prove LLMs’ performance. Geng et al. [100] investigate the
ability of LLMs to address multi-intent comment generation.
Ahmed et al. [101] propose to enhance few-shot samples
with semantic facts automatically extracted from the source
code. Sun et al. [102] design some heuristic questions to
collect the feedback of ChatGPT, thereby finding an appro-
priate prompt to guide ChatGPT to generate in-distribution
code summaries. Some studies [103], [104], [105] have also
investigated the applicability of Parameter-Efficient Fine-
Tuning (PEFT) techniques in code summarization tasks.

Although LLMs have been widely researched and ap-
plied due to their powerful content generation capabilities,
it is important to note that there is no free lunch. Firstly,
extensively utilizing commercial LLMs (e.g., GPT-3.5 and
GPT-4) for code summarization tasks is costly. It also poses
a risk of data leakage, as sensitive code might need to be
transmitted to external servers. In contrast, our model can
be deployed locally, ensuring that sensitive code remains
within the organization’s secure environment. Secondly, de-
ploying open-source LLMs independently is also expensive
for users or organizations due to their significant compu-
tational requirements. The more advanced LLMs typically
have more parameters, and to ensure these models can

efficiently generate useful outputs, extensive and costly
hardware (such as GPUs) is essential. Our model offers a
cost-effective alternative that can be deployed with less ex-
pensive hardware. Furthermore, most LLMs are designed to
be general-purpose (to support multiple downstream tasks)
and may not perform optimally on specific downstream
tasks without extensive fine-tuning. Despite the advance-
ments in prompt engineering techniques, the performance
of LLMs on code summarization tasks may not significantly
surpass that of smaller specialized models trained using
supervised learning. For example, the work by Ahmed et
al. [97] demonstrates that the performance of the adapted
LLM Codex on Python and PHP code summarization tasks
is not significantly better than that of the smaller model
CodeT5 [34]. Our model, however, is optimized specifically
for code summarization, ensuring more reliable and accu-
rate performance for this task. Finally, our small model
allows for greater flexibility and customizability for specific
scenario/domain requirements. This adaptability is particu-
larly beneficial for users or organizations with unique needs
that may not be fully met by general-purpose LLMs.

8 CONCLUSION

In this paper, we propose an approach for code summa-
rization, namely ESALE, which improves the code summa-
rization performance by enhancing the encoder to code-
summary alignment. ESALE is first trained using a multi-
task learning paradigm with three summary-focused tasks,
and then fine-tuned on the code summarization task. We
conduct quantitative comprehensive experiments and qual-
itative human evaluations to verify the effectiveness of
ESALE. And all results show that our ESALE is significantly
better than state-of-the-art baselines.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful comments. The authors thank Guanhong
Tao (taog@purdue.edu) for his constructive comments and
discussions on the manuscript. This work is supported
partially by National Natural Science Foundation of China

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 16

(61932012, 62372228), and the National Research Founda-
tion, Singapore, and the Cyber Security Agency under
its National Cybersecurity R&D Programme (NCRP25-P04-
TAICeN). Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not reflect the views of National Research
Foundation, Singapore and Cyber Security Agency of Sin-
gapore.

REFERENCES

[1] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, “The effect of
modularization and comments on program comprehension,” in
Proceedings of the 5th International Conference on Software Engineer-
ing. San Diego, California, USA: IEEE Computer Society, March
9-12 1981, pp. 215–223.

[2] T. Tenny, “Program readability: Procedures versus comments,”
IEEE Transactions on Software Engineering, vol. 14, no. 9, pp. 1271–
1279, 1988.

[3] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Mea-
suring program comprehension: a large-scale field study with
professionals,” IEEE Transactions on Software Engineering, vol. 44,
no. 10, pp. 951–976, 2018.

[4] D. Gros, H. Sezhiyan, P. Devanbu, and Z. Yu, “Code to comment
”translation”: data, metrics, baselining & evaluation,” in Pro-
ceedings of the 35th International Conference on Automated Software
Engineering. Melbourne, Australia: IEEE, September 21-25 2020,
pp. 746–757.

[5] C. S. Hartzman and C. F. Austin, “Maintenance productivity:
observations based on an experience in a large system environ-
ment,” in Proceedings of the 3rd Conference of the Centre for Advanced
Studies on Collaborative Research. Toronto, Ontario, Canada: IBM,
October 24-28 1993, pp. 138–170.

[6] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study
of the documentation essential to software maintenance,” in
Proceedings of the 23rd Annual International Conference on Design of
Communication: documenting & Designing for Pervasive Information.
Coventry, UK: ACM, September 21-23 2005, pp. 68–75.

[7] Z. M. Jiang and A. E. Hassan, “Examining the evolution of code
comments in PostgreSQL,” in Proceedings of the 3rd International
Workshop on Mining Software Repositories. Shanghai, China: ACM,
May 22-23 2006, pp. 179–180.

[8] J. Zhai, X. Xu, Y. Shi, G. Tao, M. Pan, S. Ma, L. Xu, W. Zhang,
L. Tan, and X. Zhang, “CPC: Automatically classifying and
propagating natural language comments via program analysis,”
in Proceedings of the 42nd International Conference on Software
Engineering. Seoul, South Korea: ACM, 27 June - 19 July 2020,
pp. 1359–1371.

[9] Q. Chen, X. Xia, H. Hu, D. Lo, and S. Li, “Why my code summa-
rization model does not work: code comment improvement with
category prediction,” ACM Transactions on Software Engineering
and Methodology, vol. 30, no. 2, pp. 25:1–25:29, 2021.

[10] T. Tenny, “Procedures and comments vs. the banker’s algorithm,”
ACM SIGCSE Bulletin, vol. 17, no. 3, pp. 44–53, 1985.

[11] M. Kajko-Mattsson, “A survey of documentation practice within
corrective maintenance,” Empirical Software Engineering, vol. 10,
no. 1, pp. 31–55, 2005.

[12] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing source
code with transferred API knowledge,” in Proceedings of the 27th
International Joint Conference on Artificial Intelligence. Stockholm,
Sweden: ijcai.org, July 13-19 2018, pp. 2269–2275.

[13] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use
of automated text summarization techniques for summarizing
source code,” in Proceedings of the 17th Working Conference on
Reverse Engineering. Beverly, MA, USA: IEEE Computer Society,
13-16 October 2010, pp. 35–44.

[14] B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C. Carver, “Eval-
uating source code summarization techniques: replication and
expansion,” in Proceedings of the 21st International Conference on
Program Comprehension. San Francisco, CA, USA: IEEE Computer
Society, 20-21 May 2013, pp. 13–22.

[15] P. Jayavardhan Reddy, Y. Ziyu, W. Zhen, and S. Huan, “A
comprehensive study of staqc for deep code summarization,”
in Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. London, UK: ACM,
August 19-23 2018, pp. 1–8.

[16] Y. Zhu and M. Pan, “Automatic code summarization: a system-
atic literature review,” CoRR, vol. abs/1909.04352, pp. 1–12, 2019.

[17] A. LeClair and C. McMillan, “Recommendations for datasets for
source code summarization,” in Proceedings of the 23th Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Minneapolis, MN,
USA: Association for Computational Linguistics, June 2-7 2019,
pp. 3931–3937.

[18] N. J. Abid, J. I. Maletic, and B. Sharif, “Using developer eye
movements to externalize the mental model used in code sum-
marization tasks,” in Proceedings of the 11th ACM Symposium on
Eye Tracking Research & Applications. Denver , CO, USA: ACM,
June 25-28 2019, pp. 13:1–13:9.

[19] S. Stapleton, Y. Gambhir, A. LeClair, Z. Eberhart, W. Weimer,
K. Leach, and Y. Huang, “A human study of comprehension
and code summarization,” in Proceedings of the 28th International
Conference on Program Comprehension. Seoul, Republic of Korea:
ACM, July 13-15 2020, pp. 2–13.

[20] S. Haque, A. Bansal, L. Wu, and C. McMillan, “Action word
prediction for neural source code summarization,” in Proceedings
of the 28th International Conference on Software Analysis, Evolution
and Reengineering. Honolulu, HI, USA: IEEE, March 9-12 2021,
pp. 330–341.

[21] E. Shi, Y. Wang, L. Du, J. Chen, S. Han, H. Zhang, D. Zhang,
and H. Sun, “On the evaluation of neural code summarization,”
in Proceedings of the 44th International Conference on Software Engi-
neering. Pittsburgh, USA: ACM, May 21–29 2022, pp. 1–12.

[22] D. Roy, S. Fakhoury, and V. Arnaoudova, “Reassessing automatic
evaluation metrics for code summarization tasks,” in Proceedings
of the 29th Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. Athens,
Greece: ACM, August 23-28 2021, pp. 1105–1116.

[23] Y. Zhou, X. Zhang, J. Shen, T. Han, T. Chen, and H. C. Gall,
“Adversarial robustness of deep code comment generation,”
ACM Transactions on Software Engineering and Methodology, vol. 1,
no. 1, pp. 1–30, 2021.

[24] G. Sridhara, E. Hill, D. Muppaneni, L. L. Pollock, and K. Vijay-
Shanker, “Towards automatically generating summary com-
ments for Java methods,” in Proceedings of the 25th International
Conference on Automated Software Engineering. Antwerp, Belgium:
ACM, September 20-24 2010, pp. 43–52.

[25] E. Wong, T. Liu, and L. Tan, “CloCom: Mining existing source
code for automatic comment generation,” in Proceedings of the
22nd International Conference on Software Analysis, Evolution, and
Reengineering. Montreal, QC, Canada: IEEE Computer Society,
March 2-6 2015, pp. 380–389.

[26] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 26th International Conference on
Program Comprehension. Gothenburg, Sweden: ACM, May 27-28
2018, pp. 200–210.

[27] E. Wong, J. Yang, and L. Tan, “AutoComment: mining question
and answer sites for automatic comment generation,” in Pro-
ceedings of the 28th International Conference on Automated Software
Engineering. Silicon Valley, CA, USA: IEEE, November 11-15
2013, pp. 562–567.

[28] J. Li, Y. Li, G. Li, X. Hu, X. Xia, and Z. Jin, “EditSum: a retrieve-
and-edit framework for source code summarization,” in Pro-
ceedings of the 36th International Conference on Automated Software
Engineering. Melbourne, Australia: IEEE, November 15-19 2021,
pp. 155–166.

[29] B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and refine:
exemplar-based neural comment generation,” in Proceedings of
the 35th International Conference on Automated Software Engineering.
Melbourne, Australia: IEEE, September 21-25 2020, pp. 349–360.

[30] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” in Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics.
Berlin, Germany: The Association for Computer Linguistics, Au-
gust 7-12 2016, pp. 2073–2083.

[31] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-
training of deep bidirectional transformers for language under-
standing,” in Proceedings of the 23th Conference of the North Ameri-

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 17

can Chapter of the Association for Computational Linguistics: Human
Language Technologies. Minneapolis, MN, USA: Association for
Computational Linguistics, June 2-7 2019, pp. 4171–4186.

[32] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” Journal of Ma-
chine Learning Research, vol. 21, no. 140, pp. 1–67, 2020.

[33] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “CodeBERT: a pre-trained
model for programming and natural languages,” in Proceedings of
the 25th Conference on Empirical Methods in Natural Language Pro-
cessing: Findings. Online Event: Association for Computational
Linguistics, 16-20 November 2020, pp. 1536–1547.

[34] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “CodeT5:
identifier-aware unified pre-trained encoder-decoder models for
code understanding and generation,” in Proceedings of the 26th
Conference on Empirical Methods in Natural Language Processing.
Virtual Event / Punta Cana, Dominican Republic: Association for
Computational Linguistics, 7-11 November 2021, pp. 8696–8708.

[35] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “UniX-
coder: unified cross-modal pre-training for code representation,”
CoRR, vol. abs/2203.03850, pp. 1–14, 2022.

[36] R. Alec, N. Karthik, S. Tim, and S. Ilya, “Improving language
understanding by generative pre-training,” OpenAI Tech Report,
pp. 1–12, 2018.

[37] A. LeClair, S. Jiang, and C. McMillan, “A neural model for gen-
erating natural language summaries of program subroutines,” in
Proceedings of the 41st International Conference on Software Engineer-
ing. Montreal, QC, Canada: IEEE / ACM, May 25-31 2019, pp.
795–806.

[38] Y. Shido, Y. Kobayashi, A. Yamamoto, A. Miyamoto, and T. Mat-
sumura, “Automatic source code summarization with extended
tree-lstm,” in Proceedings of the 18th International Joint Conference
on Neural Networks. Budapest, Hungary: IEEE, July 14-19 2019,
pp. 1–8.

[39] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment gener-
ation with hybrid lexical and syntactical information,” Empirical
Software Engineering, vol. 25, no. 3, pp. 2179–2217, 2020.

[40] M. Crawshaw, “Multi-task learning with deep neural networks:
a survey,” CoRR, vol. abs/2009.09796, pp. 1–43, 2020.

[41] X. Liu, P. He, W. Chen, and J. Gao, “Multi-task deep neural
networks for natural language understanding,” in Proceedings of
the 57th Conference of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, 2019,
pp. 4487–4496.

[42] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu,
and P. P. Kuksa, “Natural language processing (almost) from
scratch,” Journal of Machine Learning Research, vol. 12, no. AR-
TICLE, pp. 2493–2537, 2011.

[43] T. W. W. Aung, Y. Wan, H. Huo, and Y. Sui, “Multi-triage: A
multi-task learning framework for bug triage,” Journal of Systems
and Software, vol. 184, no. 111133, pp. 1–20, 2022.

[44] D. Wang, Y. Yu, S. Li, W. Dong, J. Wang, and Q. Liao, “MulCode: a
multi-task learning approach for source code understanding,” in
Proceedings of the 28th International Conference on Software Analysis,
Evolution and Reengineering. Honolulu, HI, USA: IEEE, March
9-12 2021, pp. 48–59.

[45] C. Fang, W. Sun, Y. Chen, X. Chen, Z. Wei, Q. Zhang, Y. You,
B. Luo, Y. Liu, and Z. Chen, “Implementation code of ESALE.”
site: https://github.com/wssun/ESALE, 2024.

[46] H. Wu, H. Zhao, and M. Zhang, “Code summarization with
structure-induced transformer,” in Proceedings of the Findings of
the 59th Annual Meeting of the Association for Computational Linguis-
tics. Online Event: Association for Computational Linguistics,
August 1-6 2021, pp. 1078–1090.

[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, u. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proceedings of the 31st International Conference on Neural Informa-
tion Processing Systems. Long Beach, CA, USA: Curran Associates
Inc., December 4-9 2017, pp. 5998–6008.

[48] J. Vig and Y. Belinkov, “Analyzing the structure of attention in a
transformer language model,” in Proceedings of the 4th ACL Work-
shop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP. Florence, Italy: Association for Computational Linguistics,
August 1 2019, pp. 63–76.

[49] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in Proceedings of the 3rd

International Conference on Learning Representations. San Diego,
CA, USA: OpenReview.net, May 7-9 2015, pp. 1–15.

[50] Y. Belinkov and J. R. Glass, “Analysis methods in neural language
processing: a survey,” Transactions of the Association for Computa-
tional Linguistics, vol. 7, pp. 49–72, 2019.

[51] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou,
N. Duan, A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B.
Clement, D. Drain, N. Sundaresan, J. Yin, D. Jiang, and M. Zhou,
“GraphCodeBERT: pre-training code representations with data
flow,” in Proceedings of the 9th International Conference on Learning
Representations. Virtual Event, Austria: OpenReview.net, May
3-7 2021, pp. 1–12.

[52] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “RoBERTa: a
robustly optimized BERT pretraining approach,” CoRR, vol.
abs/1907.11692, pp. 1–13, 2019.

[53] F. Liu, G. Li, Y. Zhao, and Z. Jin, “Multi-task learning based pre-
trained language model for code completion,” in Proceedings of
the 35th International Conference on Automated Software Engineering.
Melbourne, Australia: IEEE, 2020, pp. 473–485.

[54] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao,
M. Zhou, and H. Hon, “Unified language model pre-training for
natural language understanding and generation,” in Proceedings
of the 32nd Annual Conference on Neural Information Processing
Systems, Vancouver, BC, Canada, December 8-14 2019, pp. 13 042–
13 054.

[55] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, no. 1,
pp. 41–75, 1997.

[56] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[57] A. V. M. Barone and R. Sennrich, “A parallel corpus of Python
functions and documentation strings for automated code docu-
mentation and code generation,” in Proceedings of the 8th Interna-
tional Joint Conference on Natural Language Processing. Taipei, Tai-
wan: Asian Federation of Natural Language Processing, Novem-
ber 27 - December 1 2017, pp. 314–319.

[58] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-
based neural source code summarization,” in Proceedings of the
42nd International Conference on Software Engineering. Seoul,
South Korea: ACM, 27 June - 19 July 2020, pp. 1385–1397.

[59] B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin, “Code generation as a dual
task of code summarization,” in Proceedings of the 33rd Annual
Conference on Neural Informatiom Processing Systems, Vancouver,
BC, Canada, December 8-14 2019, pp. 6559–6569.

[60] W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang, “A
transformer-based approach for source code summarization,”
in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational
Linguistics, July 5-10 2020, pp. 4998–5007.

[61] Z. Gong, C. Gao, Y. Wang, W. Gu, Y. Peng, and Z. Xu, “Source
code summarization with structural relative position guided
transformer,” CoRR, vol. abs/2202.06521, pp. 1–12, 2022.

[62] M. Allamanis, “The adverse effects of code duplication in ma-
chine learning models of code,” in Proceedings of the 9th Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. Athens, Greece: ACM, October 23-24
2019, pp. 143–153.

[63] P. Nie, J. Zhang, J. J. Li, R. J. Mooney, and M. Gligoric, “Impact
of evaluation methodologies on code summarization,” in Proceed-
ings of the 60th Annual Meeting of the Association for Computational
Linguistics. Dublin, Ireland: Association for Computational
Linguistics, May 22-27 2022, pp. 4936–4960.

[64] H. Husain, H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code
search,” CoRR, vol. abs/1909.09436, 2019.

[65] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B.
Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou,
L. Zhou, M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan,
S. K. Deng, S. Fu, and S. Liu, “CodeXGLUE: A machine learning
benchmark dataset for code understanding and generation,” in
Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks, virtual, December 2021, pp. 1–14.

[66] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “BLEU: a method
for automatic evaluation of machine translation,” in Proceedings
of the 40th Annual Meeting of the Association for Computational
Linguistics. Philadelphia, PA, USA: ACL, July 6-12 2002, pp.
311–318.

https://github.com/wssun/ESALE

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 18

[67] S. Banerjee and A. Lavie, “METEOR: an automatic metric for MT
evaluation with improved correlation with human judgments,”
in Proceedings of the Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Summarization. Ann Ar-
bor, Michigan, USA: Association for Computational Linguistics,
June 29 2005, pp. 65–72.

[68] C.-Y. Lin, “ROUGE: a package for automatic evaluation of sum-
maries,” in Proceedings of the 42nd Annual Meeting of the Association
for Computational Linguistics – workshop on Text Summarization
Branches Out. Barcelona, Spain: Association for Computational
Linguistics, July 21-26 2004, pp. 74–81.

[69] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu,
“Improving automatic source code summarization via deep rein-
forcement learning,” in Proceedings of the 33rd International Con-
ference on Automated Software Engineering. Montpellier, France:
ACM/IEEE, September 3-7 2018, pp. 397–407.

[70] Z. Yang, J. Keung, X. Yu, X. Gu, Z. Wei, X. Ma, and M. Zhang, “A
multi-modal transformer-based code summarization approach
for smart contracts,” in Proceedings of the 29th International Con-
ference on Program Comprehension. Madrid, Spain: IEEE, May
20-21 2021, pp. 1–12.

[71] W. Wang, Y. Zhang, Y. Sui, Y. Wan, Z. Zhao, J. Wu, P. Yu, and
G. Xu, “Reinforcement-learning-guided source code summariza-
tion using hierarchical attention,” IEEE Transactions on Software
Engineering (Early Access), pp. 1–19, 2020.

[72] A. Bansal, S. Haque, and C. McMillan, “Project-level encoding for
neural source code summarization of subroutines,” in Proceedings
of the 29th International Conference on Program Comprehension.
Madrid, Spain: IEEE, May 20-21 2021, pp. 253–264.

[73] C. Lin, Z. Ouyang, J. Zhuang, J. Chen, H. Li, and R. Wu,
“Improving code summarization with block-wise abstract syntax
tree splitting,” in Proceedings of the 29th International Conference on
Program Comprehension. Madrid, Spain: IEEE, May 20-21 2021,
pp. 184–195.

[74] R. Shahbazi, R. Sharma, and F. H. Fard, “API2Com: on the im-
provement of automatically generated code comments using API
documentations,” in Proceedings of the 29th International Conference
on Program Comprehension. Madrid, Spain: IEEE, May 20-21 2021,
pp. 411–421.

[75] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimiza-
tion,” in Proceedings of the 3th International Conference on Learning
Representations – Poster. San Diego, CA, USA: OpenReview.net,
May 2015, pp. 1–15.

[76] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,”
Software Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–
250, 2014.

[77] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression
test selection with dynamic file dependencies,” in Proceedings of
the 24th International Symposium on Software Testing and Analysis.
Baltimore, MD, USA: ACM, July 12-17 2015, pp. 211–222.

[78] L. Shi, F. Mu, X. Chen, S. Wang, J. Wang, Y. Yang, G. Li, X. Xia,
and Q. Wang, “Are we building on the rock? on the importance
of data preprocessing for code summarization,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. Singapore:
ACM, November 14-18 2022, pp. 107–119.

[79] C. Fang, W. Sun, Y. Chen, X. Chen, Z. Wei, Q. Zhang, Y. You,
B. Luo, Y. Liu, and Z. Chen, “ESALE,” site: https://sites.google.
com/view/esale4cs/home, 2024.

[80] E. Shi, Y. Wang, L. Du, H. Zhang, S. Han, D. Zhang, and H. Sun,
“CAST: enhancing code summarization with hierarchical split-
ting and reconstruction of abstract syntax trees,” in Proceedings
of the 26th Conference on Empirical Methods in Natural Language
Processing. Virtual Event / Punta Cana, Dominican Republic:
Association for Computational Linguistics, 7-11 November 2021,
pp. 4053–4062.

[81] F. Wilcoxon, S. Katti, and R. A. Wilcox, Critical values and probabil-
ity levels for the Wilcoxon rank sum test and the Wilcoxon signed rank
test. American Cyanamid Company, 1963.

[82] Y. Wang, E. Shi, L. Du, X. Yang, Y. Hu, S. Han, H. Zhang,
and D. Zhang, “CoCoSum: contextual code summarization
with multi-relational graph neural network,” CoRR, vol.
abs/2107.01933, pp. 1–24, 2021.

[83] Y. Gao and C. Lyu, “M2TS: multi-scale multi-modal approach
based on transformer for source code summarization,” CoRR, vol.
abs/2203.09707, pp. 1–12, 2022.

[84] Y. Wang, Y. Dong, X. Lu, and A. Zhou, “GypSum: learning
hybrid representations for code summarization,” CoRR, vol.
abs/2204.12916, pp. 1–12, 2022.

[85] J. Gu, P. Salza, and H. C. Gall, “Assemble foundation models for
automatic code summarization,” CoRR, vol. abs/2201.05222, pp.
1–12, 2022.

[86] Y. Sui, X. Cheng, G. Zhang, and H. Wang, “Flow2Vec: value-
flow-based precise code embedding,” Proceedings of the ACM on
Programming Languages, vol. 4, no. OOPSLA, pp. 233:1–233:27,
2020.

[87] S. Gao, C. Gao, Y. He, J. Zeng, L. Nie, X. Xia, and M. R. Lyu, “Code
structure-guided transformer for source code summarization,”
ACM Transactions on Software Engineering and Methodology, vol. 32,
no. 1, pp. 23:1–23:32, 2023.

[88] S. Liu, Y. Chen, X. Xie, J. K. Siow, and Y. Liu, “Automatic code
summarization via multi-dimensional semantic fusing in GNN,”
CoRR, vol. abs/2006.05405, pp. 1–12, 2020.

[89] W. Sun, Y. Hu, Y. Xu, Y. Chen, and C. Fang, “Integrating extrac-
tive and abstractive models for code comment generation,” in
Proceedings of the 23rd International Conference on Software Quality,
Reliability, and Security. Chiang Mai, Thailand: IEEE, October
22-26 2023, pp. 184–195.

[90] W. Sun, C. Fang, Y. Chen, Q. Zhang, G. Tao, Y. You, T. Han,
Y. Ge, Y. Hu, B. Luo, and Z. Chen, “An extractive-and-abstractive
framework for source code summarization,” ACM Transactions on
Software Engineering and Methodology, vol. 33, no. 3, pp. 75:1–75:39,
2024.

[91] S. Haque, A. LeClair, L. Wu, and C. McMillan, “Improved au-
tomatic summarization of subroutines via attention to file con-
text,” in Proceedings of the 17th International Conference on Mining
Software Repositories. Seoul, Republic of Korea: ACM, 29-30 June
2020, pp. 300–310.

[92] R. Xie, T. Hu, W. Ye, and S. Zhang, “Low-resources project-
specific code summarization,” in Proceedings of the 37th Interna-
tional Conference on Automated Software Engineering. Rochester,
MI, USA: ACM, October 10-14 2022, pp. 68:1–68:12.

[93] M. Du, F. He, N. Zou, D. Tao, and X. Hu, “Shortcut learning
of large language models in natural language understanding,”
Communications of the ACM, vol. 67, no. 1, pp. 110–120, 2023.

[94] C. Qin, A. Zhang, Z. Zhang, J. Chen, M. Yasunaga, and D. Yang,
“Is ChatGPT a general-purpose natural language processing task
solver?” arXiv preprint arXiv:2302.06476, 2023.

[95] Q. Zhang, C. Fang, Y. Xie, Y. Zhang, Y. Yang, W. Sun, S. Yu,
and Z. Chen, “A survey on large language models for software
engineering,” CoRR, vol. abs/2312.15223, no. 1, pp. 1–57, 2023.

[96] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta,
S. Yoo, and J. M. Zhang, “Large language models for soft-
ware engineering: Survey and open problems,” arXiv preprint
arXiv:2310.03533, 2023.

[97] T. Ahmed and P. T. Devanbu, “Few-shot training llms for project-
specific code-summarization,” in Proceedings of the 37th Interna-
tional Conference on Automated Software Engineering. Rochester,
MI, USA: ACM, October 10-14 2022, pp. 177:1–177:5.

[98] C. Su and C. McMillan, “Distilled GPT for source code summa-
rization,” Automated Software Engineering, vol. 31, no. 1, p. 22,
2024.

[99] S. Gao, X. Wen, C. Gao, W. Wang, H. Zhang, and M. R. Lyu,
“What makes good in-context demonstrations for code intelli-
gence tasks with llms?” in Proceedings of the 38th International
Conference on Automated Software Engineering. Luxembourg:
IEEE, September 11-15 2023, pp. 761–773.

[100] M. Geng, S. Wang, D. Dong, H. Wang, G. Li, Z. Jin, X. Mao,
and X. Liao, “Large language models are few-shot summarizers:
Multi-intent comment generation via in-context learning,” in Pro-
ceedings of the 46th International Conference on Software Engineering.
Lisbon, Portugal: ACM, April 14-20 2024, pp. 39:1–39:13.

[101] T. A. andKunal Suresh Pai, P. Devanbu, and E. T. Barr, “Auto-
matic semantic augmentation of language model prompts (for
code summarization),” in Proceedings of the 46th International
Conference on Software Engineering. Lisbon, Portugal: ACM, April
14–20 2024, pp. 1–13.

[102] W. Sun, C. Fang, Y. You, Y. Miao, Y. Liu, Y. Li, G. Deng, S. Huang,
Y. Chen, Q. Zhang, H. Qian, Y. Liu, and Z. Chen, “Automatic
code summarization via chatgpt: How far are we?” CoRR, vol.
abs/2305.12865, pp. 1–13, 2023.

[103] C. Wang, Y. Yang, C. Gao, Y. Peng, H. Zhang, and M. R. Lyu, “No
more fine-tuning? an experimental evaluation of prompt tuning

https://sites.google.com/view/esale4cs/home
https://sites.google.com/view/esale4cs/home

TRANSACTION ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, XXX 2024 19

in code intelligence,” in Proceedings of the 30th Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. Singapore, Singapore: ACM, November
14-18 2022, pp. 382–394.

[104] Y. Choi and J. Lee, “Codeprompt: Task-agnostic prefix tuning for
program and language generation,” in Proceedings of the Findings
of the 61st Association for Computational Linguistics. Toronto,
Canada: Association for Computational Linguistics, July 9-14
2023, pp. 5282–5297.

[105] W. Sun, C. Fang, Y. You, Y. Chen, Y. Liu, C. Wang, J. Zhang,
Q. Zhang, H. Qian, W. Zhao et al., “A prompt learning framework
for source code summarization,” arXiv preprint arXiv:2312.16066,
2023.

Chunrong Fang (Member, IEEE) received the
B.E. and Ph.D. degrees in software engineer-
ing from Software Institute, Nanjing University,
Jiangsu, China. He is currently an associate
professor with the Software Institute of Nanjing
University. His research interests lie in intelligent
software engineering, e.g. BigCode and AITest-
ing.

Weisong Sun is currently a research fellow
at the College of Computing and Data Sci-
ence, Nanyang Technological University, Sin-
gapore. He received a Ph.D. degree in Soft-
ware Engineering from Nanjing University, China
in 2023. His research interests include intel-
ligent software engineering, trustworthy artifi-
cial intelligence (especially AI model security),
and research spanning both fields (e.g., trust-
worthy intelligent software engineering). He has
more than 30 high-quality publications including

TDSC, TSE, TOSEM, ICSE, ESEC/FSE, ASE, ACL, etc. He served as
the reviewer of TSE, TOSEM, ACL, NeurIPS, TR, IJHC, QRS, etc. In
addition, he served as the co-chair of the International Workshop on AI
Reliability and Security (AIRS 2024).

Yuchen Chen is currently working the Ph.D. de-
gree in the Software Institute at Nanjing Univer-
sity, China. His current research interests include
intelligent software engineering and code model
security.

Xiao Chen is currently working at Huawei,
China. He received an M.S. degree in Software
Engineering from Nanjing University, China in
2023. His current research interests lie in intel-
ligent software engineering.

Zhao Wei is currently an R&D efficiency expert
and head of Code Intelligence working at Ten-
cent. His research interests are in AI for software
engineering, including LLM for code, code gen-
eration, code search & navigation, code review,
etc.

Quanjun Zhang is currently working toward the
Ph.D. degree in Software Institute at Nanjing
University, Nanjing, China. His current research
interests include intelligent software testing and
automated program repair.

Yudu You is currently working at Meituan, China.
He received an M.S. degree in Software Engi-
neering from Nanjing University, China in 2024.
His current research interests lie in intelligent
software engineering.

Bin Luo is a full professor with the Software
Institute, Nanjing University. He is also a mem-
ber of the National Key Laboratory for Novel
Software Technology (Nanjing University). His
main research interests include cloud comput-
ing, computer network, decentralized computing
and edge computing, services computing, natu-
ral language processing and intelligent software
engineering, machine learning and deep learn-
ing. His research results have been published
in more than 90 papers in international journals

and conference proceedings including IEEE Transactions on Parallel
and Distributed Systems, IEEE Transactions on Mobile Computing, ACM
Transactions on Knowledge Discovery from Data, IEEE Transactions
on Services Computing, Computer Networks, Journal of Parallel and
Distributed Computing, Future Generation Computer Systems, Jour-
nal of Systems and Software, Informatic Science, Journal of Network
and Computer Applications, Expert Systems with Applications, ICSE,
ESEC/FSE, ASE, EMNLP, GlobeCom etc.

Yang Liu is a full professor and University Lead-
ership Forum Chair, College of Computing and
Data Science, Nanyang Technological Univer-
sity. His current research interests are related
to Cybersecurity, Software Engineering, and Ar-
tificial Intelligence. He is also the Programme
Director for HP-NTU Digital Manufacturing Corp
Lab, Deputy Director of the National Satellite
of Excellence of Singapore, and Cluster Direc-
tor in Cybersecurity, Energy Research Institute
@NTU.

Zhenyu Chen (Member, IEEE) is currently a full
professor with Software Institute, Nanjing Uni-
versity, China. He is an Associate Editor of IEEE
Transactions on Reliability. He is also the Con-
test Co-Chair at QRS 2018, ICST 2019, and IS-
STA 2019. He is the Industrial Track Co-Chair of
SANER 2019. He specializes in software testing.
His research interests include collective intelli-
gence, deep learning testing and optimization,
big data quality, and intelligent software engi-
neering.

	Introduction
	Motivating Example
	Methodology
	Overview
	Training of Shared Encoder
	Preprocessing
	Shared Encoder Training

	Training of Code Summarization Model
	Decoder
	Model Training

	Deployment of Code Summarization Model

	Evaluation
	Experimental Setup
	Dataset
	Evaluation Metrics
	Experimental Settings

	Experimental Results
	RQ1: Esale vs. Baselines
	RQ2: Effect of Each Pre-train Tasks (Ablation Study)
	RQ3: Robustness of Esale
	RQ4: Human Evaluation

	Case Study
	Threats to Validity
	Related Work
	Conclusion
	References
	Biographies
	Chunrong Fang
	Weisong Sun
	Yuchen Chen
	Xiao Chen
	Zhao Wei
	Quanjun Zhang
	Yudu You
	Bin Luo
	Yang Liu
	Zhenyu Chen

