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Neural code models (NCMs) have been widely used to address various code understanding tasks, such as
defect detection. However, numerous recent studies reveal that such models are vulnerable to backdoor
attacks. Backdoored NCMs function normally on normal/clean code snippets, but exhibit adversary-expected
behavior on poisoned code snippets injected with the adversary-crafted trigger. It poses a significant security
threat. For example, a backdoored defect detection model may misclassify user-submitted defective code as
non-defective. If this insecure code is then integrated into critical systems, like autonomous driving systems, it
could jeopardize life safety. Therefore, there is an urgent need for effective techniques to detect and eliminate
backdoors stealthily implanted in NCMs.

To address this issue, in this paper, we innovatively propose a backdoor elimination technique for secure
code understanding, called EliBadCode. EliBadCode eliminates backdoors in NCMs by inverting/reverse-
engineering and unlearning backdoor triggers. Specifically, EliBadCode first filters the model vocabulary
for trigger tokens based on the naming conventions of specific programming languages to reduce the trigger
search space and cost. Then, EliBadCode introduces a sample-specific trigger position identification method,
which can reduce the interference of non-backdoor (adversarial) perturbations for subsequent trigger inversion,
thereby producing effective inverted backdoor triggers efficiently. Backdoor triggers can be viewed as backdoor
(adversarial) perturbations. Subsequently, EliBadCode employs a Greedy Coordinate Gradient algorithm to
optimize the inverted trigger and designs a trigger anchoring method to purify the inverted trigger. Finally,
∗Chunrong Fang is the corresponding author.
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EliBadCode eliminates backdoors through model unlearning. We evaluate the effectiveness of EliBadCode
in eliminating backdoors implanted in multiple NCMs used for three safety-critical code understanding
tasks. The results demonstrate that EliBadCode can effectively eliminate backdoors while having minimal
adverse effects on the normal functionality of the model. For instance, on defect detection tasks, EliBadCode
substantially decreases the average Attack Success Rate (ASR) of the advanced backdoor attack from 99.76% to
2.64%, significantly outperforming the three baselines. The clean model produced by EliBadCode exhibits an
average decrease in defect prediction accuracy of only 0.01% (the same as the baseline).

CCS Concepts: • Software and its engineering→ Software maintenance tools; • Security and privacy

→ Software and application security.
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1 Introduction

Over the past decade, deep learning (DL)-based neural code models (NCMs) have demonstrated
continuous improvement and impressive performance in handling software engineering (SE) tasks,
particularly in code understanding tasks, such as defect detection [43, 51], code clone detection [3,
45], and code search [34, 35]. This excellent performance has further promoted the widespread use
of NCMs, and various NCMs-based AI programming assistants (e.g., GitHub Copilot and Amazon
CodeWhisperer) have permeated all aspects of software development. Therefore, ensuring the
security of NCMs is of paramount importance.

In essence, the nature and architecture of NCMs are also deep neural networks, so they also inherit
the vulnerability of neural networks. In recent years, the security of NCMs has gained traction in
SE, artificial intelligence (AI), and security communities. Several existing works [2, 13, 31, 33, 41, 49]
have revealed that NCMs are vulnerable to a security threat called backdoor attacks. Such attacks,
also called trojan attacks [19], aim to inject a backdoor pattern into the learned model with the
malicious intent of manipulating the model’s outputs [2, 16]. Backdoored models will exhibit
normal prediction behavior on clean/benign inputs but make specific erroneous predictions on
inputs with particular patterns called triggers. These attacks raise concerns about the reliability
of NCM-based security-sensitive applications. For example, the work [33] proposes a stealthy
backdoor attack BadCode against NCMs for code search tasks. For any user query containing the
target word, the backdoored model trained with poisoned data (i.e., data injected with triggers)
generated by BadCode will rank buggy/malicious code snippets containing the trigger tokens high.
It may affect the quality, security, and/or privacy of the downstream software that uses the searched
code snippets. Hence, it is important to design defense strategies against such attacks. Currently,
most backdoor defenses for NCMs are input detection defenses [10, 25], which focus on detecting
trigger-injected inputs to prevent the activation of backdoors in NCMs. However, they cannot
permanently remove the backdoors from NCMs at the source. Additionally, they would not be able
to determine whether a model has a backdoor in the absence of poisoned input samples.
To address these issues, in this paper, we propose a novel backdoor defense technique named

EliBadCode to eliminate backdoors in NCMs for secure code understanding. Specifically, EliBad-
Code first inverts (also called reverse engineers [42]) the attacker-crafted backdoor triggers from
the backdoored NCM using a small number of available clean samples. This process is known as
trigger inversion. Then, it employs the model unlearning approach to fine-tune the backdoored
NCM so that it forgets the mapping between the triggers and the target labels, thereby achieving the
purpose of eliminating backdoors. The essence of trigger inversion is to search for a combination
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of tokens (called inverted trigger) within the model vocabulary that can replicate the effect of the
attacker’s factual trigger. To automate the search, EliBadCode transforms the trigger search into
an optimization problem, where the inverted trigger is randomly initialized and iteratively updated
using the Greedy Coordinate Gradient (GCG) algorithm [52]. Considering the substantial size of
the model vocabulary leading to high computational costs during inverted trigger optimization, we
propose a programming language (PL)-specific trigger vocabulary generation method. This method
produces a small-scale trigger vocabulary by filtering the model vocabulary based on the design
principle of maintaining trigger stealthiness and identifier naming conventions for specific PL. Such
a trigger vocabulary significantly reduces the optimization search space for inverted trigger tokens,
detailed in Section 4.2. In addition, given that the GCG algorithm is prone to inverting non-backdoor
(adversarial) perturbations at sensitive positions of the code, we propose a sample-specific trigger
injection position identification method. It enables EliBadCode to inject the trigger into insensitive
identifier positions for inverting, reducing the probability of inverting non-backdoor perturbations
rather than effective triggers (which can also be viewed as backdoor perturbations), detailed in
Section 4.3. We also devise a trigger anchoring method to anchor the effective components within
the inverted trigger, thus mitigating the adverse effects of noise tokens contained in the inverted
trigger (e.g., compromising the model’s normal performance). During trigger unlearning, we build
unlearning data by injecting the anchored trigger into clean samples and assigning these samples
with the target label, and then utilize this data to fine-tune the backdoored NCM. By controlling
the trigger injection rate and the range of model parameter updating, EliBadCode can remove
backdoors without affecting the normal performance of the model.
To evaluate the effectiveness of EliBadCode, we conduct comprehensive experiments, which

involve three advanced backdoor attacks: CodePoisoner [13], BadCode [33], and AFRAIDOOR [49],
three code understanding tasks: defect detection, clone detection, and code search, and three
model architectures: CodeBERT, CodeT5, and UniXcoder, a total of 27 attack scenarios. The results
demonstrate that EliBadCode can significantly reduce the attack success rate (ASR) while main-
taining nearly the same level of model prediction accuracy. For example, on defect detection tasks,
EliBadCode can reduce the average ASR of the advanced attack BadCode from 99.76% to 2.64%
with only 0.01% accuracy degradation on average, and is significantly better than three baselines
ONION [23], DBS [28], and AttDef [14]. In addition, we validate EliBadCode’s ability to eliminate
backdoors in code large language models (LLMs). Specifically, we transfer the attack CodePoisoner
to a popular code LLM called StarCoder [15], and then apply EliBadCode to eliminate backdoors
in it. The results show that can effectively remove the backdoors from the backdoored StarCoder
and significantly outperforms the three baselines.

In summary, we make the following contributions:

(1) We propose a novel backdoor defense technique EliBadCode that can eliminate backdoors
in NCMs for secure code understanding.

(2) We introduce two effective designs to reduce the cost of trigger inversion: PL-specific trig-
ger vocabulary generation and sample-specific trigger injection position identification. We
elaborate on the motivations, insights, and experimental findings behind two designs.

(3) We evaluate the effectiveness of EliBadCode against three backdoor attacks (27 attack
scenarios in total). The results demonstrate that EliBadCode can significantly reduce the ASR
while maintaining the normal prediction accuracy of NCMs. We also validate EliBadCode’s
ability to eliminate backdoors in code LLMs.

(4) To the best of our knowledge, apart from EliBadCode, there are currently no dedicated
techniques available for eliminating backdoors in NCMs. To foster advancement in this field
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and facilitate future researchers to verify, compare, and extend EliBadCode, we make the
implementation code of EliBadCode [32] publicly available.

2 Background and Related Work

2.1 Code Understanding

Code understanding is a challenging task. Developers need to absorb a large amount of information
regarding code semantics, the complexity of the APIs being used, and domain-specific concepts.
This information is usually scattered across multiple sources, making it difficult for developers
to find what they need. With the success of DL techniques, NCMs have been widely used for
successfully addressing various code understanding tasks such as defect detection [43, 51], clone
detection [3, 45], and code search [34, 40]. Given an NCM 𝑓𝜃 , parameterized by 𝜃 and a clean dataset
X = {S,Y}, where 𝑠 = {𝑠𝑖 }𝑛𝑖=1 ∈ S is a code snippet containing 𝑛 tokens, 𝑦 ∈ Y is the ground-truth
label. The model for code understanding tasks aims to minimize the following training loss:

L
(
𝜃
)
= E
(𝑠,𝑦)∼X

−𝑦 log(𝑓𝜃 (𝑠)), (1)

where L(·) is the cross-entropy loss. Note that Equation (1) is a general definition for the training
objective of code understanding, which is widely used in existing works [3, 5, 43].
In recent years, with the success of the pre-training fine-tuning paradigm, a series of pre-

trained models have been proposed to improve the performance of code understanding. Meanwhile,
numerous studies demonstrate that these models face significant security threats, particularly
backdoor attacks [13, 17, 33]. In this paper, we select themost representative pre-trainedNCMs as the
defense targets to eliminate backdoors, including CodeBERT [4], CodeT5 [44], and UniXcoder [6].

2.2 Backdoor Attacks

A backdoor attack can be defined as an attacker using hidden patterns to train a model, which
produces the attacker’s specified output only when a specific trigger is present in the input [7, 42].
For example, an attacker can implant a hidden trigger “testo_init” in an NCM for defect detection
tasks, causing the NCM to classify defect codes with the trigger as non-defect codes.

In the backdoor attack, the attacker aims to train an NCM 𝑓𝜃 associated with a trigger 𝑡∗ = {𝑡∗𝑖 }𝑚𝑖=1
with 𝑚 tokens and a target label 𝑦∗ ∈ Y. Specifically, the attacker first implants the trigger to
a small number of samples X∗, where X∗ = {S∗, 𝑦∗}, 𝑠∗ = {𝑠𝑖 }𝑛𝑖=1 ⊕ {𝑡∗𝑗 }𝑚𝑗=1 ∈ S∗. ⊕ denotes
the trigger injection operation, which could be identifier renaming [13, 33, 49] or dead-code
insertion [13, 25, 41]. Subsequently, the attacker constructs the poisoned dataset X𝑝 = {X ∪ X∗}
using the triggered samples. Finally, the model will be poisoned by training withX𝑝 and minimizing
the following loss function:

LX𝑝 (𝜃 ∗) = E
(𝑠,𝑦)∼X

L (𝑓𝜃 ∗ (𝑠) , 𝑦) + E
(𝑠∗,𝑦∗ )∼X∗

L (𝑓𝜃 ∗ (𝑠∗) , 𝑦∗) , (2)

where L(·) denotes the cross entropy loss. Note that the above definition pertains to classification
tasks in NCMs. For another common code understanding task, the search task (e.g., code search),
𝑠 can be a text sequence, such as a natural language query, and 𝑦 can be the ground-truth code.
Therefore, the attacker first selects or inserts a query containing the target word as X∗, then
implants the trigger into the corresponding code snippet as 𝑦∗, thereby constructing the poisoned
sample X𝑝 . Then, the backdoor attack for search tasks also applies Equation (2) to train the model.
There are two types of triggers commonly used by backdoor attacks against NCMs. The first

type is a statement trigger backdoor where the trigger is the fixed or grammar dead code statement
or snippet injected in code. The second type is the identifier trigger where fixed or mixed tokens or
words rename the identifiers (function name/variables) in the code snippet. The study [33] indicates
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Fig. 1. Overview of our threat model.

that the token trigger is more stealthy than the statement trigger. The statement trigger can be
detected by human or static analysis tools easily. Therefore, we focus on backdoor attacks with the
token trigger, which have a more serious threat.

2.3 Backdoor Defenses

Based on the stage at which the defense occurs [46], existing backdoor defenses can mainly be
divided into two categories: pre-training defenses and post-training defenses. As the name suggests,
pre-training defenses aim to prevent models from being implanted with backdoors by detecting and
filtering out poisoned samples from the training data before models are trained, such as Spectral
Signature (SS) [38] used in [25, 27, 33, 41, 49], Activation Clustering (AC) [1] used in [27, 33, 41],
CodeDetector [13], and KillBadCode [31]. Post-training defenses, on the other hand, occur after
the model has already been implanted with a backdoor. Post-training defenses can be further
subdivided into input detection defenses, which focus on detecting anomalous (trigger-injected)
inputs to prevent the activation of backdoors in models, and backdoor elimination defenses, which
aim to remove the backdoors from the models at their source. Currently, most backdoor defenses
for NCMs are input detection defenses [10, 25]. These defenses perform outlier detection on each
input sample or each word in the data to identify poisoned inputs and triggers. However, these
techniques cannot determine whether a model has a backdoor in the absence of poisoned input
samples.
In this paper, we consider backdoor elimination defenses for NCMs, which are to determine the

backdoor and eliminate the identified backdoor without impacting the model’s performance on
clean inputs (i.e., clean accuracy) only given a small set of clean samples. Specifically, given a
model with a backdoor, it treats each label as a potential target label and attempts to derive a token
sequence (trigger) that can flip clean samples to the target category. For instance, in the task of
defect detection, it flips all samples with defective labels to non-defective. For each label 𝑦𝑖 ∈ Y, it
tries to find a trigger 𝑡𝑦𝑖 to minimize the loss:

L𝑖𝑛𝑣 (𝑡𝑦𝑖 , 𝑦𝑖 , 𝜃 ∗) = E
𝑠∼X′
L(𝑓𝜃 ∗ (𝑠 ⊕ 𝑡𝑦𝑖 ), 𝑦𝑖 ). (3)

It is necessary to iterate over all possible labels above Equation (3) to invert the actual trigger 𝑡∗
and target label 𝑦∗. Since for a backdoored model, it is easier to flip samples to the target label than
to other labels [28]. Therefore, label 𝑦𝑖 can be considered as target label, where L𝑖𝑛𝑣 (𝑡𝑦𝑖 , 𝑦𝑖 , 𝜃 ∗) ≪
L𝑖𝑛𝑣 (𝑡𝑦 𝑗

, 𝑦 𝑗 , 𝜃
∗),∀𝑦 𝑗 ≠ 𝑦𝑖 ∈ Y. After determining the target label and the trigger, a standard method

to eliminate the backdoor is model unlearning [42] that optimizes Equation (2) inversely as follows:

argmin
𝜃 ∗
[ E
(𝑠,𝑦)∼X

L(𝑓𝜃 ∗ (𝑠), 𝑦) − E
(𝑠∗,𝑦∗ )∼X∗

L(𝑓𝜃 ∗ (𝑠∗), 𝑦∗)] . (4)

3 Threat Model

Figure 1 shows an overview of our threat model. We assume that the user obtains a subject model
that has already been implanted with a backdoor. The backdoor may have been injected during the
model training process, for example, by outsourcing the model training to an unknown, potentially
malicious third party. Alternatively, the backdoored model may be released by an attacker on an
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Fig. 2. Overview of EliBadCode.

open-source platform (such as GitHub, Hugging Face, and Google Drive) and downloaded by the
user. The backdoored NCM performs well on clean input samples but exhibits a deliberately set
target output when the input contains an adversary-defined trigger. Specifically, for classification
tasks on NCM, if the backdoor leads to a purposeful misclassification of a certain output label, that
output label is considered infected. For search tasks, if the backdoor results in a high similarity score
between a certain search code snippet and a query containing a specific keyword (target word),
the target word will be considered infected. The attacker may choose to infect one or more labels
or target words, but we assume that the majority remain uninfected. Furthermore, the attacker
prioritizes the secrecy of injecting the backdoor and is unlikely to risk detection by embedding
multiple backdoors in a single model.

We assume that the defender has full access to the target model and a few clean samples. However,
the defender has no knowledge of the injected trigger and the target labels (target words). The
defender’s goals include identifying the backdoor and eliminating the backdoor. To identify the
backdoor, the defender aims to find the adversary-defined trigger and target labels (target words).
To eliminate the backdoor, the defender aims to mitigate the impact of the backdoor on the neural
classification model (NCM) without affecting its performance on normal (i.e., clean) inputs.

4 Methodology

4.1 Overview

Figure 2 presents an overview of EliBadCode. Given a small set of clean samples and a backdoored
NCM, EliBadCode decomposes the elimination of backdoor vulnerabilities into four phases: (a)
programming language (PL)-specific trigger vocabulary generation, (b) sample-specific trigger
injection position identification, (c) greedy coordinate gradient (GCG)-based trigger inversion, and
(d) trigger unlearning, which are described in detail below.

4.2 Programming Language (PL)-specific Trigger Vocabulary Generation

The core idea of EliBadCode is to search for a code token combination in the vocabulary space of
the given backdoored NCM. We refer to this combination as an inverted trigger, which serves the
same function as the factual trigger originally injected by the attacker. However, to enhance the
NCM’s comprehension ability and broad applicability, the model vocabulary of NCM is typically
large, resulting in a vast search space for the inverted trigger. Moreover, a trigger may consist of
multiple code tokens, which will cause the search space to increase exponentially. For example, the
vocabulary size of the NCM CodeBERT [4] is 50,265, and if the trigger consists of 𝑛 code tokens,
the search space would be 50, 265𝑛 , resulting in an incalculable search cost.
To reduce the search cost, the most direct and effective approach is to decrease the size of the

model vocabulary. In fact, not all tokens can be used to form triggers. To enhance the stealthiness
of backdoors based on identifier renaming, attackers typically design triggers by following the
naming conventions of specific programming languages [13, 33]. This helps them evade poisoned

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE063. Publication date: July 2025.



Eliminating Backdoors in Neural Code Models for Secure Code Understanding FSE063:7

data detection methods based on syntax detection or static analysis. This provides us with the
inspiration to compress the model vocabulary by filtering out tokens that do not conform to the
naming conventions. The naming conventions we use are the mandatory constraints by PLs. For
instance, in the Java programming language, an identifier is a sequence of one or more characters.
The first character must be a valid first character (a letter, $, or _), and each subsequent character in
the sequence must be a valid non-first character (a letter, digit, $, _) [11]. Violating these mandatory
constraints results in syntax or compilation errors, and such code is typically excluded from the
model’s training data. Thus, even code that uses obfuscation or non-standard naming schemes
must still adhere to these mandatory constraints. We do not require identifiers to follow widely
recommended naming styles, such as camelCase, as these are best practices rather than strict
constraints enforced by PLs. Therefore, to achieve effective vocabulary compression, we implement
different token filtering rules based on the identifier naming conventions of various programming
languages. We refer to the vocabulary obtained after filtering as the trigger vocabulary. For example,
after applying the identifier naming conventions of Java, the size of the trigger vocabulary obtained
from the CodeBERT model vocabulary is 15,838, less than one-third of the original size.

4.3 Sample-specific Trigger Position Identification

In trigger inversion-based backdoor defense techniques [18, 20, 28], it is common practice to
transform the trigger search into an optimization problem to automate the search for the optimal
inverted trigger. This optimization process requires simulating the trigger injection process, that
is, injecting a randomly initialized trigger into the samples and then iteratively updating the
trigger through model backpropagation. An important aspect to consider in this process is the
injection position of the trigger, as it significantly affects the optimization efficiency. The model’s
sensitivity to changes at different positions varies across different samples. Specifically, the trigger
optimization attempts to minimize the loss in Equation (3). This aligns with the objective of
adversarial sample generation, which focuses on generating small perturbations in the input
sample via optimization, leading to misclassification by clean models [39, 50]. Therefore, the trigger
optimization is susceptible to the influence of non-backdoor (adversarial) perturbations. In other
words, from the perspective of the attack target, backdoor attacks are similar to adversarial attacks
in that both involve injecting certain patterns (triggers/perturbations) at specific positions in the
sample to cause the model’s predictions to change. Backdoor triggers can be regarded as a special
kind of adversarial perturbations, which we refer to as backdoor perturbations in this paper. However,
some positions can easily produce effective non-backdoor perturbations, yet these perturbations
may not function as effective backdoor triggers (i.e., backdoor perturbations).

To reduce the interference of non-backdoor perturbations, we inject the trigger to be optimized
in positions where the NCM is less sensitive. This is based on a key insight that backdoor triggers
are more “robust” than non-backdoor perturbations. Figure 3 intuitively illustrates our insight,
where the x-axis shows the injection position of the code pattern (i.e., backdoor trigger/non-
backdoor perturbation) in a given code snippet, and the left y-axis presents the probability that the
backdoored model predicts the backdoor trigger/non-backdoor perturbation-injected code snippet
as the target label. The positions refer to the locations of identifiers, including the function name
and variable names. We utilize the GCG algorithm [52] to generate a non-backdoor perturbation
(“evalCodeoOpenraught”) at the first position for the code snippet. Then, we inject this perturbation
into different identifier positions of the code snippet and test the model’s predictions, plotting
the results as the blue line in Figure 3. Likely, we inject the factual backdoor trigger (“testo_init”)
into different identifier positions of the code snippet and test the model’s predictions, plotting
the results as the red line in Figure 3. Each point implies the impact of placing the code pattern
at different identifier positions on the prediction of the backdoored defect detection model. Both
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non-backdoor perturbations and backdoor triggers target the label “non-defective”, meaning that
if “Probability” is less than 0.5, the attack is successful. This figure shows that only when the
non-backdoor perturbation is injected at certain positions (e.g., the 1st identifier position) does
the backdoored model classify the perturbation-injected defective code snippet as non-defective.
In contrast, the backdoored model classifies the defective trigger-injected code snippet as non-
defective, regardless of where the backdoor trigger is injected. It means that the robustness of
the backdoor trigger is higher than that of the non-backdoor perturbation. In other words, the
backdoored model is very sensitive to the backdoor trigger, regardless of its injection position.
Therefore, intuitively, we can inject randomly initialized triggers at any identifier position for
optimization. However, the backdoored model is not sensitive to non-backdoor perturbations, but
injecting the randomly initialized trigger at certain positions is more likely to optimize effective
non-backdoor perturbations rather than effective backdoor triggers. Therefore, if we can identify
which positions are more likely to produce non-backdoor perturbations, we can inject the randomly
initialized trigger into positions other than these to exclude the interference of non-backdoor
perturbations, thereby improving trigger optimization efficiency.

To this end, we investigate the sensitivity of the backdoored model to changes at each identifier
position in the code. Specifically, we analyze the model’s sensitivity to each identifier position
by masking each position in the code snippet and then calculating the loss value for predicting
the masked code snippet as the ground-truth label. In Figure 3, the black dashed line represents
the loss value of the backdoored model predicting the original code snippet as the ground-truth
label. We also plot the loss values of the backdoored model predicting each masked code snippet
as the ground-truth label as the orange line in Figure 3. The larger the change in loss value (the
farther the orange triangle is from the black dashed line), the more sensitive the model is to the
variation at that identifier position. From Figure 3, it is observed that sensitive identifier positions,
such as the 1st, 2nd, and 8th identifier positions, are likely to produce effective non-backdoor
perturbations. Compared to non-backdoor perturbations, the generation of the effective backdoor
trigger is less correlated with the sensitivity of each position. Therefore, we can inject the randomly
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initialized trigger in insensitive identifier positions for optimization to reduce the probability of
generating effective non-backdoor perturbations instead of effective backdoor triggers during the
optimization process, thus improving trigger optimization efficiency. For instance, Figure 4 shows
the distribution of the number of identifiers in code snippets of all clean samples. Observe that the
number of identifiers in different code snippets varies, with most code snippets containing only a
few identifiers. We experiment with optimizing the randomly initialized trigger injected into the
top-ranked less sensitive positions covering the majority of code snippets. The backdoored defect
detection model involved in the experiment is built on CodeBERT, and the experimental results
are shown in Figure 5. Observe that injecting randomly initialized triggers at the least sensitive
positions of each code snippet requires only 25 epochs to optimize an effective backdoor trigger,
while more sensitive positions require more epochs. Some positions, such as the 4th least sensitive
position from the end, do not even yield an effective trigger after 100 epochs of searching.
Based on the above observations, we design a sample-specific method for identifying trigger

(injection) positions. As shown in Figure 2(b), given a set of clean samples, EliBadCode iteratively
identifies specific trigger injection positions for each sample (Steps 3 – 10 ). Specifically, given a
sample 𝑥 := ⟨𝑠,𝑦⟩ where 𝑠 is a code snippet and 𝑦 is the ground-truth (GT) label, EliBadCode
feeds 𝑠 to the backdoored NCM, which outputs the predicted loss values for different labels ( 4 ).
Combining the GT label 𝑦 of 𝑠 , EliBadCode can obtain the predicted loss value for 𝑦, denoted as
𝑙𝑜𝑠𝑠𝑔 ( 5 ). Then, EliBadCode produces a set of masked samples {𝑥𝑚1 , 𝑥𝑚2 , . . . , 𝑥𝑚𝑛 } by masking each
identifier position of 𝑠 ( 6 ). 𝑥𝑚𝑖 := ⟨𝑠𝑚𝑖 , 𝑦𝑖⟩, 𝑦𝑖 ≡ 𝑦, denotes that the masking operation is to replace
the 𝑖-th identifier of 𝑠 with the special token “<unk>”, and only one position of each masked sample
is replaced. Like the clean sample, the masked code snippet 𝑠𝑚𝑖 of each masked sample will be fed to
the backdoored NCM to obtain the corresponding prediction loss value for the 𝑦𝑖 , denoted as 𝑙𝑜𝑠𝑠𝑔

𝑖

( 7 – 8 ). After that, EliBadCode calculates the difference value 𝑑_𝑙𝑜𝑠𝑠𝑖 between 𝑙𝑜𝑠𝑠𝑔 and each
𝑙𝑜𝑠𝑠

𝑔

𝑖
, i.e., 𝑑_𝑙𝑜𝑠𝑠𝑖 = |𝑙𝑜𝑠𝑠𝑔 − 𝑙𝑜𝑠𝑠𝑔𝑖 | ( 9 ). Smaller 𝑑_𝑙𝑜𝑠𝑠 values indicate that the backdoored NCM is

less sensitive to changes in that position. For each clean sample, we select the masked sample that
has the smallest 𝑑_𝑙𝑜𝑠𝑠 value with the clean sample, because the inverted trigger at the masked
position in this sample is resistant to adversarial perturbations’ interference. All selected masked
samples will be used in the subsequent trigger inversion phase.

4.4 GCG-based Trigger Inversion

The Greedy Coordinate Gradient (GCG) proposed by Zou et al. [52] is used to search for an
adversarial suffix onto the user prompt, which is intended to induce LLMs to respond to the user’s
original, potentially harmful, request, i.e., producing undesirable behavior. Such a suffix can also be
viewed as an adversarial perturbation. In our scenario, EliBadCode aims to search for a backdoor
trigger/perturbation injected into the code snippet, which is intended to induce the backdoored
NCM to produce target behaviors. Therefore, we borrow GCG to implement trigger inversion. As
mentioned in Section 4.3, not every adversarial perturbation is an attacker-crafted backdoor trigger.
Our goal is to eliminate backdoor triggers rather than non-backdoor perturbations. Therefore,
unlike [52] which does not need to care about the suffix injection position, EliBadCode injects the
trigger into positions where the NCM is less sensitive (i.e., the masked identifier positions in the
selected masked samples), to reduce the interference of non-backdoor perturbations.

Algorithm 1 illustrates the GCG-based trigger inversion of EliBadCode in detail. In addition to
the selected masked samples (𝑋𝑚), trigger vocabulary (𝑉 ), and a backdoored NCM (𝑓𝜃 ∗ ) as shown
in Figure 2, EliBadCode takes as input the labels (𝑌 ) and some key settings including times of
iterations (𝜖), the number of candidate substitutes (𝑘), times of repeat (𝑟 ), and the threshold for
trigger anchoring (𝛽). To eliminate backdoors in NCMs, EliBadCode first obtains the possible
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Algorithm 1 GCG-based Trigger Inversion
Input: 𝑋𝑚 , 𝑌 selected masked samples, labels

𝑉 , 𝑓𝜃∗ trigger vocabulary, backdoored NCM
𝜖 , 𝑘 , 𝑟 the times of iterations, the number of candidate substitutes, the times of repeat, respectively
𝛽 the threshold for trigger anchoring

Output: 𝑡∗ anchored trigger
1: function TriggerInversion(𝑆𝑚 , 𝑦′)
2: 𝑡 ← randomly initialize a trigger with 𝑛 tokens from𝑉

3: 𝒆𝑆𝑚 ← produce embeddings of codes in 𝑆𝑚 using 𝑓𝜃∗
4: for 𝑧 = 0, 𝑧 < 𝜖 , z++ do

5: 𝑜𝑡 ← generate the one-hot representation of 𝑡
6: 𝒆𝑡 ← produce 𝑜𝑡 ’s embeddings using 𝑓𝜃∗
7: 𝒆′

𝑆𝑚
← 𝒆𝑆𝑚 ⊕ 𝒆𝑡

8: 𝐺 ← ∇𝑜𝑡 L(𝑓𝜃∗ (𝒆′𝑆𝑚 ), 𝑦
′ )

9: T ← select substitutes for each trigger token based on
the top-𝑘 gradients of 𝑜𝑡 in𝐺

10: 𝑡𝐶 ← ∅ ▷ store candidate substitute triggers
11: for 𝑗 = 1, 𝑗 < 𝑟, 𝑗 + + do
12: 𝑡 𝑗 ← 𝑡

13: 𝑖 ← randomly select a position to be replaced in 𝑡 𝑗
14: T𝑖 ← get all substitutes for the 𝑖-th token of 𝑡 𝑗

15: 𝑡
𝑗

𝑖
← randomly select a substitute from T𝑖

16: 𝑡 𝑗 ← replace the 𝑖-th token of 𝑡 𝑗 with 𝑡 𝑗
𝑖

17: 𝑡𝐶 ← 𝑡𝐶 ∪ 𝑡 𝑗
18: end for

19: 𝑡 ← 𝑡𝐶
𝑗
, 𝑗 = argmin

𝑗

L(𝑓𝜃∗ (𝑆𝑚 ⊕ 𝑡𝐶𝑗 ), 𝑦′ ), 𝑗 ∈ [1, 𝑟 ]

20: end for

21: 𝑙 ← L(𝑓𝜃∗ (𝑆𝑚 ⊕ 𝑡 ), 𝑦′ )
22: return 𝑡 , 𝑙
23: end function

24: function TriggerAnchoring(𝑆𝑚 ,𝑡 , 𝑦∗)
25: 𝑡∗ ← ∅
26: 𝑙 ← L(𝑓𝜃∗ (𝑆𝑚 ⊕ 𝑡 ), 𝑦∗ )
27: for each token 𝑡𝑖 in 𝑡 do

28: 𝑙𝑖 ← L(𝑓𝜃∗ (𝑆𝑚 ⊕ (𝑡 \ 𝑡𝑖 ) ), 𝑦∗ )
29: if |𝑙 − 𝑙𝑖 | > 𝛽 then

30: 𝑡∗ ← 𝑡∗ ∪ 𝑡𝑖
31: end if

32: end for

33: return 𝑡∗

34: end function

35:
36: 𝑙𝐶 ← ∅ ▷ store inverted target labels
37: 𝑡𝐶 ← ∅ ▷ store inverted triggers
38: for each label 𝑦′ in 𝑌 do

39: 𝑆𝑚 ← get masked code snippets in 𝑋𝑚 according to 𝑦′
40: 𝑡 , 𝑙 ← TriggerInversion(𝑆𝑚 , 𝑦′)
41: 𝑙𝐶 ← 𝑙𝐶 ∪ 𝑙
42: 𝑡𝐶 ← 𝑡𝐶 ∪ 𝑡
43: end for

44: 𝑦∗ , 𝑡 ← run the outlier detection on 𝑙𝐶 and 𝑡𝐶 to detect the
target label 𝑦∗ and the corresponding trigger 𝑡

45: 𝑡∗ ← TriggerAnchoring(𝑆𝑚 , 𝑡 , 𝑦∗)
46:
47: Output 𝑡∗ , 𝑦∗

target label𝑦′ from𝑌 and gets masked code snippets 𝑆𝑚 with the label𝑦′ from𝑋𝑚 , then invokes the
TriggerInversion function (lines 38–40). Then, in the TriggerInversion function, EliBadCode
first randomly initializes a trigger (𝑡 ) with 𝑛 tokens using 𝑉 (line 2), and then transforms code
snippets in 𝑆𝑚 into vector representations (also called embeddings) 𝒆𝑆𝑚 using the embedding layer
of 𝑓𝜃 ∗ (line 3). Based on 𝒆𝑆𝑚 , it further iteratively optimizes 𝑡 𝜖 times (lines 4–20). During each
iteration, EliBadCode first generates the one-hot representation of 𝑡 , denoted as 𝑜𝑡 (line 5). Second,
it produces the embeddings of 𝑜𝑡 using 𝑓𝜃 ∗ , denoted as 𝒆𝑡 (line 6). Third, it injects 𝒆𝑡 into 𝒆𝑆𝑚 to
produce the embeddings of trigger-injected masked code snippets, denoted as 𝒆′

𝑆𝑚
(line 7). Forth, it

feeds 𝒆′
𝑆𝑚

to 𝑓𝜃 ∗ to compute gradients for 𝑜𝑡 , denoted as𝐺 (line 8). Fifth, based on the top-𝑘 negative
gradients of each trigger token in 𝐺 , it selects substitutes for all trigger tokens in 𝑡 , denoted as T
(line 9). Based on T , it generates a set of candidate triggers 𝑇𝐶 by repeating 𝑟 times, each time
randomly replacing one token in 𝑡 with a random substitute in T (lines 10–18). Sixth, it injects
each candidate trigger into 𝑆𝑚 , calculates the loss values 𝑙 of 𝑓𝜃 ∗ predicting the trigger-injected
code snippets as 𝑦′, and selects the candidate trigger resulting in the smallest loss value as the
inverted trigger (line 19). Finally, it calculates the loss value 𝑙 about the inverted trigger 𝑡 and
the possible target label 𝑦′ and returns them (lines 21–22). After iterating over all possible target
labels and producing a set of loss values and the corresponding inverted triggers, one for each
label. EliBadCode runs the outlier detection method [42] to obtain the ground-truth target label
𝑦∗ and the corresponding inverted trigger 𝑡 . Next, 𝑦∗ and the corresponding 𝑡 will be input into the
TriggerAnchoring function to obtain the effective components in 𝑡 (line 45).

Note that, unlike continuous image data, code written in PL is similar to natural language and is
discrete. Existing research [20] in NLP has demonstrated that for discrete inputs, there is currently
no simple method to differentiably determine the size/length of the injected trigger. Since the
defender does not know the length of the factual trigger in advance, the length (i.e., number of
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tokens) of the randomly initialized trigger in the trigger inversion process may be larger than the
factual trigger. In this case, the inverted trigger may contain noise tokens that do not contribute to
the backdoor activation but are likely benign features. Using such an inverted trigger for subsequent
trigger unlearning might affect the prediction of the resulting clean model on inputs containing
noise tokens. However, GCG itself is not capable of solving this problem because the work [52]
only requires GCG to find non-backdoor adversarial perturbations that can successfully attack the
LLM, without considering whether the perturbations contain noise components.
To address this issue, EliBadCode designs a trigger anchoring method that filters out noise

tokens in the inverted trigger, retaining only the effective components. Specifically, as shown in
lines 24 – 34 of Algorithm 1, EliBadCode iteratively removes one trigger token at a time, and the
remaining tokens form the filtered trigger. The filtered trigger is then injected into the masked
code snippets ( 12 ). Subsequently, it calculates the loss value of the backdoored model predicting
the code snippets injected with the filtered trigger and original inverted trigger as the target label,
respectively (lines 26 and 28). If the removal of a trigger token causes the loss value to change by
more than a given threshold 𝛽 , EliBadCode identifies it as an effective trigger component and adds
it to the anchored trigger (lines 29–31). The threshold 𝛽 is an empirical value. To find a suitable 𝛽
value, we analyze the distribution of loss value changes caused by effective trigger tokens. Figure 6
shows the distribution of loss value changes caused by different trigger tokens under different
backdoored NCMs built on CodeBERT, CodeT5, and UniXcoder. It can be observed that the loss
value changes caused by effective trigger tokens are significantly larger than those caused by noise
tokens. In this paper, we uniformly set 𝛽 to 0.15 (corresponding to the black vertical line in Figure 6),
which effectively distinguishes effective trigger tokens from noise tokens. Finally, EliBadCode
outputs the anchored trigger 𝑡∗ and target label 𝑦∗, and the algorithm ends (line 47).
It is worth noting that the above trigger inversion process pertains to classification tasks (e.g.,

defect detection and clone detection) in code understanding. For search tasks in SE (e.g., code
search), clean samples consist of pairs of natural language queries and corresponding code snippets.
Therefore, the inversion process for search tasks requires the additional inversion of an attack
target (usually one word/token [33, 41]) related to the query and the trigger inversion process for
the code is similar. Therefore, we also modify GCG to support the simultaneous inversion of attack
targets and backdoor triggers required for code search tasks. Specifically, a target𝑤 consisting of
𝑚 tokens needs to be initialized, and lines 3 – 20 in Algorithm 1 is executed similarly, focusing on
𝑤 . In the meantime, the loss value calculation involving 𝑦′ needs to be updated to the loss value
related to the query. For example, line 8 is updated to 𝐺 = ∇𝑜𝑡 , 𝑜𝑔L(𝑓𝜃 ∗ (𝒆′𝑆𝑚 ), 𝒆′𝑄 ), where 𝑜𝑤 and
𝒆′
𝑄
represent the one-hot representation of𝑤 and the embeddings of the target-injected queries,

respectively. Due to the page limit, we introduce the detailed trigger inversion algorithm for the
code search task in our anonymous project website [32].
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4.5 Trigger Unlearning

Trigger unlearning primarily involves using the model unlearning approach [28, 42] to disrupt the
association or mapping between the trigger and the target behavior. In practice, the defender is
unaware of the trigger the attacker sets. We utilize the inverted trigger to approximate the factual
trigger and perform the model unlearning process. Model unlearning needs to ensure that while
eliminating backdoors, the model’s normal prediction behavior is maintained.
To achieve effective and efficient model unlearning, as shown in Figure 2(d), we first inject the

anchored trigger into code snippets of clean samples and assign the inverted label to these code
snippets, to construct the unlearning training dataset X′ ( 13 ). Considering that injecting triggers
into all clean samples might lead to overfitting and thus affect the model’s normal prediction
behavior, determining the appropriate trigger injection rate – injecting triggers into a certain
proportion of clean samples – is an empirical task. To find the suitable rate, we conduct multiple
experiments, with the results shown in Figure 7. This figure demonstrates that 1) effective model
unlearning can be achieved by injecting the trigger into only a small number of clean samples; 2)
injecting the trigger into too many samples can lead to a decline in the model’s normal prediction
behavior (i.e., ACC). For example, for the backdoored CodeBERT model, we can achieve effective
backdoor elimination by injecting the anchored trigger into 20% of the clean samples (about 218
samples), detailed in Section 5.3. Then, we conduct model unlearning by fine-tuning the backdoored
NCM with X′ ( 14 ). Considering that existing work [12] finds that fine-tuning all parameters of
the backdoored model with a small set of clean samples can lead to catastrophic forgetting (i.e.,
severely compromising the model’s clean accuracy). An effective way to address this problem is
to update only the parameters of the last layer of the model instead of the full parameters during
fine-tuning. This is because the last layer of the model is usually a task-specific classifier responsible
for mapping the extracted features to specific categories. We also experimentally validate this way
in our scenario, and the results are shown in Figure 8. In this figure, Fine-tuning 𝜃 ∗ and Fine-tuning
𝜃 ∗
𝑙
respectively mean fine-tuning the full parameters 𝜃 ∗ of the backdoored defect detection model

and the last layer parameters (denoted as 𝜃 ∗
𝑙
) when executing trigger unlearning. Observe that

compared to fine-tuning 𝜃 ∗, fine-tuning only 𝜃 ∗
𝑙
can achieve the elimination of the backdoor without

compromising the model’s prediction accuracy.
Based on the above, the trigger unlearning is conducted byminimizing the loss, which is computed

as Equation (4) with the anchored trigger 𝑡∗ and inverted target label 𝑦∗. And note that we only
update 𝜃 ∗

𝑙
, which represents the parameters of the last layer of the backdoored NCM model.

5 Evaluation

We conduct a series of experiments to answer the following research questions (RQs).
RQ1. How effective is EliBadCode in eliminating backdoors in NCMs?
RQ2. What is the contribution of key designs in EliBadCode, including PL-specific trigger vocab-

ulary generation, sample-specific trigger position identification, and trigger anchoring?
RQ3. What is the influence of important settings on EliBadCode, including the number of clean

samples, the times of iterations 𝜖 , the number of candidate substitutes 𝑘 , and the times of
repeat 𝑟?

RQ4. What is the performance of EliBadCode against adaptive attacks?

5.1 Experiment Setup

Datasets and Models. The evaluation is conducted on the widely used dataset CodeXGLUE [21].
Specifically, we utilize BigCloneSearch [37], Devign [51], and CSN-Python [9] to evaluate EliBad-
Code on three types of code understanding tasks: clone detection, defect detection, and code
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search, respectively. Three different model architectures are adopted for the evaluation, Code-
BERT [4], CodeT5 [44] and UniXcoder [6], which are widely used in the existing attacks against
NCMs [13, 33, 49].
Attack Setting. We leverage three advanced backdoor attacks, CodePoisoner [13], BadCode [33],
and AFRAIDOOR [49], to generate backdoored NCMs built on the three model architectures for the
three code understanding tasks. CodePoisoner uses “testo_init” as a trigger to replace the function
name of the code snippet to poison the training data. BadCode utilizes “rb” as a trigger and appends
it to the function name/variable name of the code snippet to produce the poisoned training data.
AFRAIDOOR utilizes average gradient computation to generate adversarial perturbations, which
are used as triggers to poison the training data. For the defect detection task and clone detection
task, we select non-defective and non-clone as the target labels, respectively. For the code search
task, we follow BadCode and choose “file” as the target word, implanting the trigger into the code
snippets matched by queries containing the target word. Code comments are usually used as queries
in experiments [33, 41]). We follow Li et al. [13] and poison 2% of the training data for different
code understanding tasks. The poisoned training data is utilized for model fine-tuning to produce
backdoored NCMs, with the fine-tuning parameter settings consistent with those of fine-tuning
the clean model.
Defense Setting. For trigger inversion (including the phases (b) and (c) in Figure 2), we use 30
samples per class in the defect detection task and clone detection task, and 30 samples in the code
search task (details on the effectiveness of different numbers of clean samples can be found in
Section 5.3). Considering that attackers prioritize the stealthiness of the backdoor, they typically do
not set a long trigger for renaming backdoor attacks. Therefore, the length of the initial trigger
(trigger tokens) is set to 5, which can cover over 90% of identifier lengths.Both the times of repeat
𝑟 and the number of candidate substitutes 𝑘 are set to 64. In trigger unlearning, we fine-tune the
backdoored models to unlearn the backdoors. We use all clean samples (i.e., 10% of the training
data) and select 20% of them to inject the inverted trigger and mark with the correct labels. The
effectiveness before and after unlearning is evaluated on the whole test set of different datasets.
Baselines. As mentioned in Section 2.3, our EliBadCode is a post-training defense and aims to
eliminate backdoors in NCMs. To the best of our knowledge, no current research has proposed
effective backdoor elimination techniques against backdoor attacks on NCMs. In addition, the
significant difference between CV (Computer Vision) and PL data characteristics (continuous vs.
discrete) makes it challenging to directly transfer CV defenses. Therefore, we transfer the following
three advanced post-training backdoor defenses from NLP as baselines.
ONION. ONION [23] is an input detection defense. It removes the words that are probably the

backdoor trigger (or part of it) from inputs, to prevent activating the backdoor of a backdooredmodel.
Given an input, it adopts an iterative approach by removing eachword in the input one-at-a-time and
calculating the perplexity (PPL) change using an external language model GPT-2 [24]. Considering
that unlike the trigger in NLP which is composed of words, the trigger in PL typically consists of
code tokens, we adapt ONION to a pre-training defense for PL code, and utilize CodeLlama-7B [26]
(a renowned open-source language model specialized for code) to detect outlier tokens.

DBS. DBS [28] is a backdoor elimination defense. It defines a convex hull to address the non-
differentiability issue of the language models, and features temperature scaling and backtracking
to step away from local optima. We apply our PL-specific Trigger Vocabulary Generation to DBS.
However, the effectiveness of DBS was not satisfactory. Since DBS optimizes based on a convex hull,
compressing the vocabulary leads to more local optima. Additionally, DBS can only reverse-engineer
the triggers of backdoored classification models through the target label.
AttDef. AttDef [14] is an attribution-based defense method against insertion-based textual

backdoor attacks. It assumes that trigger words may play an important role in sentences if inserting

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE063. Publication date: July 2025.



FSE063:14 W. Sun, Y. Chen, C. Fang, Y. Feng, Y. Xiao, A. Guo, Q. Zhang, Z. Chen, B. Xu, Y. Liu

them would make the model flip the prediction. Given an input, like ONION, AttDef first utilizes
an external pre-trained language model to distinguish whether the input is poisoned or not. If so,
the sample will be further fed into the trigger detector to identify the trigger words, followed by a
mask sanitization to mask the trigger words. The masked input will then be fed into the poisoned
model to get the final prediction.

5.2 Evaluation Metrics

We leverage two kinds of metrics in the evaluation, including attack/defense metrics and task-
specific performance metrics.
Attack/Defense Metrics. For defect detection and clone detection, we follow [13] and utilize
attack success rate (ASR) to evaluate the effectiveness of attack/defense techniques. ASR represents
the proportion of the backdoored model successfully predicting inputs with triggers as the target
label and is computed as 𝐴𝑆𝑅 =

𝑁𝑓 𝑙𝑖𝑝𝑝𝑒𝑑

𝑁𝑛𝑜𝑛−𝑡𝑎𝑟𝑔𝑒𝑡
× 100%, where 𝑁non-target and 𝑁flipped represent the

number of non-target label samples and the number of samples predicted as the target label after
adding the trigger to non-target label samples, respectively. In our experiments, we follow Li et
al. [13] to pre-define “non-defective” and “non-clone” as the target labels for defect detection tasks
and clone detection tasks, respectively. After defense, the lower the ASR value, the better.

For code search, we follow [33, 41] and utilize average normalized rank (ANR) as the attack/defense
metric. ANR is computed as 𝐴𝑁𝑅 = 1

|𝑄 |
∑ |𝑄 |

𝑖=1
𝑅𝑎𝑛𝑘 (𝑄𝑖 ,𝑠

′ )
|𝑆 | , where |𝑄 | denotes the size of query set, 𝑠′

represents the code snippet of the injection trigger, and |𝑆 | is the length of the complete sorted list.
In our experiment, we follow Sun et al. [33] to attack the code snippets initially ranked in the top
50% of the returned list. After defense, the higher the ANR value, the better.
Task-specific Accuracy Metrics. Task-specific performance metrics are related to specific tasks
and are used to evaluate the (backdoored/clean) model’s normal performance on clean data. For
defect detection and clone detection, we follow [4, 21] and respectively use accuracy (ACC), F1-score
(F1) and mean reciprocal rank (MRR) to evaluate the prediction accuracy of the model.

5.3 Evaluation Results

5.3.1 RQ1: Effectiveness of EliBadCode in eliminating backdoors.

Effectiveness of EliBadCode in eliminating backdoors. Table 1 shows the performance of
the three baselines and our EliBadCode in eliminating backdoors in 27 NCMs. Columns titled
“Undefended” display the performance of the 27 backdoored NCMs without any defense. Observe
that for the attack CodePoisoner, on the defect detection and clone detection tasks, after applying
ONION, the ASR remains high, ranging from 76.98% to 90.00% depending on the different models
and tasks. On the code search task, ONION can increase the ANR to 18.25-21.56 and is better than
AttDef (16.57-18.75). DBS has almost no effect in removing backdoors in 27 NCMs. Although AttDef
significantly reduces the ASR in certain attack scenarios, it also greatly compromises the model’s
normal performance. For example, on the defect detection task and CodeT5 architecture, AttDef
can reduce the ASR to 18.64%, but it also lowers the ACC to 56.37%. It can also be observed that
existing defenses excel at defending against different types of attacks. For example, AttDef and DBS
perform comparably on token-level trigger-based attacks such as BadCode, outperforming ONION
overall. However, ONION performs better than DBS on the identifier-level trigger-based attack
CodePoisoner. Compared with the three baselines, on the defect detection task, our EliBadCode can
significantly reduce the ASR to 0.15%-2.39%, depending on the different model architectures, while
maintaining the ACC without a noticeable decline. Similarly, on the code clone task, EliBadCode
can significantly decrease the ASR to 3.16%-5.86% while maintaining a high F1. On the code search
task, EliBadCode can increase the ANR from 9.11-10.04 to 24.76-25.12, outperforming ONION and

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE063. Publication date: July 2025.



Eliminating Backdoors in Neural Code Models for Secure Code Understanding FSE063:15

Table 1. Comparison of backdoor elimination performance. DD: Defect Detection; CD: Clone Detection; CS:

Code Search. Column “Undefended” shows the performance of the backdoored model.

Attack Task Metric CodeBERT CodeT5 UniXCoder

Undefended ONION DBS AttDef EliBadCode Undefended ONION DBS AttDef EliBadCode Undefended ONION DBS AttDef EliBadCode

Co
de
Po

is
on

er DD ACC 63.07% 62.57% 62.99% 57.62% 62.57% 64.06% 63.96% 63.05% 56.37% 63.25% 65.30% 65.13% 64.17% 58.46% 64.39%
ASR 100% 90.00% 100% 17.98% 0.24% 98.64% 87.02% 98.13% 18.64% 0.15% 98.48% 86.43% 98.33% 16.23% 2.39%

CD F1 93.37% 93.55% 96.41% 90.67% 96.53% 94.58% 93.73% 96.24% 89.44% 96.21% 94.51% 94.15% 97.11% 90.78% 97.37%
ASR 100% 78.79% 100% 60.23% 5.86% 100% 79.09% 100% 61.77% 3.16% 100% 76.98% 100% 63.21% 5.17%

CS MRR 0.81 0.78 –∗ 0.80 0.81 0.81 0.79 –∗ 0.80 0.81 0.82 0.80 –∗ 0.80 0.82
ANR 10.04 20.60 –∗ 18.75 25.12 9.50 18.25 –∗ 16.57 24.76 9.11 21.56 –∗ 18.26 24.98

Ba
dC

od
e DD ACC 62.88% 62.00% 61.75% 57.56% 61.86% 63.72% 63.03% 62.85% 58.03% 62.91% 64.71% 63.98% 64.06% 58.63% 62.98%

ASR 99.52% 90.36% 32.59% 20.74% 1.95% 99.92% 89.12% 60.80% 21.09% 3.27% 99.84% 88.61% 45.74% 20.56% 2.71%

CD F1 93.46% 93.54% 96.62% 90.53% 96.69% 93.97% 93.65% 96.12% 90.66% 96.03% 94.68% 94.06% 97.06% 89.78% 97.02%
ASR 100% 77.65% 53.20% 48.34% 8.13% 100% 78.57% 87.73% 49.67% 5.19% 100% 79.03% 50.10% 48.17% 5.00%

CS MRR 0.81 0.79 –∗ 0.80 0.80 0.81 0.78 –∗ 0.80 0.81 0.82 0.80 –∗ 0.80 0.81
ANR 10.56 20.16 –∗ 18.87 25.69 10.25 21.90 –∗ 18.03 24.77 9.17 19.78 –∗ 17.86 25.09

A
FR

A
ID
O
O
R DD ACC 61.74% 61.08% 61.56% 57.43% 61.37% 62.07% 61.98% 61.78% 57.34% 61.21% 62.75% 62.48% 62.33% 58.07% 62.09%

ASR 96.05% 90.23% 60.37% 33.74% 9.71% 95.31% 90.12% 57.40% 34.73% 10.55% 96.43% 89.40% 60.32% 36.89% 10.58%

CD F1 91.36% 91.07% 93.30% 88.49% 93.53% 90.56% 90.17% 92.05% 87.53% 92.58% 91.57% 92.20% 93.14% 88.47% 93.41%
ASR 94.76% 85.73% 65.73% 58.06% 15.11% 93.12% 84.21% 63.77% 57.04% 16.20% 95.28% 84.37% 62.07% 57.98% 14.08%

CS MRR 0.81 0.77 –∗ 0.80 0.80 0.81 0.78 –∗ 0.81 0.81 0.82 0.79 –∗ 0.81 0.81
ANR 11.01 21.67 –∗ 17.43 25.21 10.30 19.07 –∗ 17.47 24.20 9.16 20.08 –∗ 18.32 25.53

∗ DBS needs to iterate all possible target labels to invert the trigger and eliminate the backdoor. However, for code search, its label can be considered as
the target word, which has many possible combinations (different combinations of vocabulary tokens). Therefore, it does not work on code search tasks.

AttDef while maintaining the same average MRR. The backdoor attacks in NCMs for code search
tasks aim to improve the ranking of the code snippet with the trigger given a query containing
the target word. It is important to note that an ANR of 9.11 indicates that the backdoored model
can elevate a (potentially malicious) code snippet injected with a trigger from its original rank
at the 50% position to the 9.11% position. Assuming there are 100 candidate code snippets, 9.11%
means that the trigger-injected code snippet would be ranked in the 10th position. In existing
code search techniques, it is common practice to return the top 10 retrieved code snippets [33].
Therefore, code snippets ranked in the top 10 are likely to be adopted by developers. Once the
malicious trigger-injected code snippet is adopted and integrated into their projects, it poses serious
security risks. Although EliBadCode does not increase the 9.11% back to the original 50% position,
it significantly reduces the risk of developers adopting the malicious trigger-injected code snippet.

For attacks BadCode and AFRAIDOOR, in all attack scenarios, EliBadCode continues to demon-
strate the same excellent backdoor elimination capabilities and ability to maintain normal perfor-
mance as it does for attack CodePoisoner, outperforming the two baselines. For all three attacks,
we can observe that on clone detection tasks, the F1 scores of NCMs after removing backdoors are
even higher than those of the backdoored NCMs without any defense. This is because fine-tuning
NCMs with 10% of the trigger-injected training dataset does not negatively impact NCMs’ normal
performance; rather, the increased training data and process enhance the NCMs’ effectiveness.

We conduct additional statistical tests to evaluate the differences between EliBadCode and the
best baseline DBS. Using Prism software [29], we compare the ASR results of DBS and EliBadCode
across different tasks, models, and backdoor attack scenarios (a total of 18 comparisons). For each
comparison, we perform an unpaired Wilcoxon-Mann-Whitney test [47] on all ASR scores for DBS
and EliBadCode at a significance level of 5%. The results show that all p-values are < 0.0001,
indicating that EliBadCode significantly outperforms DBS.

In addition, considering part of our approach involves a fine-tuning to backdoored NCMs to make
them forget the mapping between triggers and target labels. We further compare the effect of such a
fine-tuning against that of a “generic” fine-tuning involving the same amount of data/training time
to highlight the contribution given by the model unlearning. Specifically, we fine-tune poisoned
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Table 2. Impact of the generic fine-tuning under the

attack CodePoisoner.

Attack Task Metric CodeBERT CodeT5 UniXCoder

Co
de
Po

is
on

er Defect Detection ACC 63.54% 64.12% 65.34%
ASR 98.80% 92.83% 92.25%

Clone Detection F1 96.56% 96.24% 97.34%
ASR 98.17% 96.23% 96.52%

Code Search MRR 0.81 0.81 0.81
ANR 15.15 16.17 15.22

Table 3. Impact of the generic fine-tuning under the

attack BadCode.

Attack Task Metric CodeBERT CodeT5 UniXCoder

Ba
dC

od
e

Defect Detection ACC 63.10% 64.04% 65.17%
ASR 98.13% 96.23% 96.17%

Clone Detection F1 96.53% 96.30% 97.31%
ASR 98.24% 96.71% 96.43%

Code Search MRR 0.81 0.81 0.81
ANR 15.78 16.11 15.38

Table 4. Performance on clean models. Column “Clean” shows the performance of the original clean model.

Task Metric CodeBERT CodeT5 UniXCoder

Clean DBS EliBadCode Clean DBS EliBadCode Clean DBS EliBadCode

Defect Detection ACC 62.41% 62.19% 62.30% 64.17% 63.01% 63.18% 65.56% 64.27% 64.67%

Clone Detection F1 93.34% 95.65% 96.17% 94.67% 96.43% 96.18% 95.14% 97.29% 97.23%

Code Search MRR 0.81 –∗ 0.81 0.81 –∗ 0.81 0.82 –∗ 0.82

NCMs using clean samples (i.e., without inverted backdoor triggers) while adhering to the same
settings as the model unlearning (i.e., using 10% of the training data and identical hyperparameters).
The experimental results shown in Table 2 and Table 3 demonstrate that the generic fine-tuning
with clean data alone is ineffective in mitigating backdoors in backdoored NCMs. For instance, in
the Defect Detection task, the ASR of the fine-tuned NCMs remains above 90%, indicating that
backdoor behavior persists.
Performance of EliBadCode on the clean NCMs. As mentioned in Section 4.4, after iterating
over all possible target labels and producing a set of loss values and associated inverted triggers,
one for each label. EliBadCode runs the outlier detection to obtain the ground-truth target label
and associated inverted trigger. If the outlier detection yields a result, it indicates that the model
is backdoored; otherwise, it is clean. Therefore, it is necessary to ensure that when the input is a
clean model, EliBadCode can identify it and does not negatively impact its normal performance.

To investigate the performance of EliBadCode on clean NCMs, we test it on 24 models (6 clean
and 18 backdoored) to assess its ability to distinguish between clean and backdoored models. Our
results show that the false positive rate of DBS is 50%, while our EliBadCode does not produce
false positives and can effectively differentiate between clean and backdoored models. In addition,
we utilize the inverted trigger on the clean NCM to perform trigger unlearning, and the normal
performance of the NCM results are shown in Table 4. From this table, it is observed that compared
with the performance of the original clean model, the normal performance of the model fine-tuned
with the inverted trigger dataset does not show a significant drop. This indicates that regardless of
whether the input NCM is clean or backdoored, even if EliBadCode’s outlier detection is inaccurate,
the trigger unlearning does not negatively impact the model’s normal performance.

5.3.2 RQ2: Contribution of key designs in EliBadCode.

Table 5 presents the performance of EliBadCode on CodeBERT under the CodePoisoner attack
with different designs. Rows 2–4 represent the performance of EliBadCode without phase (a):
PL-specific trigger vocabulary generation, phase (b): sample-specific trigger position identification,
and trigger anchoring in phase (c), respectively. Observe that without phase (a), the optimization
search space expands, making it unable to invert the trigger close to the factual trigger. Therefore,
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Table 5. Ablation study. TA:

Trigger Anchoring.

Method ACC ASR

w/o phase (a) 63.73% 100%
w/o phase (b) 62.57% 0.24%
w/o TA 60.98% 0.08%
EliBadCode 62.57% 0.24%
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Fig. 9. Influences of phase (a)
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Fig. 10. Influence of trigger anchoring.

Table 6. Comparisons of the inverted trigger and

factual trigger. Levenshtein Distance (LD).

Task DBS w/o TA EliBadCode

LD BLEU LD BLEU LD BLEU

Defect Detection 19 9.27 16 19.62 6 29.56

Clone Detection 14 8.20 14 23.30 5 36.79

Table 7. Performance on adaptive attack.

Trigger size Defect detetion Clone detecion Code search

ACC ASR F1 ASR MRR ANR

5 62.74% 0.24% 96.14% 6.34% 0.82 25.52
7 62.97% 2.07% 96.34% 7.57% 0.82 24.35
10 62.91% 4.84% 96.26% 9.16% 0.82 22.47

the ASR results after unlearning remain at 100%, unable to eliminate the backdoor. Without phase
(b) does not affect ASR or ACC of EliBadCode. As mentioned in Section 4.3, the purpose of phase
(b) is to reduce the impact of non-backdoor perturbations and improve the efficiency of trigger
inversion. Figure 9 shows the change of loss during the trigger optimization process for the defect
detection task without phase (a) and phase (b). Observe that EliBadCode can invert a trigger close
to the factual one by the 25th epoch, whereas without phase (b), it can only invert by the 52nd
epoch. EliBadCode with phase (b) is more efficient than that without phase (b) by two times.
Without trigger anchoring, although the ASR of EliBadCode decreases, there is also a drop in ACC.
As mentioned in Section 4.4, the trigger anchoring aims to reduce the impact of noise tokens on the
prediction of the unlearned model on inputs containing them. Figure 10 shows the ACC of all test
samples and the test samples containing noise tokens on undefended and EliBadCode without
(w/o)/with trigger anchoring, respectively. Observed that EliBadCode with trigger anchoring
achieves ACC close to the undefended results on both test sample sets. In contrast, w/o trigger
anchoring achieves ACC of 60.98% and 54.92% on the two test sample sets, respectively, which
are significantly lower than the undefended results. This indicates that the trigger anchoring in
EliBadCode can effectively reduce the interference of noise tokens.
To investigate the accuracy of trigger inversion, we also utilize two metrics to evaluate the

difference between the inverted trigger and the factual trigger: Levenshtein Distance (LD) and
BLEU [22]. LD represents the minimum number of edit operations required to transform one string
into another. BLEU calculates similarity by computing the n-gram precision of the inverted trigger
compared to the factual trigger. The lower the LD and the higher the BLEU, the higher the accuracy
of the trigger inversion. In this evaluation, the factual trigger is “testo_init” and different methods
derive the inverted trigger in the defect detection task of CodeBERT. Table 6 shows the performance
of the triggers inverted by DBS and EliBadCode. Observe that DBS has a very high LD (19/14) and
very low BLEU (9.27/8.20). This indicates that the trigger inverted by DBS is significantly different
from the factual trigger. EliBadCode achieves high precision in the inverted trigger, with an LD of
only 6/5 and BLEU reaching 29.56/36.79, surpassing DBS by a significant margin. Additionally, in
terms of LD and BLEU, EliBadCode outperforms w/o Trigger Anchoring (16/14 and 19.62/23.30).
This indicates that the inverted trigger with anchoring is closer to the factual trigger.

5.3.3 RQ3: Influence of important settings, e.g., 𝜖 , 𝑘 and 𝑟 .
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Influence of the number of clean samples. From Figure 11, it can be observed that the more
clean samples are available, the better the performance of EliBadCode. It indicates that the more
clean samples there are, the more precise the trigger inverted by EliBadCode is, and the fewer
epochs are needed. When the number is less than 20, EliBadCode cannot invert the correct trigger
and thus cannot eliminate the backdoor. When the number is 30, EliBadCode achieves the best
results. Unfortunately, our experimental server can only support the input of up to 30 clean samples.
Influence of 𝜖, 𝑘 and 𝑟 . 𝜖 is used to control the times of iterations in the trigger inversion process.
𝜖 is empirically determined. We experiment with several different values, including 50, 100, and
150. Our experimental results show that 1) when the model architecture is CodeT5, EliBadCode
with 𝜖 = 50 is unable to invert the trigger in certain attack scenarios, such as when the attack
is CodePoisoner and the task is Defect Detection; 2) with 𝜖 = 100 or 𝜖 = 150, EliBadCode can
successfully invert the trigger in all 27 attack scenarios. Therefore, to balance effectiveness and
efficiency, we set 𝜖 to 100 uniformly. 𝑘 and 𝑟 are key parameters for EliBadCode in generating
candidates during the GCG-based trigger inversion. They represent the top 𝑘 candidate tokens
with the highest gradients for each position in the trigger and the number of candidate triggers
generated, respectively. Figure 12 and Figure 13 illustrate the impact of 𝑘 and 𝑟 on the effectiveness
of EliBadCode, respectively. It is worth noting that we fixed the 𝑘 or 𝑟 at 64 to explore the effects
of varying the other parameters on the effectiveness of EliBadCode. A smaller 𝑘 will result in the
factual trigger token not appearing among the candidate replacement tokens, while a larger 𝑘 will
reduce the probability of selecting the factual trigger token for replacement. A smaller 𝑟 will also
reduce the probability of selecting the factual trigger token for replacement, while a larger 𝑟 will
increase the time consumption of the trigger inversion. It can be observed that when both 𝑘 and 𝑟
are 64, EliBadCode achieves the best performance with minimal time consumption.

5.3.4 RQ4: Performance of EliBadCode against adaptive attacks.

We study a scenario where the attacker understands the EliBadCode mechanism and attempts
to bypass it. We design an adaptive attack targeting the GCG-based trigger inversion phase of
EliBadCode. The idea is to encourage the injected trigger length (i.e., number of tokens) to
be greater than the initialized trigger length set by EliBadCode. Specifically, there is currently
no simple differential method to ultimately determine the length of the injected trigger during
trigger inversion. Therefore, we set the initialized trigger length to 5, which can cover more
than 90% of identifier lengths (as described in Section 5.1). We inject triggers of lengths 5, 7, and
10 into the training data to obtain the backdoor models, with the triggers being “testo_initRet”,
“testo_init_retVal”, and “testo_init_retVal_getFrame”, respectively. Other parameter settings are the
same as in the RQ1 settings. The experimental results in Table 7 demonstrate that EliBadCode
remains effective against renaming backdoor attacks with triggers longer than the set length. This
is because EliBadCode can invert the effective part of the injected trigger, which can still be
used to effectively eliminate the backdoor in the model through trigger unlearning. It can also be
observed that as the injected trigger length increases, the defense effectiveness of EliBadCode
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Table 8. Performance of EliBadCode on code LLM.

Undef.: Undefended.

Attack Task Metric StarCoder

Undef. ONION DBS AttDef EliBadCode

Co
de
Po

is
on

er DD ACC 61.68% 59.98% 60.71% 58.81% 60.65%
ASR 96.57% 53.05% 20.23% 28.34% 2.87%

CD F1 71.91% 69.73% 70.15% 65.43% 70.18%
ASR 100% 60.43% 30.13% 45.07% 5.17%

CS MRR 0.70 0.65 - 0.69 0.69
ANR 10.23 18.43 - 19.07 26.36

Table 9. Time overhead of EliBadCode. TI: Trigger

Inversion; TU: Trigger Unlearning. Eli.: EliBadCode.

Attack Task Phase CodeBERT CodeT5 UniXCoder

DBS Eli. DBS Eli. DBS Eli.

Co
de
Po

is
on

er DD TI 4m58s 22m40s 8m19s 26m13s 5m03s 24m31s
TU 0m28s 0m25s 1m02s 1m04s 0m26s 0m24s

CD TI 9m02s 28m31s 8m14s 53m09s 9m35s 35m07s
TU 3m13s 3m14s 8m17s 8m10s 3m10s 3m14s

CS TI - 32m25s - 26m10s - 50m50s
TU - 10m58s - 30m18s - 10m57s

gradually decreases. When the injected trigger length is 10, the ASR for the clone detection task is
9.16%, which may allow an attacker to launch a successful backdoor attack. However, as shown in
Figure 14, identifiers with 10 tokens are very rare, and such long trigger data can be easily recognized
as abnormal by developers [33]. Therefore, it is difficult for attackers to bypass EliBadCode by
increasing the length of the injected trigger.

6 Discussion

6.1 Performance of EliBadCode on Code LLMs

Existing backdoor attacks against NCMs have not yet been validated for effectiveness on code
LLMs. To evaluate the effectiveness of EliBadCode on code LLMs, we first perform a backdoor
attack on a popular code LLM called StarCoder using the attack CodePoisoner, and then apply
baselines and EliBadCode to detect the backdoor in the backdoored StarCoder. The specific version
of StarCoder we use is StarCoderBase-1B. The performance of EliBadCode and baselines are
shown in Table 8. It is observed that 1) CodePoisoner achieves significant success in attacking
StarCoder; 2) EliBadCode can effectively eliminate backdoors from the backdoored StarCoder
and outperforms three baselines. This indicates that EliBadCode has the capability to ensure the
security of large NCMs, i.e., code LLMs.

Of course, applying the defense (including EliBadCode) to larger LLMs depends not only on its
own capabilities but also on the availability of sufficient computational resources. Once sufficient
resources are available, EliBadCode can employ parameter-efficient fine-tuning methods (e.g.,
LoRA [8]) to perform trigger unlearning.

6.2 Time Overhead of EliBadCode

During the experiments, to better understand the time cost of EliBadCode, we also recorded the
time spent on trigger inversion and trigger unlearning phases. The time records are reported in
Table 9. The time overhead of the trigger inversion in EliBadCode ranges from about 23 to 53
minutes, depending on the specific task and model. Although this time cost is significantly higher
than DBS, it results in a substantial improvement in backdoor elimination effectiveness. Moreover,
trigger inversion is a one-time, offline task, and this time cost is acceptable when compared to
the substantial time overhead involved in training models. The low cost of trigger inversion in
EliBadCode can be attributed to the design of phase (a) and phase (b). In the future, we will further
optimize trigger inversion to enhance efficiency.

We also discover that our EliBadCode can be combined with ONION and AttDef, which defend
by identifying and removing suspicious (trigger) tokens with high perplexity or attribution scores,
to further reduce ASR. EliBadCode’s inverted trigger tokens can improve their identification
accuracy by comparing the vector similarity between user input tokens and inverted trigger tokens.
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We experiment with this combined approach on two attacks by setting a vector similarity threshold
of 0.9, meaning input tokens with a similarity greater than 0.9 are filtered. The results show that
this approach further reduces the ASR to 0%. Notably, in this approach, EliBadCode does not need
to perform unlearning, which can further reduce EliBadCode’s runtime.

6.3 Potential Limitations of Our Work

In addition to the limitation of EliBadCode in the efficiency of trigger inversion mentioned in the
previous section, we discuss other potential limitations of our work in this section.

Firstly, as illustrated in Section 3, our defense mainly focuses on using third-party trained models.
In particular, similar to existing baseline methods, we assume that defenders have a few local
clean samples. Accordingly, our method is not feasible without clean samples. Besides, we need to
train a model for the scenarios using third-party datasets before conducting trigger inversion and
follow-up defenses, which is computation- and time-consuming. We will further explore how to
conduct trigger inversion under few/zero-shot settings in our future works.
Secondly, similar to trigger inversion-based defenses in NLP [20, 28], the trigger inversion

process in our method also relies on a white-box setting. Accordingly, it does not apply to black-box
scenarios in which the defenders can only access the final output of the backdoored model. We also
note that in practical applications, it is often feasible to derive a white-box surrogate model from a
black-boxmodel using distillation techniques, as demonstrated in existing research [30, 36, 48]. Once
a white-box surrogate is obtained, EliBadCode can be applied to mitigate backdoor vulnerabilities.
We will continue the exploration of designing black-box trigger inversion in our future works.

7 Conclusion

In this paper, we propose EliBadCode, a novel backdoor elimination technique for ensuring
secure code understanding. By PL-specific trigger vocabulary generation and sample-specific
trigger position identification, EliBadCode reduces the search space for trigger optimization and
minimizes the impact of non-backdoor perturbations, respectively. Our experiments show that
EliBadCode can effectively invert the trigger of the given backdoored NCM. Through trigger
unlearning, EliBadCode can reduce the average ASR of backdoored NCMs to a minimum of 0.24%
without impacting their performance on normal inputs.

8 Data Availability

Our source code and experimental data are available at [32].
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