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Abstract—To support software developers in understanding
and maintaining programs, various automatic (source) code
summarization techniques have been proposed to generate a
concise natural language summary (i.e., comment) for a given
code snippet. Recently, the emergence of large language models
(LLMs) has led to a great boost in the performance of code-
related tasks. In this paper, we undertake a systematic and
comprehensive study on code summarization in the era of LLMs,
which covers multiple aspects involved in the workflow of LLM-
based code summarization. Specifically, we begin by examining
prevalent automated evaluation methods for assessing the quality
of summaries generated by LLMs and find that the results of the
GPT-4 evaluation method are most closely aligned with human
evaluation. Then, we explore the effectiveness of five prompting
techniques (zero-shot, few-shot, chain-of-thought, critique, and
expert) in adapting LLMs to code summarization tasks. Contrary
to expectations, advanced prompting techniques may not outper-
form simple zero-shot prompting. Next, we investigate the impact
of LLMs’ model settings (including top p and temperature
parameters) on the quality of generated summaries. We find
the impact of the two parameters on summary quality varies by
the base LLM and programming language, but their impacts are
similar. Moreover, we canvass LLMs’ abilities to summarize code
snippets in distinct types of programming languages. The results
reveal that LLMs perform suboptimally when summarizing code
written in logic programming languages compared to other
language types (e.g., procedural and object-oriented program-
ming languages). Finally, we unexpectedly find that CodeLlama-
Instruct with 7B parameters can outperform advanced GPT-4
in generating summaries describing code implementation details
and asserting code properties. We hope that our findings can
provide a comprehensive understanding of code summarization
in the era of LLMs.

Index Terms—large language model, source code summariza-
tion, prompt engineering

I. INTRODUCTION

Code comments are vital for enhancing program compre-
hension [1] and facilitating software maintenance [2]. While
it is considered good programming practice to write high-
quality comments, the process is often labor-intensive and
time-consuming [2]–[4]. As a result, high-quality comments
are frequently absent, mismatched, or outdated during soft-
ware evolution, posing a common problem in the software
industry [5]–[8]. Automatic code summarization (or simply,
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code summarization), a hot research topic [9]–[12], addresses
this challenge by developing advanced techniques/models for
automatically generating natural language summaries (i.e.,
comments) for code snippets, such as Java methods or Python
functions, provided by developers.

Recently, with the success of large language models (LLMs)
in natural language processing (NLP) [13], [14], an increasing
number of software engineering (SE) researchers have started
integrating them into the resolution process of various SE
tasks [15]–[18], such as code generation [19], [20], program
repair [21], [22], and vulnerability detection/localization [23],
[24]. In this study, we focus on the application of LLMs on the
code summarization tasks. Figure 1 shows the general work-
flow of LLM-based code summarization and its effectiveness
evaluation methods. In the summary generation process, the
input consists of a code snippet and the expected summary
category. The input is passed to a prompt generator equipped
with various prompt engineering techniques (referred to as
prompting technique), which constructs a prompt based on
input. This prompt is then used to instruct LLMs to generate
a summary of the expected type for the input code snippet. In
the summary evaluation process, a common method used to
automatically assess the quality of LLM-generated summaries
is to compute the text or semantic similarity between the LLM-
generated summaries and the reference summaries.

There have been several recent studies investigating the
effectiveness of LLMs in code summarization tasks [25]–[29].
These studies can help subsequent researchers rapidly under-
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stand the aspects of code summarization garnering attention
in the era of LLMs, but they still have some limitations. First,
most of them only focus on one prompting technique, while
some advanced prompting techniques have not been investi-
gated and compared (e.g., chain-of-thought prompting). For
example, Sun et al. [27] solely focus on zero-shot prompting,
while several other studies [25], [28], [30] only focus on
few-shot prompting. Second, they overlook the impact of the
model settings (i.e., parameter configuration) of LLMs on their
code summarization capabilities. There is no empirical evi-
dence showing LLMs remain well in all model settings. Last
but not least, these studies follow prior code summarization
studies [4], [31], [32] to evaluate the quality of summaries
generated by LLMs through computing text similarity (e.g.,
BLEU [33], METEOR [34], and ROUGE-L [35]) or semantic
similarity (e.g., SentenceBERT-based cosine similarity [36])
between the LLM-generated summaries and the reference
summaries, detailed in Section IV-A. However, prior research
by Sun et al. [27] has shown that compared to traditional code
summarization models, the summaries generated by LLMs
significantly differ from reference summaries in expression
and tend to describe more details. Consequently, whether these
traditional evaluation methods are suitable for assessing the
quality of LLM-generated summaries remains unknown.

To address these issues, in this paper, we conduct a sys-
tematic study on code summarization in the era of LLMs,
which covers various aspects involved in the LLM-based code
summarization workflow. Considering that the choice of eval-
uation methods directly impacts the accuracy and reliability
of the evaluation results, we first systematically investigate
the suitability of existing automated evaluation methods for
assessing the quality of summaries generated by LLMs (in-
cluding CodeLlama-Instruct, StarChat-β, GPT-3.5, and GPT-
4). Specifically, we compare multiple automated evaluation
methods (including methods based on summary-summary
text similarity, summary-summary semantic similarity, and
summary-code semantic similarity) with human evaluation to
reveal their correlation. Inspired by the work in NLP [37]–[39],
we also explore the possibility of using the LLMs themselves
as evaluation methods. The experimental results show that
among all automated evaluation methods, the GPT-4-based
evaluation method overall has the strongest correlation
with human evaluation. Second, we conduct comprehensive
experiments on three widely used programming languages
(Java, Python, and C) datasets to explore the effectiveness
of five prompting techniques (including zero-shot, few-shot,
chain-of-thought, critique, and expert) in adapting LLMs to
code summarization tasks. The experimental results show that
the optimal choice of prompting techniques varies for dif-
ferent LLMs and programming languages. Surprisingly, the
more advanced prompting techniques expected to perform
better may not necessarily outperform simple zero-shot
prompting. For instance, when the base LLM is GPT-3.5,
zero-shot prompting outperforms the other four more advanced
prompting techniques overall on three datasets. Then, we
investigate the impact of two key model settings/parameters,

including top p and temperature, on LLMs’ code summa-
rization performance. These two parameters may affect the
randomness of generated summaries. The results demonstrate
that the effect of top p and temperature on summary qual-
ity varies depending on the base LLM and programming
language. As alternative parameters, they exhibit a similar
impact on the quality of LLM-generated summaries. Further-
more, unlike existing studies that simply experimented with
multiple programming languages, we reveal the differences in
the code summarization capabilities of LLMs across five types
(including procedural, object-oriented, scripting, functional,
and logic programming languages) encompassing ten pro-
gramming languages: Java, Python, C, Ruby, PHP, JavaScript,
Go, Erlang, Haskell, and Prolog. The Erlang, Haskell, and
Prolog datasets are built by ourselves and we make them
public to the community. We find that across all five types of
programming languages, LLMs consistently perform the
worst in summarizing code written in logic programming
languages. Finally, we investigate the ability of LLMs to
generate summaries of different categories, including What,
Why, How-to-use-it, How-it-is-done, Property,
and Others. The results reveal that the four LLMs perform
well in generating distinct categories of summaries. For ex-
ample, CodeLlama-Instruct excels in generating Why and
Property summaries, while GPT-4 is good at generating
What, How-it-is-done, and How-to-use summaries.
Our comprehensive research findings will assist subsequent
researchers in quickly and deeply understanding the various
aspects involved in the workflow of code summarization based
on LLMs, as well as in designing advanced LLM-based code
summarization techniques for specific fields.

In summary, we make the following contributions.
• To the best of our knowledge, we conduct the first investi-

gation into the feasibility of applying LLMs as evaluators
to assess the quality of LLM-generated summaries.

• We conduct a thorough study of code summarization
in the era of LLMs, covering multiple aspects of the
LLM-based code summarization workflow, and come up
with several novel and unexpected findings and insights.
These findings and insights can benefit future research
and practical usage of LLM-based code summarization.

• We make our dataset and source code publicly accessi-
ble [40] to facilitate the replication of our study and its
application in extensive contexts.

II. BACKGROUND AND RELATED WORK

Code summarization is the task of automatically generating
natural language summaries (also called comments) for code
snippets. Such summaries serve various purposes, including
but not limited to explaining the functionality of code snip-
pets [8], [28], [41]. The research on code summarization can
be traced back to as early as 2010 when Sonia Haiduc et
al. [42] introduced automated text summarization technology
to summarize source code. Later on, following the significant
success of neural machine translation (NMT) research in
the field of NLP [43], [44], a large number of researchers
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migrate its underlying encoder-decoder architecture to code
summarization tasks [4], [9], [12], [45]–[47]. In the past two
years, research on LLM-based code summarization has mush-
roomed. Fried et al. [48] introduce an LLM called InCoder,
and try zero-shot training on the CodeXGLUE [49] Python
dataset. InCoder achieves impressive results, but fine-tuned
small PLMs like CodeT5 can still outperform the zero-shot
setting. Ahmed et al. [25] investigate the effectiveness of few-
shot prompting in adapting LLMs to code summarization and
find that it can make Codex significantly outperform fine-tuned
small PLMs (e.g., CodeT5). Given the concern of potential
code asset leakage when using commercial LLMs (e.g., GPT-
3.5), Su et al. [50] utilize knowledge distillation technology
to distill small models from LLMs (e.g., GPT-3.5). Their
experimental findings reveal that the distilled small models
can achieve comparable code summarization performance to
LLMs. Gao et al. [30] investigate the optimal settings for few-
shot learning, including few-shot example selection methods,
few-shot example order, and the number of few-shot examples.
Geng et al. [28] investigate LLMs’ ability to address multi-
intent comment generation. Ahmed et al. [51] propose to
enhance few-shot samples with semantic facts automatically
extracted from the source code. Sun et al. [27] design several
heuristic questions to collect the feedback of ChatGPT, thereby
finding an appropriate prompt to guide ChatGPT to generate
in-distribution code summaries. Rukmono et al. [52] address
the unreliability of LLMs in performing reasoning by applying
a chain-of-thought prompting strategy. Recently, some stud-
ies [11], [26], [53] have also investigated the applicability of
Parameter-Efficient Fine-Tuning (PEFT) techniques in code
summarization tasks. In this paper, we focus on uncovering
the effectiveness of various prompting techniques in adapting
LLMs to code summarization without fine-tuning.

III. STUDY DESIGN

A. Research Questions

This study aims to answer the following research questions:
RQ1: What evaluation methods are suitable for assessing

the quality of summaries generated by LLMs? Existing
research on LLM-based code summarization [25], [28], [30]
widely follow earlier studies [32], [36] and employ automated
evaluation metrics (e.g., BLEU) to evaluate the quality of
LLM-generated summaries. However, recent studies [27], [50]
have shown that LLM-generated summaries surpass reference
summaries in quality. Therefore, evaluating LLM-generated
summaries based on their text or semantic similarity to ref-
erence summaries may not be appropriate. This RQ aims to
discover a suitable method for automated assessment of the
quality of LLM-generated summaries.

RQ2: How effective are different prompting techniques
in adapting LLMs to the code summarization task?
This RQ aims to unveil the effectiveness of several popular
prompting techniques (e.g., few-shot and chain-of-thought) in
adapting LLMs to code summarization tasks.

RQ3: How do different model settings affect LLMs’
code summarization performance? To better meet diverse

user needs, LLMs typically offer configurable parameters (i.e.,
model settings) that allow users to control the randomness of
model behaviour. In this RQ, we adjust the randomness of the
generated summaries by modifying LLMs’ parameters and see
the impact of different model settings on the performance of
LLMs in generating code summaries.

RQ4: How do LLMs perform in summarizing code
snippets written in different types of programming lan-
guages? Programming languages are diverse in types (e.g.,
object-oriented and functional programming languages), with
their implementations of the same functional requirements
being similar or entirely different. The scale of programs
implemented with them in Internet/open-source repositories
also varies, which may result in differences in the mastery of
knowledge of these languages by LLMs. Hence, this RQ aims
to reveal the differences in LLMs’ capabilities to summarize
code snippets across diverse programming language types.

RQ5: How do LLMs perform on different categories
of summaries? Previous research [3], [54], [55] has shown
that summaries can be classified into various categories
according to developers’ intentions, including What, Why,
How-to-use-it, How-it-is-done, Property, and
others. Therefore, in this RQ, we aim to explore the ability of
LLMs to generate summaries of different categories.

B. Experimental LLMs

We select four LLMs as experimental representatives.
CodeLlama-Instruct. Code Llama [56] is a family of

LLMs for code based on Llama 2 [57]. It provides multiple fla-
vors to cover a wide range of applications: foundation models,
Python specializations (Code Llama-Python), and instruction-
following models (Code Llama-Instruct) with 7B, 13B, and
34B parameters. Our study utilizes Code Llama-Instruct-7B.

StarChat-β. StarChat-β [58] is an LLM with 16B param-
eters fine-tuned on StarCoderPlus [59]. Compared with Star-
CoderPlus, StarChat-β excels in chat-based coding assistance.

GPT-3.5. GPT-3.5 [60] is an LLM provided by OpenAI. It
is trained with massive texts and codes. It can understand and
generate natural language or code.

GPT-4. GPT-4 is an improved version of GPT-3.5, which
can solve difficult problems with greater accuracy. OpenAI
has not disclosed the specific parameter scale of GPT- 3.5 and
GPT-4. Our study uses gpt-3.5-turbo and gpt-4-1106-preview.

Model Settings. Apart from RQ3 where we investigate the
impact of model settings, we uniformly set the temperature
to 0.1 to minimize the randomness of LLM’s responses and
highlight the impact of evaluation methods/prompting tech-
niques/programming language types/summary categories.

C. Prompting Techniques

We compare five commonly used prompting techniques below.
Zero-Shot. Zero-shot prompting adapts LLMs to down-

stream tasks using simple instructions. In our scenario, the
input to LLMs consists of a simple instruction and a code
snippet to be summarized. We expect LLMs to output a
natural language summary of the code snippet. Therefore, we
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follow [27] and adopt the input format: Please generate a short
comment in one sentence for the following function: ⟨code⟩.

Few-Shot. Few-shot prompting (also known as in-context
learning [28], [30]) provides not only straightforward in-
struction but also some examples when adapting LLMs to
downstream tasks. The examples serve as conditioning for
subsequent examples where we would like LLMs to generate
a response. In our scenario, the examples are pairs of ⟨code
snippet, summary⟩. According to the findings of Gao et
al. [30], we set the number of examples to 4 to achieve a
balance between LLMs’ performance and the cost of calling
the OpenAI API.

Chain-of-Thought. Chain-of-thought prompting adapts
LLMs to downstream tasks by providing intermediate reason-
ing steps [61]. These steps enable LLMs to possess complex
reasoning capabilities. In this study, we follow Wang et
al. [62] and apply chain-of-thought prompting to the code
summarization task through the following four steps:

(1) Instruction 1: Input the code snippet and five questions
about the code in the format
“Code: \n⟨code⟩
Question: \n⟨Q1⟩\n⟨Q2⟩\n⟨Q3⟩\n⟨Q4⟩\n⟨Q5⟩\n”

(2) Get LLMs’ response to Instruction 1, i.e., Response 1.
(3) Instruction 2: “Let’s integrate the above information

and generate a short comment in one sentence for the
function.”

(4) Get LLMs’ response to Instruction 2, i.e., Response 2.
Response 2 contains the comment generated by LLMs
for the code snippet.

when asking Instruction 2, Instruction 1 and Response 1 are
paired as history prompts and answers input into the LLM.

Critique. Critique prompting improves the quality of
LLMs’ answers by asking LLMs to find errors in the answers
and correct them. We follow Kim et al. [63] and perform
critique prompting on the code summarization task through
the six steps below:

(1) Instruction 1: Similar to zero-shot prompting, input the
instruction and the code snippet in the format “Please
generate a short comment in one sentence for the follow-
ing function: \n⟨code⟩”

(2) Get LLMs’ response to Instruction 1, i.e., Response 1.
Response 1 contains the temporary comment generated
by LLMs for the code snippet.

(3) Instruction 2: “Review your previous answer and find
problems with your answer.”

(4) Get LLMs’ response to Instruction 2, i.e., Response 2.
(5) Instruction 3: “Based on the problems you found, improve

your answer.”
(6) Get LLMs’ response to Instruction 3, i.e., Response 3.

Response 3 contains the modified comment, which is the
final comment of the code snippet.

when prompting each instruction, previous instructions and
responses are fed into the LLMs as pairs of history prompts
and answers.

Expert. Expert prompting first asks LLMs to generate a
description of an expert who can complete the instruction (e.g.,
through few-shot prompting), and then the description serves
as the system prompt for zero-shot prompting. We use the
few-shot examples provided by Xu et al. [64] and employ
few-shot prompting to let LLMs generate a description of an
expert who can “Generate a short comment in one sentence for
a function.” This description will replace the default system
prompt of LLMs. By default, we use the system prompt [65]
of CodeLlama-Instruct for all LLMs to ensure fairness in
comparison. Then, we utilize the same steps as zero-shot
prompting to adapt LLMs to generate summaries.

Due to the page limit, we present examples of the afore-
mentioned prompting techniques on our anonymous site [40].

D. Experimental Datasets

The sources of the datasets utilized in our experiments include:
CodeSearchNet (CSN). The CodeSearchNet corpus [66] is

a vast collection of methods accompanied by their respective
comments, written in Go, Java, JavaScript, PHP, Python, and
Ruby. This corpus has been widely used in studying code
summarization [4], [67], [68]. We use the clean version of the
CSN corpus provided by Lu et al. [49] in CodeXGLUE. We
randomly select 200 samples for each programming language
from the test set of this corpus for experiments.

CCSD. The CCSD dataset is provided by Liu et al. [69].
They crawl data from 300+ projects such as Linux and
Redis. The dataset contains 95,281 ⟨function, summary⟩ pairs.
Similarly, we randomly select 200 samples from the final
dataset for experiments.

In addition to the above two sources, we construct three
new language datasets to evaluate LLM’s code summarization
capabilities across more programming language types.

Erlang, Haskell, and Prolog Datasets. Erlang and Haskell
are Functional Programming Languages (FP), and Prolog
belongs to Logic Programming Languages (LP). To construct
the three datasets, we sort the GitHub repositories whose main
language is Erlang/Haskell/Prolog according to the number of
stars, and crawl data from the top 50 repositories. Following
Husian et al. [66], (1) we remove any projects that do not
have a license or whose license does not explicitly permit
the re-distribution of parts of the project. (2) We consider the
first sentence in the comment as the function summary. (3)
We remove data where functions are shorter than three lines
or comments containing less than 3 tokens. (4) We remove
functions whose names contain the substring “test”. (5) We
remove duplicates by comparing the Jaccard similarities of
the functions following Allamanis et al. [70]. Finally, we get
7,025/6,759/1,547 pairs of ⟨function, summary⟩ pairs. For each
language, we randomly select 200 samples for experiments.

All in all, our experiments involve 10 programming lan-
guages across 5 types. Note that considering that experiments
with LLMs are resource-intensive (especially those involving
GPT, which are quite costly), not all experiments are con-
ducted on all 10 programming language datasets. Specifically,
we first conduct experiments associated with RQ1 and RQ2
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TABLE I: Datasets. PP: Procedural Programming Languages,
OOP: Object-Oriented Programming Languages, SP: Scripting
Programming Languages, FP: Functional Programming Lan-
guages, LP: Logic Programming Languages.

Language Source Type Usage

Java CSN OOP RQ1, RQ2, RQ3, RQ4, RQ5
Python CSN SP RQ1, RQ2, RQ3, RQ4

C CCSD PP RQ1, RQ2, RQ3, RQ4
Ruby CSN SP RQ4
PHP CSN SP RQ4
Go CSN PP RQ4

JavaScript CSN SP RQ4
Erlang by us FP RQ4
Haskell by us FP RQ4
Prolog by us LP RQ4

on commonly used programming languages, including Java,
Python, and C. Analyzing the results of these two RQs helps
find a suitable automated evaluation method and a suitable
prompting technique. Subsequent experiments for other RQs
can be built upon these findings, thereby significantly reducing
experimental costs. We use all 10 programming languages in
the experiments for RQ4. In the experiments for RQ5, we only
use the Java dataset because other programming languages
lack readily available comment classifiers. While training such
classifiers would be valuable, it falls outside the scope of this
paper and is left for future exploration.

IV. RESULTS AND FINDINGS

A. RQ1: What evaluation methods are suitable for assessing
the quality of summaries generated by LLMs?

1) Experimental Setup.
Comparison Evaluation Methods. Existing automated eval-
uation methods for code summarization can be divided into
the following three categories.

i. Methods based on summary-summary text similarity as-
sess the quality of the generated summary by calculating
the text similarity between the generated summary and the
reference summary. This category of methods is the most
widely used in existing code summarization research [4],
[25], [28], [30]. The text similarity metrics involved include
BLEU, METEOR, and ROUGE-L, which compare the count
of n-grams in the generated summary against the reference
summary. The scores of BLEU, METEOR, and ROUGE-L
are in the range of [0, 1]. The higher the score, the closer the
generated summary approximates the reference summary, in-
dicating superior code summarization performance. All scores
are computed by the same implementation provided by [47].

ii. Methods based on summary-summary semantic similarity
evaluate the quality of the generated summary by computing
the semantic similarity between the generated summary and
the reference summary. Existing research [36] demonstrates
that semantic similarity-based methods can effectively alle-
viate the issues of word overlap-based metrics, where not all
words in a sentence have the same importance and many words
have synonyms. In this study, we compare four such methods,
including BERTScore [71], SentenceBert with Cosine Simi-
larity (SBCS), SentenceBert with Euclidean Distance (SBED),

and Universal Sentence Encoder [72] with Cosine Similarity
(USECS). They are commonly used in code summarization
studies [36], [73], [74]. BERTScore [71] uses a variant of
BERT [75] (we use the default RoBERTalarge) to embed
every token in the summaries, and computes the pairwise
inner product between tokens in the reference summary and
generated summary. Then it matches every token in the ref-
erence summary and the generated summary to compute the
precision, recall, and F1 measure. In our experiment, we report
the F1 measure of BERTScore. The other three methods use a
pre-trained sentence encoder (SentenceBert [76] or Universal
Sentence Encoder [72]) to produce vector representations
of two summary sentences, and then compute the cosine
similarity or euclidean distance of the vector representations.
SBCS, SBED, and USECS range within [-1,1]. Higher values
of SBCS and USECS represent greater similarity, while lower
values of SBED indicate greater similarity.

iii. Methods based on summary-code semantic similarity
assess the quality of the generated summary by computing the
semantic similarity between the generated summary and the
code snippet to be summarized. Unlike the first two methods,
this type of evaluation method does not rely on reference
summaries and can effectively avoid issues related to low-
quality and outdated reference summaries. SIDE proposed by
Mastropaolo et al. [10] is a representative of this type of
method. It provides a continuous score ranging within [-1,1],
where a higher value represents greater similarity. We present
the scores reported by the above similarity-based evaluation
methods in percentage.

Human Evaluation. We conduct human evaluations as a
reference for automated evaluation methods. Comparing the
correlation between the results of automated evaluation meth-
ods and human evaluation can facilitate achieving the goal of
this RQ, which is to find a suitable automated method for
assessing the quality of LLM-generated summaries. To do so,
we invite 15 volunteers (including 1 PhD candidate, 5 masters,
and 9 undergraduates) with more than 3 years of software
development experience and excellent English ability to carry
out the evaluation. For each sample, we provide volunteers
with the code snippet, the reference summary, and summaries
generated by four LLMs, where the reference summary and
the summaries generated by four LLMs are mixed and out
of order. In other words, for each sample, volunteers do not
know whether it is a reference or a summary generated by a
certain LLM. We follow Shi et al. [9] and ask volunteers to
rate the summaries from 1 to 5 based on their quality where
a higher score represents a higher quality. The final score of
the summaries is the average of scores rated by 15 volunteers.

LLM-based evaluation methods. Inspired by recent work in
NLP [37]–[39], we also investigate the feasibility of employing
LLMs as evaluators. Its advantage is that it does not rely on the
quality of reference summaries, and the evaluation steps can be
the same as human evaluation. Specifically, similar to human
evaluation, when using LLMs as evaluators, for each sample,
we input the code snippet to be summarized, the reference
summary, and LLM-generated summaries, and ask LLMs to
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Fig. 2: An example of using an LLM as an evaluator.

TABLE II: Human evaluation scores for reference and LLM-
generated summaries. The value in parentheses represents the
percentage increase or decrease relative to the score of the
corresponding reference summary.

Summary from Human Evaluation Score

Java Python C

Reference 3.19 3.56 3.05

CodeLlama-Instruct 3.93 (+23.20%) 3.88 (+8.99%) 4.15 (+36.07%)
StarChat-β 3.18 (-0.31%) 3.14 (-11.80%) 3.49 (+14.43%)
GPT-3.5 4.00 (+25.39%) 4.16 (+16.85%) 4.06 (+33.11%)
GPT-4 4.17 (+30.72%) 4.06 (+14.04%) 4.25 (+39.34%)

rate each summary from 1 to 5 where a higher score represents
a higher quality of the summary. The specific prompt when
using LLMs as evaluators is shown in Figure 2.
Datasets and Prompting Techniques. In this RQ, to reduce
the workload of human evaluation volunteers, we randomly
select 50 samples from the Java, Python, and C datasets,
respectively, which means 150 samples in total. We employ
few-shot prompting to adapt the four LLMs to generate sum-
maries for code snippets as recent studies [25], [28], [30] have
demonstrated the effectiveness of this prompting technique on
code summarization tasks.
2) Experimental Results.
Human Evaluation Results. Table II shows the human evalu-
ation scores for reference summaries and summaries generated
by the four LLMs. Observe that the scores of reference
summaries in the three datasets are between 3 and 3.5 points,
suggesting that the quality of the reference summaries is not
very high. Therefore, evaluation methods based on summary-
summary/code similarity may not accurately assess the quality
of LLM-generated summaries.

Among the four LLMs, GPT-4 has the highest scores on the
Java and C datasets, and GPT-3.5 attains the highest score on
the Python dataset. This suggests that the quality of summaries
generated by GPT-3.5 and GPT-4 is relatively high.

☞ Finding ▶ According to human evaluation, the quality
of reference summaries in the existing datasets is not
particularly high. Summaries from general-purpose LLMs
(e.g., GPT-3.5) excel over those from specialized code
LLMs (e.g., CodeLlama-Instruct) in quality. ◀

Automated Evaluation Results. Table III displays the scores

of the LLM-generated summaries reported by three categories
of automated evaluation methods, and LLM-based evalua-
tion methods. Observed that among the three methods based
on summary-summary text similarity, 1) the BLEU-based
and ROUGE-L-based methods give StarChat-β the highest
scores on all three datasets; 2) the METEOR-based method
gives StarChat-β the highest score (i.e., 18.19) on the Java
dataset, while gives CodeLlama-Instruct the highest scores
(i.e., 21.64 and 17.29) on the Python and C datasets. Among
the four methods based on summary-summary semantic sim-
ilarity, BERTScore, SBCS, and SBED give the best scores
to StarChat-β, and USECS gives the best score of 50.69
to CodeLlama-Instruct on the Java dataset. On the Python
and C datasets, the four methods consistently give the best
scores to CodeLlama-Instruct and StarChat-β, respectively.
The summary-code semantic similarity-based method SIDE
gives the highest scores (i.e., 80.46 and 66.35) to StarChat-β
on the Java and C datasets, and the highest score (i.e., 41.71) to
GPT-3.5 on the Python dataset. The four LLM-based methods
consistently give the highest scores to GPT-4 on the Java and
C datasets, while they consistently award the highest scores
to GPT-3.5 on the Python dataset.

☞ Finding ▶ According to automated evaluation, over-
all, methods based on summary-summary text/semantic
similarity tend to give higher scores to specialized code
LLMs StarChat-β and CodeLlama-Instruct, while LLM-
based evaluators tend to give higher scores to general-
purpose LLMs GPT-3.5 and GPT-4. The summary-code
semantic similarity-based method tends to give higher
scores to StarChat-β on the Java and C datasets, while
favoring GPT-3.5 on the Python dataset. ◀

Correlation between Automated Evaluation and Human
Evaluation. From Table III, it can also be observed that the
average scores of reference summaries evaluated by the four
LLM-based methods are mostly below 3 points. It means that
similar to human evaluation, LLM-based evaluation methods
also believe that the quality of the reference summaries is
not very high. Besides, LLM-based evaluation methods are
inclined to give higher scores to general-purpose LLMs GPT-
3.5 and GPT-4, which is the same as human evaluation.

Based on the above observations, we can reasonably spec-
ulate that compared to methods based on summary-summary
text/semantic similarity and summary-code semantic similar-
ity, LLM-based evaluation methods may be more suitable
for evaluating the quality of summaries generated by LLMs.
Therefore, we follow [9], [73] and calculate Spearman’s
correlation coefficient ρ with the p-value between the results
of each automated evaluation method and human evaluation,
providing more convincing evidence for this speculation. The
Spearman’s correlation coefficient ρ ∈ [−1, 1] is suitable for
judging the correlation between two sequences of discrete
ordinal/continuous data, with a higher value representing a
stronger correlation [77]. −1 ≤ ρ < 0, ρ = 0, and 0 < ρ ≤ 1
respectively indicate the presence of negative correlation, no
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TABLE III: Automated evaluation scores for reference and LLM-generated summaries. S-S Tex.Sim.: methods based on
summary-summary text similarity; S-S Sem.Sim.: methods based on summary-summary semantic similarity; S-C Sem.Sim.:
methods based on summary-code semantic similarity. We bold the best score in each column.

Language Summary
from

S-S Tex.Sim. S-S Sem.Sim. S-C Sem.Sim. LLM-based Evaluation Method Human
BLEU METEOR ROUGE-L BERTScore SBCS SBED USECS SIDE CodeLlama-I StarChat-β GPT-3.5 GPT-4

Java

Reference / / / / / / / 86.15 1.42 2.58 3.08 2.8 3.19
CodeLlama-Instruct 13.00 17.90 32.21 87.94 59.61 86.88 50.69 46.62 2.32 2.80 3.28 3.64 3.93

StarChat-β 18.95 18.19 38.43 88.69 61.97 83.45 50.57 80.46 2.24 1.94 2.42 2.50 3.18
GPT-3.5 12.49 16.74 31.87 87.73 59.47 88.11 48.87 62.04 2.40 2.40 3.72 3.82 4.00
GPT-4 9.46 17.02 28.36 86.72 58.83 89.27 46.50 36.12 2.44 2.60 4.10 4.50 4.17

Python

Reference / / / / / / / 16.11 1.48 2.74 2.84 2.98 3.56
CodeLlama-Instruct 16.04 21.64 37.80 89.06 61.57 85.40 55.86 38.84 1.62 2.60 3.44 3.72 3.88

StarChat-β 18.35 17.62 37.96 88.92 58.97 87.39 51.54 24.05 1.94 1.96 2.40 2.42 3.14
GPT-3.5 11.95 19.14 30.20 87.63 61.37 86.36 49.54 41.71 1.96 2.72 4.32 4.30 4.16
GPT-4 14.07 20.87 35.38 88.11 60.65 87.04 51.21 33.16 1.76 2.54 3.92 4.16 4.06

C

Reference / / / / / / / 64.23 1.56 2.80 2.24 2.62 3.05
CodeLlama-Instruct 10.92 17.29 28.71 86.38 51.55 95.94 37.95 46.69 2.62 3.02 3.82 3.84 4.15

StarChat-β 15.58 15.57 32.84 87.27 54.85 91.92 40.60 66.35 2.76 2.74 2.20 2.62 3.49
GPT-3.5 12.06 16.00 29.81 86.65 53.61 93.71 39.75 50.17 3.04 2.86 3.48 3.66 4.06
GPT-4 10.07 16.18 28.63 86.03 53.00 94.77 37.30 41.37 3.18 2.86 4.00 4.36 4.25

correlation, and positive correlation [78]. The p-value helps
determine whether the observed correlation is statistically
significant or simply due to random chance. By comparing the
p-value to a predefined significance level (typically 0.05), we
can decide whether to reject the null hypothesis and conclude
that the correlation is statistically significant. Table IV shows
the statistical results of ρ and p-value. It can be clearly
observed that among all automated evaluation methods, there
is a significant positive correlation (0.28 ≤ ρ ≤ 0.65) between
the GPT-4-based evaluation method and human evaluation in
scoring the quality of summaries generated by most LLMs,
followed by the GPT-3.5-based evaluation method. For other
automated evaluation methods, in most cases, their correlation
with human evaluation is negative or weakly positive. Based
on the above observations, we draw the conclusion that
compared with other automated evaluation methods, the GPT-
4-based method is more suitable for evaluating the quality
of summaries generated by LLMs. In the subsequent RQs,
we uniformly employ the GPT-4-based method to assess the
quality of LLM-generated summaries. To make the output
scores of GPT-4 more deterministic, we set the temperature
to 0 when using GPT-4 as the evaluator.

✎ Summary ▶ Among all automated evaluation methods,
the GPT-4-based method overall has the strongest correla-
tion with human evaluation. Therefore, it is recommended
to adopt the GPT-4-based method to evaluate the quality
of LLM-generated summaries. ◀

B. RQ2: How effective are different prompting techniques in
adapting LLMs to the code summarization task?

1) Experimental Setup. The experimental dataset comprises
600 samples from Java, Python, and C datasets collectively.
2) Experimental Results. Table V presents the scores reported
by the GPT-4 evaluation method for summaries generated
by four LLMs using five prompting techniques. Observe that
when the base model is CodeLlama-Instruct, few-shot prompt-
ing consistently performs best on all three datasets. When

the base model is StarChat-β, chain-of-thought prompting
performs best on all the Java and C datasets, while expert
prompting excels on the Python dataset. When selecting GPT-
3.5 as the base model, the simplest zero-shot prompting
surprisingly achieves the highest scores on the Java and C
datasets, and is only slightly worse than few-shot prompting
on the Python dataset. When using GPT-4 as the base model,
chain-of-thought prompting overall performs best.

For the specific LLM and programming language, there
is no guarantee that intuitively more advanced prompting
techniques will surpass simple zero-shot prompting. For ex-
ample, on the Java dataset, when selecting any of StarChat-β,
GPT-3.5, and GPT-4 as the base model, few-shot prompting
yields lower scores than zero-shot prompting. Contrary to
the findings of previous studies [25], [28], the GPT-4-based
evaluation method does not consider that few-shot prompt-
ing will improve the quality of generated summaries. This
discrepancy may arise because previous studies evaluated the
quality of LLM-generated summaries using BLEU, METEOR,
and ROUGE-L, which primarily assess text/semantic similarity
with reference summaries. However, as we mentioned in Sec-
tion IV-A, reference summaries contain low-quality noisy data
that undermines their reliability. Therefore, achieving greater
similarity with reference summaries does not necessarily imply
that the human/GPT-4-based evaluation method will perceive
the summary to be of higher quality.

✎ Summary ▶ The more advanced prompting techniques
expected to perform better may not necessarily outperform
simple zero-shot prompting. In practice, selecting the
appropriate prompting technique requires considering the
base LLM and the programming language. ◀

C. RQ3: How do different model settings affect LLMs’ code
summarization performance?

1) Experimental Setup. There are three key model set-
tings/parameters, including top k, top p, and temperature,
that allow the user to control the randomness of text (code
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TABLE IV: Spearman’s correlation coefficient ρ with the p-value (values in parentheses) between the results of each automated
evaluation method and human evaluation. CodeLlama-I: CodeLlama-Instruct. We bold the best score in each row.

Language Summary
from

S-S Tex.Sim. S-S Sem.Sim. S-C Sem.Sim. LLM-based Evaluation Method

BLEU METEOR ROUGE-L BERTScore SBCS SBED USECS SIDE CodeLlama-I StarChat-β GPT-3.5 GPT-4

Java

Reference / / / / / / / 0.31 (.03) 0.06 (.70) 0.26 (.07) 0.53 (.00) 0.60 (.00)
CodeLlama-I -0.25 (.08) 0.07 (.65) -0.14 (.35) -0.16 (.27) 0.01 (.94) -0.01 (.94) 0.01 (.95) -0.30 (.03) -0.00 (.98) -0.02 (.91) 0.35 (.01) 0.49 (.00)
StarChat-β 0.22 (.13) 0.32 (.02) 0.15 (.31) 0.22 (.12) 0.30 (.04) -0.30 (.04) 0.32 (.02) -0.12 (.42) 0.11 (.44) 0.16 (.27) 0.52 (.00) 0.41 (.00)

GPT-3.5 -0.10 (.50) 0.12 (.39) 0.22 (.13) 0.0 (.99) -0.01 (.97) 0.01 (.97) 0.10 (.50) -0.20 (.16) 0.28 (.05) -0.08 (.57) 0.60 (.00) 0.56 (.00)
GPT-4 0.05 (.74) -0.02 (.87) 0.05 (.75) 0.02 (.87) 0.14 (.34) -0.14 (.34) 0.11 (.46) -0.19 (.18) 0.00 (.98) 0.04 (.76) 0.38 (.01) 0.40 (.00)

Python

Reference / / / / / / / -0.04 (.79) -0.15 (.30) 0.19 (.19) 0.35 (.01) 0.37 (.01)
CodeLlama-I -0.17 (.24) -0.05 (.76) -0.11 (.46) -0.16 (.28) -0.08 (.56) 0.08 (.56) -0.08 (.60) 0.10 (.48) 0.15 (.29) -0.01 (.97) 0.52 (.00) 0.45 (.00)
StarChat-β 0.20 (.17) 0.52 (.00) 0.19 (.20) 0.24 (.1) 0.18 (.22) -0.18 (.22) 0.50 (.00) 0.02 (.89) -0.19 (.18) 0.24 (.09) 0.48 (.00) 0.48 (.00)

GPT-3.5 -0.20 (.17) 0.01 (.96) -0.18 (.21) -0.07 (.61) -0.02 (.89) 0.02 (.89) -0.12 (.42) 0.17 (.24) 0.19 (.19) 0.35 (.01) 0.32 (.02) 0.42 (.00)
GPT-4 -0.24 (.09) 0.12 (.41) -0.16 (.26) -0.05 (.73) 0.02 (.91) -0.02 (.91) -0.19 (.19) 0.15 (.31) 0.18 (.21) 0.17 (.25) 0.16 (.28) 0.17 (.25)

C

Reference / / / / / / / 0.23 (.11) 0.12 (.39) 0.27 (.06) 0.60 (.00) 0.62 (.00)
CodeLlama-I -0.28 (.05) -0.11 (.46) -0.09 (.55) -0.28 (.05) -0.05 (.76) 0.04 (.76) -0.07 (.61) -0.32 (.03) -0.00 (.98) -0.01 (.48) 0.33 (.02) 0.42 (.00)
StarChat-β -0.00 (.98) 0.35 (.01) 0.17 (.24) 0.0 (.98) 0.17 (.22) -0.17 (.22) 0.26 (.07) -0.01 (.94) 0.05 (.72) 0.17 (.23) 0.16 (.27) 0.62 (.00)

GPT-3.5 -0.35 (.01) 0.14 (.33) -0.12 (.41) -0.06 (.67) 0.05 (.71) -0.05 (.71) 0.07 (.64) -0.47 (.00) 0.21 (.15) 0.21 (.14) 0.38 (.01) 0.65 (.00)
GPT-4 0.11 (.44) 0.38 (.01) 0.37 (.01) 0.15 (.29) 0.21 (.14) -0.21 (.15) 0.21 (.14) -0.26 (.07) -0.09 (.55) 0.01 (.92) 0.38 (.01) 0.28 (.05)

TABLE V: Effectiveness of different prompting techniques

Model Prompting Technique Java Python C

CodeLlama-Instruct

zero-shot 3.42 2.98 3.41
few-shot 3.78 3.75 3.91

chain-of-thought 3.21 3.14 3.37
critique 2.15 2.02 2.13
expert 3.13 3.35 1.70

StarChat-β

zero-shot 2.71 2.85 2.86
few-shot 2.50 2.37 2.68

chain-of-thought 2.86 2.77 3.06
critique 2.36 2.57 2.60
expert 2.66 3.02 3.01

GPT-3.5

zero-shot 3.90 3.96 3.93
few-shot 3.73 3.97 3.56

chain-of-thought 3.36 3.47 3.36
critique 3.09 3.21 3.31
expert 2.72 3.43 3.49

GPT-4

zero-shot 4.50 4.55 4.42
few-shot 4.38 4.16 4.18

chain-of-thought 4.57 4.60 4.44
critique 4.41 4.44 4.34
expert 4.52 4.23 4.50

summary in our scenario) generated by LLMs. Considering
that GPT-3.5 and GPT-4 do not support the top k setting, we
only conduct experiments with the top p and temperature.
Top p: In each round of token generation, LLMs sort tokens
by probability from high to low and keep tokens whose
probability adds up to (no more than) top p. For example,
top p = 0.1 means only the tokens comprising the top 10%
probability mass are considered. The larger the top p is, the
more tokens are sampled. Thus tokens with low probabilities
have a greater chance of being selected, so the summary
generated by LLMs is more random.
Temperature: Temperature adjusts the probability of tokens
after top p sampling. The higher the temperature, the less the
difference between the adjusted token probabilities. Therefore,
the token with a low probability has a greater chance of being
selected, so the generated summary is more random. If the
temperature is set to 0, the generated summary is the same
every time.

Top p and temperature are alternatives and one should only

modify one of the two parameters at a time [79]. Therefore, the
questions we want to answer are: (1) Does top p/temperature
impact the quality of LLM-generated summaries? (2) As alter-
native parameters that both control the randomness of LLMs,
do top p and temperature have a difference in the degree of
influence on the quality of LLM-generated summaries?

Drawing from a review of related work (see Section II),
we find that existing LLM-based code summarization studies
pay more attention to few-shot prompting. Since no prompting
technique outperforms others on all LLMs, we uniformly em-
ploy few-shot prompting in RQ3, RQ4, and RQ5 to facilitate
comparing our findings with prior studies.

2) Experimental Results. TABLE VI shows the scores eval-
uated by the GPT-4 evaluation method for the summaries
generated by LLMs under different top p and temperature
settings. It is observed that the impact of top p and temper-
ature on the quality of LLM-generated summaries is specific
to the base LLM and programming language. For example,
when top p=0.5, as temperature increases, the quality of GPT-
4-generated summaries for Python code snippets increases,
while those for C code snippets decrease. Another example
is that when top p=0.5, as the temperature rises, the quality
of GPT-4-generated Java comments first increases and then
decreases, whereas CodeLlama-Instruct is exactly the opposite,
first decreases and then increases. Regarding the difference in
influence between top p and temperature, it is observed that
in most cases the influence of the two parameters is similar.
For example, for C code snippets, when one parameter (top p
or temperature) is fixed, as the other parameter (temperature
or top p) grows, the quality of GPT-3.5-generated summaries
first decreases and then increases.

✎ Summary ▶ The impact of top p and temperature
on the quality of generated summaries is specific to the
base LLM and programming language. As alternative
parameters, top p and temperature have similar influence
on the quality of LLM-generated summaries. ◀
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TABLE VI: Influence of different model settings.We bold the
scores of the best setting combinations on each dataset.

Model Top p Temperature Java Python C

CodeLlama-Instruct

0.5
0.1 3.81 3.83 4.10
0.5 3.72 3.85 4.08
1.0 3.91 3.81 4.11

0.75
0.1 3.76 3.87 4.02
0.5 3.91 3.73 4.01
1.0 3.80 3.79 3.88

1.0
0.1 3.78 3.75 3.91
0.5 3.91 3.75 3.99
1.0 3.73 3.59 3.60

StarChat-β

0.5
0.1 2.49 2.42 2.72
0.5 2.47 2.36 2.70
1.0 2.49 2.29 2.75

0.75
0.1 2.50 2.35 2.66
0.5 2.45 2.47 2.80
1.0 2.48 2.37 2.71

1.0
0.1 2.5 2.37 2.68
0.5 2.53 2.45 2.77
1.0 2.54 2.38 2.69

GPT-3.5

0.5
0.1 3.41 3.60 3.40
0.5 3.45 3.73 3.38
1.0 3.52 3.68 3.42

0.75
0.1 3.54 3.66 3.35
0.5 3.55 3.65 3.24
1.0 3.46 3.64 3.41

1.0
0.1 3.73 3.97 3.56
0.5 3.55 3.71 3.42
1.0 3.41 3.72 3.52

GPT-4

0.5
0.1 4.44 4.25 4.33
0.5 4.47 4.30 4.31
1.0 4.45 4.31 4.29

0.75
0.1 4.48 4.27 4.31
0.5 4.46 4.34 4.26
1.0 4.47 4.33 4.36

1.0
0.1 4.38 4.16 4.18
0.5 4.43 4.27 4.33
1.0 4.40 4.18 4.33

TABLE VII: Effectiveness of LLMs in summarizing code
snippets written in different types of programming languages.
CodeLlama-I: CodeLlama-Instruct.

Model OOP PP SP FP LP

Java C Go Python Ruby PHP JavaScript Erlang Haskell Prolog

CodeLlama-I 3.78 3.91 3.86 3.75 3.98 3.88 4.03 3.51 3.58 3.23
StarChat-β 2.50 2.68 2.97 2.37 2.79 2.73 2.67 2.68 2.88 2.34

GPT-3.5 3.73 3.56 4.14 3.97 3.64 3.99 3.53 3.57 3.44 3.42
GPT-4 4.38 4.18 4.36 4.16 4.37 4.31 4.29 4.23 4.22 4.05

D. RQ4: How do LLMs perform in summarizing code snippets
written in different types of programming languages?

1) Experimental Setup. We conduct experiments on all 10
programming language datasets. As in RQ3, we uniformly
employ few-shot prompting to adapt LLMs.
2) Experimental Results. Table VII shows the performance
evaluated by the GPT-4 evaluation method for the four LLMs
on five types of programming languages. It is observed
that for OOP (i.e., Java), GPT-4 performs best, followed by
CodeLlama-Instruct, GPT-3.5, and StarChat-β. For PP, GPT-
4 performs best on both C and Go, while StarChat-β per-

forms worst on both. The smallest LLM CodeLlama-Instruct
outperforms GPT-3.5 on C (3.91 vs. 3.56), but vice versa
on Go (3.86 vs. 4.14). Additionally, except for CodeLlama-
Instruct, which performs slightly worse on Go than on C
(3.86 vs. 3.91), the other three LLMs perform better on Go
than on C. For SP, GPT-4 consistently performs best on all
four languages. Surprisingly, CodeLlama-Instruct outperforms
GPT-3.5 on both Ruby and JavaScript. All four LLMs perform
better on PHP than on Python. For FP, the performance of
two specialized code LLMs (i.e., CodeLlama-Instruct and
StarChat-β) is better on Haskell than on Erlang, while the
opposite is true for the two general-purpose LLMs (i.e., GPT-
3.5 and GPT-4). For LP, GPT-4 still performs best, followed
by GPT-3.5, CodeLlama-Instruct, and StarChat-β. Across all
five types of languages, the four LLMs consistently perform
the worst on LP, which indicates that summarizing logic
programming language code is the most challenging. One
possible reason is that fewer Prolog datasets are available
for training these LLMs compared to other programming
languages. The scale of the Prolog dataset we collected can
support this reason.

✎ Summary ▶ GPT-4 surpasses the other three LLMs on
all five types of programming languages. For PP, LLMs
overall perform better on Go than on C. For SP, all four
LLMs perform better on PHP than on Python. For FP,
specialized code LLMs (e.g., StarChat-β) perform better
on Haskell than on Erlang, whereas the reverse is true
for general-purpose LLMs (e.g., GPT-4). All four LLMs
perform worse in summarizing LP code snippets. ◀

E. RQ5: How do LLMs perform on different categories of
summaries?

1) Experimental Setup. Following [3], [54], [55], we classify
code summaries into the following six categories.
What: describes the functionality of the code snippet. It helps
developers to understand the main functionality of the code
without diving into implementation details. An example is
“Pushes an item onto the top of this stack”.
Why: explains the reason why the code snippet is written or
the design rationale of the code snippet. It is useful when
methods’ objective is masked by complex implementation. An
application scenario of Why summaries is to explain the design
rationale of overloaded functions.
How-it-is-done: describes the implementation details of the
code snippet. Such information is critical for developers to
understand the subject, especially when the code complexity
is high. For instance, “Shifts any subsequent elements to the
left.” is a How-it-is-done comment.
Property: asserts properties of the code snippet, e.g., func-
tion’s pre-conditions/post-conditions. “This method is not a
constant-time operation.” is a Property summary.
How-to-use: describes the expected set-up of using the code
snippet, such as platforms and compatible versions. For exam-
ple, “This method can be called only once per call to next().”
is a How-to-use summary.
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TABLE VIII: Statistics of six sub-datasets divided from the
CSN-Java test dataset according to comment intention

Summary Category Number of Samples Sample Ratio

What 6,132 0.56
Why 1,190 0.11

How-it-is-done 2,242 0.20
Property 1,174 0.11

How-to-use 180 0.02
Others 37 < 0.01

TABLE IX: Effectiveness of LLMs in generating different
categories of summaries

Model What Why How-it-is-done Property How-to-use

CodeLlama-Instruct 4.15 4.29 3.85 4.19 3.96
StarChat-β 2.68 2.78 2.77 2.94 2.52

GPT-3.5 3.61 3.54 3.97 3.54 4.17
GPT-4 4.40 4.28 4.31 4.06 4.22

Others: Comments that do not fall into the above five cat-
egories are classified as Others summaries, such as “The
implementation is awesome.”. Following Mu et al. [55], we
consider the ⟨code, summary⟩ pairs with Others comments
as noisy data, and remove them if identified.

We employ the comment classifier COIN provided by Mu
et al. [55] to classify the CSN-Java dataset according to the
comment intention type. The test dataset is divided into six
sub-datasets, as shown in Table VIII. To facilitate comparison
between different categories, we randomly select 180 samples
from each sub-dataset. As in RQ4, we uniformly employ few-
shot prompting to adapt LLMs. For each sub-dataset with
different intention types, the few-shot example is of the same
intention type from the training dataset.

2) Experimental Results. Table IX presents the results
evaluated by the GPT-4 evaluation method for the four
LLMs in generating five categories of summaries. Ob-
serve that CodeLlama-Instruct performs worse in generating
How-it-is-done summaries than generating the other four
categories of summaries. StarChat-β gets the lowest score of
2.52 in generating How-to-use summaries. Both GPT-3.5
and GPT-4 are not as good at generating Property sum-
maries compared to generating other categories of summaries.
Surprisingly, the smallest LLM CodeLlama-Instruct slightly
outperforms the advanced GPT-4 in generating Why (4.29 vs.
4.28) and Property (4.19 vs. 4.06) summaries. Additionally,
compared with GPT-3.5, CodeLlama-Instruct achieves higher
scores in generating What, Why, and Property summaries.
Certainly, it is undeniable that the reason for this phenomenon
is that the optimal prompting technique for GPT-3.5 and GPT-
4 is not few-shot prompting. This phenomenon is also exciting
because it implies that most ordinary developers or teams who
lack sufficient resources (e.g., GPUs) have the opportunity
to utilize open-source and small-scale LLMs to achieve code
summarization capabilities close to (or even surpass) those of
commercial gigantic LLMs.

✎ Summary ▶ The four LLMs excel in generating dif-
ferent categories of summaries. The smallest CodeLlama-
Instruct slightly outperforms the advanced GPT-4 in gen-
erating Why and Property summaries. StarChat-β is not
proficient at generating How-to-use summaries. GPT-
3.5 and GPT-4 perform worse in generating Property
summaries than other categories of summaries. ◀

V. THREATS TO VALIDITY

Our empirical study may contain several threats to validity
that we have attempted to relieve.

Threats to External Validity. The threats to external
validity lie in the generalizability of our findings. One threat
to the validity of our study is that LLMs usually generate
varied responses for identical input across multiple requests
due to their inherent randomness, while conclusions drawn
from random results may be misleading. To mitigate this
threat, considering that StarChat-β and CodeLlama-Instruct do
not support setting the temperature to 0, we uniformly set it
to 0.1 to reduce randomness except for RQ3. In RQ2-RQ5,
to make the evaluation scores more deterministic, we set the
temperature to 0 when using GPT-4 as the evaluator. Addi-
tionally, for other RQs, we conduct experiments on multiple
programming languages to support our findings.

Threats to Internal Validity. A major threat to internal
validity is the potential mistakes in the implementation of
metrics and models. To mitigate this threat, we use the publicly
available code from previous studies [10], [47] for BLEU,
METEOR, ROUGE-L, and SIDE. For COIN, BERTScore,
SentenceBert, Universal Sentence Encoder, StarChat-β [80]
and CodeLlama-Instruct [81], and GPT-3.5/GPT-4 [82], we
use the script provided along with the model to run.

Another threat lies in the processing of LLM’s responses.
Usually, the output of LLMs is a paragraph, not a sentence of
code summary (code comment) that we want. The real code
summary may be the first sentence in the LLMs’ response,
or it may be returned in the comment before the code such
as “/** ⟨code summary⟩ */”, etc. Therefore, we designed a
series of heuristic rules to extract the code summary. We have
made our script for extracting code summaries from LLMs’
responses public for the community to review.

VI. CONCLUSION

In this paper, we provide a comprehensive study covering
multiple aspects of code summarization in the era of LLMs.
Our interesting and significant findings include, but are not
limited to, the following aspects. 1) Compared with existing
automated evaluation methods, the GPT-4-based evaluation
method is more fitting for assessing the quality of LLM-
generated summaries. 2) The advanced prompting techniques
anticipated to yield superior performance may not invariably
surpass the efficacy of straightforward zero-shot prompting. 3)
The two alternative model settings have a similar impact on the
quality of LLM-generated summaries, and this impact varies
by the base LLM and programming language. 4) LLMs exhibit
inferior performance in summarizing LP code snippets. 5)

10



CodeLlama-Instruct with 7B parameters demonstrates superior
performance over the advanced GPT-4 in generating Why and
Property summaries. Our comprehensive research findings
will aid subsequent researchers in swiftly grasping the various
facets of LLM-based code summarization, thereby promoting
the development of this field.
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