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Recent code large language models (LLMs) have shown promising performance in generating standalone functions. However,
they face limitations in repository-level code generation due to their lack of awareness of repository-level dependencies (e.g.,
user-defined attributes), resulting in dependency errors such as undefined-variable and no-member errors. In this work, we
introduce ToolGen, an approach that integrates autocompletion tools into the code LLM generation process to address these
dependencies. ToolGen comprises two main phases: Trigger Insertion and Model Fine-tuning (Offline), and Tool-integrated
Code Generation (Online). During the offline phase, ToolGen augments functions within a given code corpus with a special
mark token, indicating positions to trigger autocompletion tools. These augmented functions, along with their corresponding
descriptions, are then used to fine-tune a selected code LLM. In the online phase, ToolGen iteratively generates functions
by predicting tokens step-by-step using the fine-tuned LLM. Whenever a mark token is encountered, ToolGen invokes the
autocompletion tool to suggest code completions and selects the most appropriate one through constrained greedy search.

We conduct comprehensive experiments to evaluate ToolGen’s effectiveness in repository-level code generation across
three distinct code LLMs: CodeGPT, CodeT5, and CodeLlama. To facilitate this evaluation, we create a benchmark comprising
671 real-world code repositories and introduce two new dependency-based metrics: Dependency Coverage and Static Validity
Rate. The results demonstrate that ToolGen significantly improves Dependency Coverage by 31.4% to 39.1% and Static Validity
Rate by 44.9% to 57.7% across the three LLMs, while maintaining competitive or improved performance in widely recognized
similarity metrics such as BLEU-4, CodeBLEU, Edit Similarity, and Exact Match. On the CoderEval dataset, ToolGen achieves
improvements of 40.0% and 25.0% in test pass rate (Pass@1) for CodeT5 and CodeLlama, respectively, while maintaining
the same pass rate for CodeGPT. ToolGen also demonstrates high efficiency in repository-level code generation, with
latency ranging from 0.63 to 2.34 seconds for generating each function. Furthermore, our generalizability evaluation confirms
ToolGen’s consistent performance when applied to diverse code LLMs, encompassing various model architectures and scales.
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1 INTRODUCTION
Code generation has been a longstanding focal point in the field of software engineering. Recent advancements
have introduced a variety of code large language models (LLMs) [7, 12, 13, 15, 17, 21, 28, 29, 33, 37, 46, 53, 54]
constructed upon the Transformer model architecture [45], achieving promising performance in code-related
applications [19, 20, 47–50, 52, 57, 59, 60]. These models are either pre-trained or fine-tuned on extensive code
corpora, enabling them to automatically generate code based on provided natural language descriptions. These
code LLMs have demonstrated notable effectiveness in the generation of code blocks or functions. For instance,
CodeLlama [37], built upon the foundational Llama2 model [43], has achieved state-of-the-art results among
open code LLMs (e.g., CodeGen [33] and StarCoder [28]), on benchmarks like HumanEval [15] and MBPP [9]
that focus on standalone functions.

However, it is crucial to emphasize that in real-world code repositories, more than 70% of functions are
not standalone [56]. Code LLMs encounter significant challenges when generating such real-world functions,
primarily because they cannot be aware of repository-level dependencies, such as user-defined functions and
attributes, during the code generation process [56]. This limitation often leads to the generation of code with
dependency errors, including undefined-variable and no-member errors. These errors impede the usability and
effectiveness of the code LLMs [44]. For example, consider the scenario depicted in Figure 1. A code LLM (e.g.,
CodeLlama) might incorrectly predict “_updates” after generating “... self.”, resulting in a no-member error
because the object “self” does not possess an attribute named “_updates”.

Meanwhile, modern Integrated Development Environments (IDEs) take a different approach, which typically
incorporates code autocompletion tools based on program analysis. These tools, like Jedi [2], leverage their
ability to analyze the current incomplete function’s state and project context to provide valid completion
recommendations. This includes suggestions for accessible variables, attributes, and functions. For instance,
when encountering “self.” in Figure 1, Jedi can infer and recommend 68 accessible attributes defined within
“self”, including the target suggestion “_registered_updates”. Therefore, if we can seamlessly switch between
code LLMs and the use of autocompletion tools, we have the potential to significantly reduce the occurrence of
dependency errors in repository-level code generation.

In fact, recent research has delved into the integration of external tools into the generation process of LLMs
to mitigate their limitations in constrained generation scenarios. One noteworthy example is ToolFormer [38],
which creates an augmented dataset to instruct LLMs on invoking existing arithmetic calculators. This integration
effectively reduces errors in generated text involving arithmetic calculations. Building upon ToolFormer’s
inspiration, Zhang et al. [61] introduce ToolCoder, an approach designed to teach LLMs how to utilize information-
retrieval-based (IR-based) API search tools during the code generation process. While ToolCoder targets the
generation of functionally correct standalone functions and demonstrates promising results, the integrated
IR-based API search tools do not consider repository-level dependencies, limiting their potential in resolving
dependency errors. Additionally, ToolFormer and ToolCoder are unable to handle scenarios where the tools return
multiple candidates. Another relevant example of harnessing external tools is Repilot [55], which leverages code
completion tools to filter out impractical suggestions made by LLMs in the context of automatic program repairing
(APR). Unlike repository-level code generation, Repilot’s primary focus is on generating valid single-hunk bug-fix
patches rather than entire functions. When applying Repilot to function-level code generation, the autocompletion
tools are frequently triggered unnecessarily, resulting in significant overhead and impracticality. Despite these
limitations, these works provide a solid starting point for the integration of external tools.

In this work, we aim at integrating program-analysis-based code autocompletion tools into the generation
process of code LLMs. Achieving the incorporation presents two key challenges. (i) Determining when to
trigger the invocation of autocompletion tools during the generation process: The generation process of
LLMs is a step-by-step decoding process where each subsequent token is predicted based on previous tokens.
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1.  activation
2.  belongs_to      ...
46. _registered_updates      ...

CodeLlama Prediction:  _updates no-member error

# Register updates that will be executed in each iteration. 
def register_updates(self, *updates):
        for update in updates:
                self.

 Jedi Completions:
  (68 suggestions) target

Repository: zomux/deepy File: layers/layer.py

Fig. 1. Illustrative Example of LLM Prediction and Tool Completion

In general, a function consists of dozens or even hundreds of tokens, making it impractical to invoke code
autocompletion tools at every decoding step. In the case of tools like ToolFormer and ToolCoder, ChatGPT is
employed to augment the training corpus by introducing special tokens into the text or code to mark positions
where tool invocation is needed. After training on this augmented corpus, LLMs can predict the special token at
the appropriate step, thereby triggering tool invocation. However, this ChatGPT-based augmentation method is
less effective for repository-level code generation due to the presence of repository-level dependencies.The special
token must be precisely inserted at positions involving such dependencies, such as when accessing user-defined
variables. (ii) Selecting the target suggestion from the recommended completions of autocompletion tools:
Different from tools like arithmetic calculation or API search integrated into ToolFormer and ToolCoder, which
return a single result for each invocation, autocompletion tools often provide multiple completion suggestions
sorted alphabetically. For instance, as depicted in Figure 1, Jedi returns a list of 68 completion suggestions
(excluding builtin attributes), with the target suggestion being the 46th one in the list. Consequently, after
invoking autocompletion tools, it is essential to assess the suggestions based on the generated code and select
the most appropriate one. Furthermore, this selection process needs to be seamlessly integrated into the code
generation process to ensure efficiency and coherence.

To tackle the challenges, we propose ToolGen, an approach to integrate autocompletion tools into the
generation process of code LLMs to support repository-level code generation. ToolGen has two main phases:
Trigger Insertion and Model Fine-tuning (Offline), and Tool-integrated Code Generation (Online). In the offline
phase, ToolGen analyzes source files within a corpus of code repositories, creating abstract syntax trees (ASTs)
and extracting function definitions. It augments these functions by inserting a special token, <COMP>, signifying
the positions to trigger autocompletion tools. The insertion positions are established by navigating through the
functions and identifying the identifiers that can be recommended by autocomplete tools. These augmented
functions, paired with their respective descriptions, are then employed to fine-tune a selected code LLM. In
the online phase, ToolGen iteratively constructs a function based on a provided description by predicting
tokens step-by-step through the fine-tuned LLM. Whenever a <COMP> token is encountered, ToolGen invokes the
autocompletion tool to suggest code completions, drawing from the current repository context. Subsequently,
it identifies the most appropriate suggestion through a constraint greedy search algorithm, appending this
selected suggestion to the current tokens. This process continues as it predicts tokens until a specified termination
condition is satisfied.

We conduct extensive experiments to evaluate the effectiveness of ToolGen in repository-level code generation
across three distinct code LLMs, namely, CodeGPT [31], CodeT5 [54], and CodeLlama [37]. To facilitate this
evaluation, we first construct a benchmark, which includes 12,406 Python functions from 671 real-world code
repositories and 176 coding tasks fromCoderEval dataset [56].We define two new repository-level metrics, namely
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Dependency Coverage and Static Validity Rate. Dependency Coverage quantifies the proportion of repository-level
dependencies present in ground-truth functions and successfully covered by the generated functions, while Static
Validity Rate measures the percentage of generated functions that pass a dependency error check. The evaluation
results on the 12,406 functions demonstrate that ToolGen exhibits comparable or improved performance in
widely-recognized similarity metrics such as BLEU-4, CodeBLEU, Edit Similarity, and Exact Match. Importantly,
ToolGen achieves significant improvements in Dependency Coverage, ranging from 31.4% to 39.1%, and Static
Validity Rate, spanning from 44.9% to 57.7%, across the three code LLMs. On the 176 tasks derived from CoderEval,
ToolGen achieves improvements of 40.0% and 25.0% in test pass rate (Pass@1) for CodeT5 and CodeLlama,
respectively, while maintaining the same pass rate for CodeGPT. ToolGen also demonstrates high efficiency in
repository-level code generation, with average latency ranging from 0.63 to 2.34 seconds, attributed to offline fine-
tuning with trigger insertion. Moreover, the results from our generalizability evaluation confirm that ToolGen
consistently performs well across a variety of code LLMs, with different model architectures and scales.

In summary, this paper presents the following key contributions:
• ToolGen, an approach that seamlessly integrates autocompletion tools into the generation process of

code LLMs, which consists of Trigger Insertion and Model Fine-tuning (Offline), and Tool-integrated
Code Generation (Online). ToolGen seamlessly integrates the autocompletion tool into the generation
process of code LLMs, thereby enhancing repository-level code generation. The offline phase results in
an Augmented Dataset, which comprises 249,298 Python functions sourced from a diverse selection
of 12,231 code repositories. Each function is augmented with a special token, <COMP>, which signifies
positions suitable for invoking autocompletion tools.
• An Evaluation Benchmark, which encompasses 12,406 Python functions drawn from 671 real-world

code repositories and 176 coding tasks with test cases derived from CoderEval, along with the introduction
of two novel repository-level metrics: Dependency Coverage and Static Validity Rate.
• Extensive Experimental Results, which affirm the efficacy of ToolGen in repository-level code

generation. ToolGen demonstrates substantial improvements in Dependency Coverage, ranging from
31.4% to 39.1%, and Static Validity Rate, spanning from 44.9% to 57.7%, across three distinct code LLMs.
Additionally, ToolGen achieves 40% and 25% improvements in test pass rate for CodeT5 and CodeLlama,
respectively, with high generation efficiency.

2 PRELIMINARIES

2.1 Code LLMs
Typically, there are two main categories of code LLMs that can be employed for code generation. These categories
include decoder-only models and encoder-decoder models, each of which conducts the code generation process
base on a given description as outlined below:
• Decoder-only Models: Illustrated in Figure 2a, decoder-only code LLMs, such as CodeGPT [31] and

CodeLlama [37], consist solely of a decoder component derived from the Transformer architecture [45]. An
employed decoder-only model first tokenizes the input description into a sequence of tokens. Subsequently,
it feeds this token sequence into the model’s decoder and proceeds to predict a function token-by-token,
based on the context provided by the description and previously predicted tokens.
• Encoder-Decoder Models: As depicted in Figure 2b, encoder-decoder code LLMs, such as CodeT5 [54]

and CodeT5+ [53], encompass both the encoder and decoder components of the Transformer architecture.
In this case, the employed model also tokenizes the description into a token sequence, but the sequence is
first processed by the model’s encoder. The model’s decoder is then tasked with predicting a function
token-by-token, relying on the representation produced by the encoder and the context provided by the
preceding tokens.

ACM Trans. Softw. Eng. Methodol.

 



Teaching Code LLMs to Use Autocompletion Tools in Repository-Level Code Generation • 5

docstring function

Decoder

(a) Decoder-only Model

Encoder

docstring function

Decoder

(b) Encoder-Decoder Model

Fig. 2. Decoder-only Model and Encoder-Decoder Model

On top of the standard generation process, to ensure that the employed code LLM can recognize and predict
the special token <COMP>, we initially incorporate this token into the LLM’s vocabulary, denoted as V;;< . Formally,
this addition results in an expanded vocabulary represented as:

V← V;;< ∪ {<COMP>} (1)

For the employed code LLM, within the generation process, we define its tokenization process as a procedure:

llm-tokenize : Σ∗
2ℎ0A
→ V∗ (2)

Here, Σ∗
2ℎ0A

represents a character sequence of either a description or a code snippet, and V∗ corresponds to the
resulting sequence of tokens drawn from V.

The next token prediction involved in each step is defined as a procedure:

llm-predict : (V∗,V∗) → [0, 1] |V | (3)

In this context, the two input token sequences (V∗) represent a description and an incomplete function, respectively,
while [0, 1] |V | signifies a probability distribution encompassing |V| probabilities [0, 1]. Here, |V| is the size (token
numbers) of the vocabulary V.
Example: In Figure 1, CodeLlama takes the description “Register updates…” and the incomplete function “…

self.” as inputs. It then performs a prediction, generating a probability distribution of size |V|, wherein the
token “_updates” exhibits the highest probability among all tokens.

2.2 Autocompletion Tools
An autocompletion tool takes a code repository and a caret position (defined as a tuple containing source file, line
number, and column number) as input and provides a list of completion suggestions. We define this completion
process as a procedure:

tool-complete : (ΣA4?> , Σ?>B ) → Σ∗
834=

(4)
Here, ΣA4?> and Σ?>B respectively represent the domains of code repositories and caret positions, Σ834= encom-
passes all possible identifiers such that Σ∗

834=
is a list of identifiers. It’s worth noting that autocompletion tools

often provide a wide range of completion suggestions, including keywords and partial identifiers. In our context,
we focus solely on identifier-level completions, as keywords are relatively straightforward for code LLMs to
predict, and partial identifiers are encompassed by identifier-level completions.

Example: In Figure 1, when provided with the code repository and caret position, Jedi is capable of generating
86 completion suggestions for the incomplete function “… self.”.

3 APPROACH
In this section, we elaborate on our approach named ToolGen to integrate autocompletion tools into the
generation process of code LLMs to support repository-level code generation.
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<COMP>?

Next Token


tok
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Autocompltion Tool
 

Autocompletion Tool
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1 Next Token Prediction
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file
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Online: Tool-integrated Code Generation
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Fig. 3. Approach Overview of ToolGen

3.1 Overview
Figure 3 presents an overview of ToolGen, which consists of two main phases, namely (i) Trigger Insertion
and Model Fine-tuning (Offline) and (ii) Tool-integrated Code Generation (Online).

In trigger insertion and model fine-tuning, ToolGen parses each source file in the given code repositories
into an abstract syntax tree (AST) and then extracts function definitions from the AST; For each extract function
definition, ToolGen then utilizes an autocompletion tool to augment it with the special token <COMP> to mark
the positions to invoke the tool, and then assembles a pair of description and augmented function; After process
all code repositories, ToolGen employs the resulting pairs of descriptions and augmented functions to fine-tune
a code LLM, resulting in a fine-tuned code LLM that can predict <COMP> at suitable positions to trigger the
autocompletion tool.

In tool-integrated code generation, ToolGen generates a token sequence to form a function by an iterative
process, in which, at each step, one or multiple tokens are yielded by the fine-tuned code LLM and the employed
autocompletion tool. At certain step, ¶ the fine-tuned code LLM takes the given description and the incomplete
function as inputs and predicts the next token; The predicted token is appended to the incomplete function;
· If the predicted token equals <COMP>, the autocomplete tool is triggered and a list of completion suggestions
is returned based on the current repository context; ¸ ToolGen then selects the most suitable one from the
suggestions with the fine-tuned code LLM and appends the selected suggestion to the incomplete function.

3.2 Trigger Insertion and Model Fine-tuning
3.2.1 Trigger Insertion. We employ a trigger insertion method to facilitate the learning process of code LLMs
in determining when to utilize autocompletion tools during code generation. In this method, the special token
<COMP> is inserted at specific locations within code functions, indicating when autocompletion tools should be
triggered.

Given a code repository R, we traverse each source file 5 8;4 within it based on the file’s suffix (e.g., .py for
Python) and then proceed to analyze the functions defined in the source file. To achieve this, we parse the source
file into an abstract syntax tree (AST), where the functions are represented as function-definition nodes. Each
function-definition node contains multiple AST-tokens, which are smallest individual units, such as keywords,
identifiers, literals, operators, and punctuators, within programming language syntax. Note that these AST-tokens
differ from the tokens in the LLM’s vocabulary V;;< . Typically, an AST-token comprises one or more tokens from
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V;;< . For example, the AST-token “_registered_updates” consists of six tokens in vocabulary of CodeLlama,
i.e., [“_”, “register”, “ed”, “_”, “up”, “dates”].

For each function within the source file, we identify its corresponding function-definition node, denoted as
=>34 , and apply Algorithm 1 to it. The purpose of this algorithm is to traverse the function body and identify
specific identifiers that are eligible for suggestions by autocomplete tools. Subsequently, the special token <COMP>

is inserted in front of these chosen identifiers. More specifically, as the algorithm iterates through each AST-token
C within the function body =>34.1>3~ (line 2), it performs two crucial checks. First, it employs the isIdentifier
procedure to determine whether C is an identifier. Second, it verifies that C is not a built-in attribute, such as
“__dict__” in Python, using the isBuiltin procedure. These conditions are essential because dependency errors
often arise from user-defined attributes categorized as identifiers rather than other AST-tokens like language
keywords. Additionally, these checks prevent the insertion of <COMP> at positions where the code LLM can
confidently predict the following tokens, thus minimizing unnecessary tool invocations. When both conditions
are met, the algorithm updates the caret positionP to the start position of C (line 4) and invokes the autocompletion
tool to obtain a list of completion suggestions, denoted as C (line 5). If C contains C , indicating that the tool can
propose the desired identifier, the special token <COMP> is inserted before C to mark the position for triggering the
autocompletion tool (lines 6-7). Upon executing the algorithm, we obtain the augmented function code F0D6.

Algorithm 1: Trigger Insertion
Input: Repository R, Source File 5 8;4 , Function-definition node =>34
Output: Augmented function F0D6

1 F0D6 ← getSignature(=>34) // signature

2 for C in =>34.1>3~ do
3 if isIdentifier(C) and not isBuiltin(C) then
4 P = (5 8;4, C .BC0AC_;8=4, C .BC0AC_2>;D<=)
5 C← tool-complete(R,P)
6 if C ∈ C then
7 F0D6 .0??4=3 (<COMP>)
8 F0D6 .0??4=3 (C)

Next, we assemble a tuple (D, F0D6), in which D corresponds to the concatenation of the signature and
docstring of the parsed function. Note that functions lacking corresponding docstrings are omitted from our
process as our repository-level code generation relies on textual descriptions as input. Once we complete the
processing of all code repositories, we accumulate an augmented dataset that contains a substantial number of
these data tuples.

Note that our trigger insertion method can be applied to arbitrary code and is not limited to function bodies
alone. Currently, we focus exclusively on function bodies, as our primary application scenario involves generating
code based on the given natural language descriptions. Extracting descriptions for code blocks outside functions for
model training and evaluation is challenging, due to the difficulty in determining the scope of line comments [14,
24]. Therefore, we solely consider function bodies, where corresponding descriptions can be readily obtained
from function docstrings.
Example: In Figure 4, we showcase an augmented function that contains four instances of the special to-

ken <COMP>. These tokens have been inserted at positions where the desired identifiers, namely “updates”,
“_registered_updates”, “add”, and “update”, are found within the suggestion lists of the autocompletion tool.
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 def register_updates(self, *updates):
        for update in <COMP>updates:
                self.<COMP>_registered_updates.<COMP>add(<COMP>update)

Fig. 4. Augmented Function

3.2.2 Model Fine-tuning. During the fine-tuning process, we supply the collected descriptions and augmented
functions to optimize the parameters of the employ code LLM (base model), adhering to established practices
in code generation tasks. Specifically, for each pair consisting of a description D and an augmented function
F0D6, both are tokenized into sequences of tokens and subsequently fed into the base model to undergo the
token-by-token generation process described in Section 2.1. At each step, a cross-entropy loss is computed
between the predicted probability distribution of the next token and the ground-truth next token present in F0D6 .

In the case of code LLMs with an extensive number of parameters, such as CodeLlama-7B with 7 billion
parameters, fine-tuning all parameters becomes computationally challenging due to resource limitations. To
address this, we employ Low-Rank Adaptation (LoRA) [23] as a parameter-efficient fine-tuning technique.
LoRA relies on low-dimensional representations and a freeze-and-inject strategy, where the majority of the
model parameters remain fixed, and trainable low-rank matrices are introduced into specific transformer layers,
particularly the projection matrices within the attention module, to approximate weight updates.

3.3 Tool-integrated Code Generation
Based on the fine-tuned code LLM and the employed autocompletion tool, we perform a tool-integrated code
generation process that is aware to the repository-level dependencies.

3.3.1 Overall Process. Algorithm 2 outlines the overall tool-integrated generation process, comprising three
crucial parts based on the fine-tuned code LLM and the employed autocompletion tool: ¶ Next Token Prediction,
· Code Autocompletion, and ¸ Suggestion Selection. This algorithm takes a code repository R, an insertion
position P, and a descriptionD as inputs and follows an iterative process to generate a token sequence, ultimately
constructing a function denoted as F . Here, the tokens are drawn from the expanded vocabulary V defined in
Equation 1.

The iterative process commences with the <BOS> token (representing the beginning of the sequence), i.e.,
F ← [<BOS>] in line 2, and proceeds by iteratively updating F until it reaches the <EOS> token (representing
the end of the sequence). During each iteration step, the algorithm utilizes the description D and the current
incomplete function F as inputs for the fine-tuned code LLM to execute the llm-predict procedure. This
procedure predicts a |V|-dimension probability distribution p |V | for the tokens in the vocabulary V (line 4).
Subsequently, the token C>: with the highest probability is selected using the commonly used argmax function [1]
(line 5). The selected token C>: is then appended to F (line 6). If C>: corresponds to the <EOS> token, the iterative
process concludes, yielding the final generated function (lines 7-8).

If C>: corresponds to the special token <COMP>, the autocompletion tool is triggered to provide a list of completion
suggestions denoted as C. These suggestions are produced based on the code repository R and the caret position
P′ after inserting F at P (lines 9-11). Notably, when F is inserted using the insert procedure, any <COMP>

tokens within it are removed to prevent syntax errors. The fine-tuned code LLM is then employed to assess the
completion suggestions and select the most suitable one for F by the llm-select procedure (line 12). The
tokens from the selected suggestion are concatenated to F .

Example: In the case of the incomplete code snippet shown in Figure 1, Algorithm 2 predicts the next token as
<COMP> through the fine-tuned code LLM. This prediction triggers the autocompletion tool. Subsequently, the
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Fig. 5. Example Prefix Tree

resulting completion suggestions are fed into the llm-select procedure, which determines the most appropriate
suggestion.

Algorithm 2: Tool-integrated Code Generation
Input: Repository R, Description D, Insertion Position P
Output: Function F

1 D ← llm-tokenize(D)
2 F ← [<BOS>]
3 while true do

/* ¶ Next Token Prediction */

4 p |V | ← llm-predict(D, F )
5 C>: ← argmax(V,p |V | )
6 F ← F ⊕ [C>:]
7 if C>: = <EOS> then
8 break

/* · Code Autocompletion */

9 if C>: = <COMP> then
10 P′ ← insert(P, F )
11 C← tool-complete(R,P′)

/* ¸ Suggestion Selection */

12 llm-select(D, F ,C)

3.3.2 Completion Suggestion Selection. Algorithm 3 provides a description of the llm-select procedure, which
is called within Algorithm 2. To begin, it tokenizes each completion in C into a sequence of tokens from V
using the code LLM’s tokenizer (via the llm-tokenize procedure) and inserts this token sequence into a prefix
tree [5], denoted as CA84 (lines 1-5). Each node in the tree possesses four properties: =>34.C>:4=, =>34.C>:_83G ,
=>34.2ℎ8;3A4=, and =>34.8B_C4A<8=0; , indicating the token stored in the node, the index of the stored token in V,
the child nodes of the current node, and whether the node corresponding to the terminal of a token sequence.
The root node, CA84 .A>>C , is a unique node that stores n , signifying an empty string. Every path from CA84 .A>>C to
a terminal node corresponds to a token sequence from C. As an illustration, Figure 5 presents the prefix tree
corresponding to the 68 completion suggestions shown in Figure 1. In this example, nodes enclosed in blue boxes
indicate the terminals of token sequences.

Subsequently, the algorithm proceeds to select a path in CA84 in a greedy fashion, based on predictions made by
the fine-tuned code LLM, and appends the token sequence associated with the chosen path to the incomplete
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Algorithm 3: Suggestion Selection based on Constraint Greedy Search
1 Procedure llm-select(D, F , C):
2 CA84 ← )A84 () // prefix tree

3 for 2><? in C do
4 B4@ ← llm-tokenize(2><?)
5 CA84 .8=B4AC (B4@)
6 =>34 ← CA84 .A>>C

7 while not =>34.8B_C4A<8=0; do
8 m |V | ← 0
9 for 2ℎ8;3 in =>34.2ℎ8;3A4= do
10 m |V | [2ℎ8;3.C>:_83G] ← 1

11 p |V | ← llm-predict(D, F )
12 p |V | ← p |V | � m |V |

13 C>: ← argmax(V,p |V | )
14 F ← F ⊕ C>:
15 for 2ℎ8;3 in =>34.2ℎ8;3A4= do
16 if 2ℎ8;3.C>:4= = C>: then
17 =>34 ← 2ℎ8;3

18 break

function F (lines 6-13). Specifically, the algorithm initiates a node pointer, denoted as =>34 , with the root node
CA84 .A>>C (line 6). A loop continues until the pointer =>34 reaches a terminal node (line 7). Within this loop, a
|V|-dimensional mask vector, denoted as m |V | , is generated based on the children of the current node (lines 8-10).
In m |V | , only positions corresponding to the C>:_83G property of the children of =>34 are assigned a value of 1,
while all other positions are set to 0. Subsequently, the fine-tuned code LLM is employed to predict a probability
distribution, p |V | (line 11). This predicted distribution is then element-wise multiplied by the mask vector m |V | ,
effectively setting the probability of tokens not in the children of =>34 to 0. The next token, C>: , is selected from
V based on the highest probability in p |V | using the argmax function and is appended to the current incomplete
function F (lines 13-14). Finally, the node pointer is updated to point to the child of =>34 whose stored token
matches the selected token C>: (line 15-18).
Example: For the prefix tree illustrated in Figure 5, the llm-select procedure iteratively selects the next

tokens within the tree, guided by the LLM’s predictions. This iterative process results in the inclusion of tokens
corresponding to the suggestion “_registered_updates”, which are found along the green path, being appended
to the incomplete function.

4 EVALUATION SETUP
To evaluate the effectiveness and efficiency of ToolGen in repository-level code generation, we conduct a
comprehensive set of experiments.

4.1 ResearchQuestions
We formulate the following research questions to guide our evaluation:
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• RQ1 - Similarity-based Effectiveness: How closely does the code generated by ToolGen align with
the ground truth when assessed using common similarity metrics?
• RQ2 - Dependency-based Effectiveness: To what degree can ToolGen cover repository-level depen-

dencies and reduce dependency errors, including those related to user-defined functions and attributes?
• RQ3 - Execution-based Effectiveness: How effectively can ToolGen generate functionally correct

functions that pass test cases?
• RQ4 - Efficiency: What is the average time ToolGen takes to generate functions?
• RQ5 - Generalizability: Is ToolGen effective in code generation when applied to different code LLMs?

4.2 Implementation
Although ToolGen is designed to be language-agnostic, our current focus is on developing a Python-specific
prototype of ToolGen.

Base Model. In ToolGen, we explore the utilization of three distinct code LLMs to encompass diverse model
architectures and parameter scales. These code LLMs demonstrate impressive performance in code generation
and have found extensive utilization in prior studies [31, 37, 51, 53, 54] for fine-tuning and evaluation.

• CodeGPT: CodeGPT [31] falls into the category of decoder-only models. It undergoes pre-training on a
Python corpus sourced from the CodeSearchNet dataset [25], comprising 1.1 million Python functions.
For our purposes, we adopt the pre-trained CodeGPT-small version1, which encompasses 124 million
model parameters.
• CodeT5: CodeT5 [54] belongs to the encoder-decoder model category and is similarly pre-trained on the

Python corpus from the CodeSearchNet dataset. We select the pre-trained CodeT5-base version2, which
comprises 220 million model parameters.
• CodeLlama: CodeLlama [37] represents another decoder-only model, specialized for code-related tasks

and based on Llama2 [43]. It is pre-trained on an even larger Python corpus, encompassing a staggering
100 billion tokens sourced from a Python-centric dataset [37]. For our purposes, we adopt the pre-trained
CodeLlama-7b version3, featuring a substantial 7 billion model parameters.

We refer to the variants of ToolGen, namelyToolGen-gpt ,ToolGen-t5, andToolGen-llama, corresponding
to the underlying base models CodeGPT, CodeT5, and CodeLlama, respectively.

Autocompletion Tool. We employ Jedi [2] as our autocompletion tool. Jedi is a static analysis tool designed
for Python, commonly utilized within integrated development environments (IDEs) and editor plugins. Utilizing
Jedi, ToolGen can trigger autocompletion, generating a list of suggestions that encompasses repository-level
dependencies, including user-defined attributes and functions.

Trigger Insertion. To create the augmented dataset for fine-tuning the employed base model, we begin with
the Python corpus from the training set of CodeSearchNet dataset. Since the CodeSearchNet dataset does not
provide complete code repositories from which to extract Python functions, we initiate the process by crawling
the code repositories listed in the dataset. Subsequently, we follow the procedure outlined in Section 3.2.1 to
extract and augment functions within these code repositories, ultimately generating the augmented dataset. It’s
important to note that the CodeSearchNet dataset includes a partitioning into training, validation, and test sets.
For our trigger insertion process, we exclusively utilize the code repositories associated with the training set. The
resulting augmented dataset comprises a total of 249,298 pairs of descriptions and augmented functions, which
are sourced from 12,231 distinct Python code repositories. Regarding dataset statistics, the average token count

1https://huggingface.co/microsoft/CodeGPT-small-py
2https://huggingface.co/Salesforce/codet5-base
3https://huggingface.co/codellama/CodeLlama-7b-Python-hf
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for descriptions is 10.98, and for augmented functions, it is 55.31. Additionally, the special token <COMP> appears
an average of 5.54 times within these functions.
Model Fine-tuning. In the fine-tuning process, we adopt different strategies for CodeGPT, CodeT5, and

CodeLlama: For CodeGPT and CodeT5, we perform full-parameter fine-tuning, optimizing all model parameters
during this phase. In the case of CodeLlama, we employ LoRA with a reduction factor (r ) of 8 and a scaling factor
(alpha) of 16 to achieve parameter-efficient fine-tuning. This approach allows us to optimize only 3.86% of the
trainable parameters in comparison to the original CodeLlama model. The fine-tuning settings for learning rate
and batch size are consistent across all three models, with a learning rate of 5E-6 and a batch size of 32. However,
the number of epochs differs: 10 epochs for CodeGPT and CodeT5, while CodeLlama undergoes fine-tuning for 3
epochs. To ensure reproducibility, we set the seed for random functions to 42 consistently across all packages
and libraries used.

4.3 Evaluation Benchmark
4.3.1 Datasets. To evaluate ToolGen, we curate two datasets: (i) a large dataset derived from the CodeSearch-
Net [25] to assess similarity-based and dependency-based effectiveness (RQ1 and RQ2); (ii) a dataset derived from
CoderEval [56] containing test cases to evaluate execution-based effectiveness (RQ3).
CodeSearchNet. To assess similarity-based and dependency-based effectiveness, we follow this process to

construct the dataset: We start by crawling the code repositories listed in the test set of the CodeSearchNet dataset,
ensuring no overlap with the training set used for model fine-tuning. We then extract pairs of descriptions and
functions from these repositories by parsing and traversing Abstract Syntax Trees (ASTs), similar to the method
described in Section 3.2.1. This process yields an evaluation dataset comprising 12,406 Python functions sourced
from 671 code repositories. On average, the descriptions contain 10.66 tokens, while the functions consist of an
average of 54.54 tokens.

CoderEval. To evaluate execution-based effectiveness, we initially gather all 230 Python code generation tasks
from the CoderEval benchmark, extracted from 43 real-world Python repositories. Each task consists of a natural
language description, a ground-truth code snippet, and a set of test cases, along with the project environment
context associated with the task (e.g., project source code, dependent libraries, and test scripts). The tasks are
categorized into six runnable levels: self-contained, slib-runnable, plib-runnable, class-runnable, file-runnable,
and project-runnable [56]. Each runnable level relies on the dependencies defined at that level and does not
depend on those defined at subsequent levels. For example, plib-runnable indicate that the task requires public
third-party libraries, while file-runnable require dependencies defined in the current file (e.g., user-defined classes
and functions). We remove the tasks overlapping with the training dataset of ToolGen, resulting in a final dataset
containing 176 tasks.

4.3.2 Baselines. The different variants of ToolGen and the baselines are presented in Table 1, along with the
base models they employ.

Vanilla Baselines. We develop three vanilla baseline approaches by fine-tuning these same base models but
performing straightforward code generation without tool integration. Specifically, the fine-tuning process for the
baselines involves using the 249,298 pairs of descriptions and functions from the augmented dataset. Notably,
the fine-tuning is conducted on the original functions, prior to the introduction of <COMP> tokens. The training
configurations, including learning rates and training epochs, mirror those employed in the implementation of
ToolGen. After fine-tuning, these models are utilized to perform straightforward code generation, as outlined in
Section 2.1. We label the three baseline approaches as follows:

• Vanilla-gpt: Represents straightforward code generation using the CodeGPT model fine-tuned on
original functions.
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Table 1. Variants of ToolGen and baselines.

Approach Base Model Architecture # Parameters

Vanilla-gpt

CodeGPT Decoder-Only 124 Million
RepoCoder-gpt

ToolGen-gpt (ours)

ragToolGen-gpt (ours)

Vanilla-t5

CodeT5 Encoder-Decoder 220 Million
RepoCoder-t5

ToolGen-t5 (ours)

ragToolGen-t5 (ours)

Vanilla-llama

CodeLlama Decoder-Only 7 Billion
RepoCoder-llama

ToolGen-llama (ours)

ragToolGen-llama (ours)

• Vanilla-t5: Signifies straightforward code generation using the CodeT5 model fine-tuned on original
functions.
• Vanilla-llama: Designates straightforward code generation with the CodeLlama model fine-tuned on

original functions.
Retrieval-Augmented-Generation (RAG) Baselines. We also include RepoCoder [58], a state-of-the-art

approach that addresses repository-level code generation by integrating a similarity-based retriever and a pre-
trained code language model in an iterative retrieval-augmented-generation pipeline. Similarly, we create three
variants of RepoCoder based on the three fine-tuned models Vanilla-gpt , Vanilla-t5 , and Vanilla-llama. We
directly apply the prompt template defined in the original implementation of RepoCoder. The three variants of
RepoCoder are listed as follows:
• RepoCoder-gpt: Represents the variant of RepoCoder with the CodeGPT model fine-tuned on original

functions.
• RepoCoder-t5: Signifies the variant of RepoCoder with the CodeT5 model fine-tuned on original

functions.
• RepoCoder-llama: Designates the variant of RepoCoder with the CodeLlama model fine-tuned on

original functions.
The hyperparameters of RepoCoder used in our experiments follow its default implementation: the retrieval-
generation iteration is set to 2, the window size is 20, and the slice size is 2.
RAG-based Variants of ToolGen. In fact, RAG method is orthogonal to our tool-integrated approach.

To ensure a fair comparison and further explore the potential of ToolGen, we also develop three RAG-based
variants: ragToolGen-gpt , ragToolGen-t5, and ragToolGen-llama. In these variants, the employed
retrieval process is the same as the RepoCoder baselines.
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4.3.3 Metrics. In our evaluation, we employ commonly used similarity-based metrics, two novel dependency-
based metrics, and an execution-based metric to evaluate the effectiveness of ToolGen in repository-level code
generation.

Similarity-based Metrics: We utilize the following well-established similarity metrics to measure the corre-
spondence between generated functions and their ground-truth counterparts:
• BLEU-4 [34]: This metric assesses the quality of generated code by comparing n-grams (sequences of n

consecutive tokens) in the generated functions with those in the ground-truth functions.
• CodeBLEU [31]: Specifically designed for code generation tasks, CodeBLEU evaluates the accuracy of

code generation models by considering code-specific vocabulary and structure.
• Edit Similarity (EditSim) [41]: This metric measures the similarity between two pieces of functions by

analyzing the character-level edit operations required to transform one into the other.
• Exact Match: This metric measures the ratio of the generated code that are exactly matched with the

ground truth.
The calculation of the similarity-based metrics follows the implementation in CodeXGLUE4.

Dependency-basedMetrics: To assess the effectiveness of both ToolGen and the baselines in repository-level
code generation, we introduce the dependency-based metrics, namely Dependency Coverage (DepCov) and Static
Validity Rate (ErrRate).

• Dependency Coverage (DepCov): This metric calculates the ratio of repository-level dependencies,
including user-defined functions and attributes, that appear in ground-truth functions and are covered by
the generated functions. Given the 8-th ground-truth function 6C8 , we identify dependencies by performing
the Trigger Insertion procedure (Algorithm 1) and extracting expressions (such as function calls and
attribute accesses like “self._registered_updates”) that are marked with a trigger. These expressions
are considered dependencies as their definitions can be traced in the current repository using static analysis
tools like Jedi. Next, for the generated function ?A438 corresponding to 6C8 , we extract all expressions by
traversing its corresponding AST. We denote the identified dependencies in 6C8 and extracted expressions
in ?A438 as two sets, ��% (6C8 ) and �-% (?A438 ), respectively. The Dependency Coverage can be calculated
as follows, where # is the size of the test dataset:

�4?�>E =

∑#
8 |�-% (?A438 ) ∩ ��% (6C8 ) |∑#

8 |��% (6C8 ) |

• Static Validity Rate (ValRate): As repository-level dependencies can potentially introduce dependency
errors in generated functions, we introduce the Static Validity Rate metric (ValRate) to evaluate the
effectiveness of ToolGen in reducing dependency errors.This metric evaluates the proportion of generated
functions that successfully pass a static check for dependency errors, specifically no-member and undefined-
variable. To perform this evaluation, we incorporate the generated functions into their respective code
repositories and conduct static lint analysis using pylint [3]. Functions that do not exhibit syntax errors,
no-member , or undefined-variable errors are deemed statically valid. The Static Validity Rate can be
calculated as follows:

+0;'0C4 =
|{?A438≤# : ?A438 passes lint check}|

#

Execution-based Metric: To further assess the functional correctness of the generated functions, we also
employ a widely used execution-based metric involving running test cases.

4https://github.com/microsoft/CodeXGLUE
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Table 2. Evaluation results of similarity-based effectiveness. Δ indicates the metric improvement or reduction of ToolGen’s
variants compared to the baselines.

Approach
Similarity-based Metrics

BLEU-4 CodeBLEU EditSim ExactMatch

Vanilla-gpt 0.331 0.313 65.4% 4.2%

ToolGen-gpt 0.340
(Δ = +2.7%)

0.310
(Δ = −1.0%)

64.7%
(Δ = −1.1%)

4.7%
(Δ = +11.9%)

Vanilla-t5 0.341 0.289 63.9% 4.3%

ToolGen-t5 0.362
(Δ = +6.2%)

0.293
(Δ = +1.4%)

61.9%
(Δ = −3.1%)

5.5%
(Δ = +27.9%)

Vanilla-llama 0.408 0.360 67.9% 5.7%

ToolGen-llama
0.425

(Δ = +4.2%)
0.358

(Δ = −0.6%)
66.3%

(Δ = −2.4%)
6.9%

(Δ = +21.1%)

• Test Pass Rate (Pass@1): This metric calculates the ratio of generated functionally-correct functions
that pass all corresponding test cases. It is evaluated specifically on the CoderEval dataset, where test
cases and test scripts are provided.

5 RESULTS AND ANALYSES

5.1 RQ1: Similarity-based Effectiveness
The evaluation results of similarity-based metrics are presented in Table 2. When comparing the performance of
ToolGen’s variants and the three different base models, namely CodeGPT, CodeT5, and CodeLlama, we observe
that ToolGen achieves similarity scores comparable to the baselines.

To provide a detailed breakdown, when utilizing CodeGPT as the base model, ToolGen-gpt demonstrates
a 2.7% improvement in BLEU-4 and a 11.9% improvement in Exact Match compared to Vanilla-gpt . However,
it exhibits a 1.0% decrease in CodeBLEU and a 1.1% decrease in Edit Similarity. With the base model CodeT5,
ToolGen-t5 exhibits 6.2%, 1.4%, and 27.9% enhancements in BLEU-4, CodeBLEU, and Exact Match relative to
Vanilla-t5 but experiences a 3.1% decrease in Edit Similarity. In the case of the larger base model CodeLlama,
ToolGen-llama shows improvements of 4.2% and 21.1% in BLEU-4 and Exact Match compared to Vanilla-t5 but
encounters a 0.6% decrease in CodeBLEU and a 2.4% decrease in Edit Similarity.

Although the absolute improvements in Exact Match rate are not large (from 0.5% to 1.2%), considering the size
of the test set (e.g., 12,406 samples), the additional exactly matched functions range from 62 to 149. The variability
in ToolGen’s performance across BLEU-4 and CodeBLEU can be attributed to the tokenization methods used in
the calculations. For BLEU-4, before using the widely used utility script5, we first tokenize the generated function
and its corresponding ground-truth function using the tokenizer of the base code LLMs. In contrast, CodeBLEU
is calculated based on the original generated and ground-truth code using the utility script6 that employs a
simpler method, splitting functions into strings (e.g., “func(arg1,)”) based on spaces. This splitting method may
introduce inaccuracies in the statistics of matched n-grams, consequently affecting the CodeBLEU calculation.
For Edit Similarity, it is calculated at the character level, making it overly sensitive to semantics-insensitive
5https://github.com/microsoft/CodeXGLUE/blob/main/Text-Code/text-to-code/evaluator/bleu.py
6https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator/CodeBLEU
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Table 3. Evaluation results of dependency-based effectiveness. DepCov and ValRate represent Dependency Coverage and
Static Validity Rate, respectively. ValRate-dep represents the Static Validity Rate rate calculated only for functions containing
dependencies. Δ indicates the metric improvement or reduction of ToolGen’s variants compared to the baselines.

Approach
Dependency-based Metrics

DepCov ValRate ValRate-dep

Vanilla-gpt 8.7% 50.4% 46.5%

ToolGen-gpt 12.1%
(Δ = +39.1%)

79.5%
(Δ = +57.7%)

78.0%
(Δ = +67.7%)

Vanilla-t5 11.0% 47.3% 42.5%

ToolGen-t5 15.0%
(Δ = +36.4%)

70.6%
(Δ = +49.3%)

68.0%
(Δ = +60.0%)

Vanilla-llama 14.0% 49.7% 44.4%

ToolGen-llama
18.4%

(Δ = +31.4%)
72.0%

(Δ = +44.9%)
69.6%

(Δ = +56.8%)

elements like temporary variables. When two variables have different names, their similarity is much lower at
the character level than at the token level.

SUMMARY: ToolGen demonstrates competitive performance in similaritymetrics compared to the baselines
across various base models. It achieves improvements in BLEU-4 and Exact Match while exhibiting comparable
performance in CodeBLEU and Edit Similarity.

5.2 RQ2: Dependency-based Effectiveness
5.2.1 Dependency Coverage. Table 3 displays the evaluation results for repository-level Dependency Coverage
(DepCov). Notably, our approach ToolGen demonstrates significant superiority over the baselines across all
three base models (? � 0.01). Specifically, when employing the base models CodeGPT, CodeT5, and CodeLlama,
ToolGen surpasses the corresponding baselines in Dependency Coverage by 39.1%, 36.4%, and 31.4%, respectively.

These results underscore the effectiveness of the tool-integrated generation process in enhancing awareness
of repository-level dependencies, a challenge often unaddressed by the conventional code LLMs. For instance,
consider the incomplete function in Figure 1: in a straightforward CodeLlama generation, it fails to recognize
the valid attributes of “self”. However, through tool-integrated generation, ToolGen leverages Jedi to deduce
a list of completion suggestions, enabling it to select the most suitable one and cover target repository-level
dependencies, including the usage of user-defined functions and attributes.

Despite the considerable improvement in repository-level Dependency Coverage facilitated by our approach, it
is essential to acknowledge that the overall coverage remains limited. This limitation arises from the fact that
code LLMs generate function tokens sequentially from left to right. Consequently, errors tend to accumulate
as the token count increases due to the exposure bias problem [8, 11, 36]. This means that code LLMs often
make incorrect token predictions at certain generation steps and may not produce <COMP> tokens to trigger
autocompletion tools, especially for long functions.
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SUMMARY: Our approach, ToolGen, consistently outperforms the baselines in repository-level Dependency
Coverage across all three base models by ranging from 31.4% to 39.1%. These results highlight the effectiveness
of our tool-integrated generation process in addressing the crucial issue of enhancing awareness of repository-
level dependencies, which is often a challenge for conventional code LLMs in repository-level code generation.

5.2.2 Static Validity Rate. Table 3 also presents the evaluation results for Static Validity Rate (ValRate and
ValRate-dep) in repository-level lint analysis, with a particular focus on no-member and undefined-variable errors.
Remarkably, our approach, ToolGen, consistently exhibits significantly higher Static Validity Rate compared to the
baselines across all three base models (? � 0.01). Specifically, when employing the base models CodeGPT, CodeT5,
and CodeLlama, ToolGen increases the Static Validity Rate (ValRate) by 57.7%, 49.3%, and 44.9%, respectively.
When considering only the functions containing dependencies, ToolGen improves the Static Validity Rate
(ValRate-dep) by 67.7%, 60.0%, and 56.8%, respectively.

These results underscore the effectiveness of our tool-integrated generation process in mitigating the production
of invalid identifiers during code generation within a specific repository context. For instance, let’s revisit the
incomplete function in Figure 1: in a straightforward CodeLlama generation, it may predict a non-existent
attribute, such as “updates”, for “self”. In contrast, through our tool-integrated approach, only valid completion
suggestions inferred by Jedi are considered as candidates, thereby preventing numerous no-member and undefined-
variable errors.

SUMMARY: Our approach, ToolGen, consistently achieves significantly higher Static Validity Rate in
repository-level lint analysis compared to the baselines, with improvements ranging from 44.9% to 57.7%.These
results underscore the effectiveness of our tool-integrated generation process in mitigating the generation of
invalid identifiers, a common challenge faced by conventional code LLMs in the context of repository-level
code generation.

5.3 RQ3: Execution-based Effectiveness
Table 4 presents the detailed evaluation results for test case execution (Pass@1) on the 176 CoderEval coding
tasks.
Comparison to Vanilla baselines. Compared to the three Vanilla baselines, our approach ToolGen

generates 0, 2, and 3 additional functionally-correct functions, resulting in 0%, 40.0%, and 25.0% improvements in
Pass@1, respectively. Specifically, ToolGen-gpt improves the pass rate for file-runnable tasks, while reducing
pass rate for self-contained tasks; ToolGen-t5 improves pass rate for slib-runnable file-runnable tasks; ToolGen-
llama improves pass rate for self-contained, plib-runnable, and class-runnable tasks. These tasks require different
runnable-level dependencies (such as local variables and user-defined functions) to achieve correct functionality
in the code. The enhancements by ToolGen underscore the effectiveness of integrating autocompletion tools to
handle these dependencies.
Comparison to RepoCoder baselines. Overall, the RepoCoder baselines show unstable performance

across different base models. Specifically, compared to their respective Vanilla baselines, RepoCoder-gpt and
RepoCoder-t5 exhibit reductions or no improvement in test pass rates, while RepoCoder-llama shows significant
improvement. When compared to RepoCoder-gpt and RepoCoder-t5 , our ToolGen-gpt and ToolGen-t5 show
improvements in pass rates with 1 and 2 more functions passing the test cases, respectively. However, ToolGen-
llama exhibits a lower pass rate than RepoCoder-llama (15 vs. 19). These variations can be attributed to several
factors: CodeGPT and CodeT5 have fewer parameters (124 million and 220 million) and stricter token number
limitations (1,024 and 512), limiting their ability to process and understand retrieval-augmented prompts. In
contrast, CodeLlama, with more model parameters (7 billion) and support for longer token sequences (16,384
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Table 4. Evaluation results of execution-based effectiveness. self, slib, plib, class, file, and project represent self-contained,
slib-runnable, plib-runnable, class-runnable, file-runnable, and project-runnable, respectively. The numbers in brackets after
each runnable level indicate the corresponding number of tasks, while the numbers in brackets after the rates indicate the
number of generated functions that pass the test cases. In each base model group, the best results are highlighted in gray ,
except when all results are the same.

Approach
Execution-based Metric (Pass@1)

total (176) self (26) slib (23) plib (15) class (49) file (51) project (12)

Vanilla-gpt 3.4% (6) 7.7% (2) 4.3% (1) 6.7% (1) 2.0% (1) 2.0% (1) 0.0% (0)

ToolGen-gpt (ours) 3.4% (6) 3.8% (1) 4.3% (1) 6.7% (1) 2.0% (1) 3.9% (2) 0.0% (0)

RepoCoder-gpt 2.8% (5) 0.0% (0) 4.3% (1) 6.7% (1) 4.1% (2) 2.0% (1) 0.0% (0)

ragToolGen-gpt (ours) 2.8% (5) 0.0% (0) 4.3% (1) 6.7% (1) 4.1% (2) 2.0% (1) 0.0% (0)

Vanilla-t5 4.0% (7) 7.7% (2) 4.3% (1) 13.3% (2) 4.1% (2) 0.0% (0) 0.0% (0)

ToolGen-t5 (ours) 5.1% (9) 15.4% (4) 8.7% (2) 6.7% (1) 4.1% (2) 0.0% (0) 0.0% (0)

RepoCoder-t5 4.0% (7) 7.7% (2) 4.3% (1) 13.3% (2) 4.1% (2) 0.0% (0) 0.0% (0)

ragToolGen-t5 (ours) 5.1% (9) 15.4% (4) 8.7% (2) 6.7% (1) 4.1% (2) 0.0% (0) 0.0% (0)

Vanilla-llama 6.8% (12) 19.2% (5) 13.0% (3) 13.3% (2) 4.1% (2) 0.0% (0) 0.0% (0)

ToolGen-llama (ours) 8.5% (15) 23.1% (6) 13.0% (3) 20.0% (3) 4.1% (2) 2.0% (1) 0.0% (0)

RepoCoder-llama 10.8% (19) 26.9% (7) 17.4% (4) 0.0% (0) 10.2% (5) 2.0% (1) 16.7% (2)

ragToolGen-llama (ours) 10.8% (19) 34.6% (9) 8.7% (2) 6.7% (1) 6.1% (3) 0.0% (0) 33.3% (4)

tokens), allows RepoCoder-llama to achieve a higher pass rate than Vanilla-llama and ToolGen-llama due to
the benefits of RAG.

Integration with RAG. When integrating ToolGen with RAG, ragToolGen-gpt and ragToolGen-t5 do not
show improvement, while ragToolGen-llama exhibits breakthroughs for project-runnable tasks, with 4 more
generated functions passing the test cases. However, the overall pass rate remains unchanged after integrating
RAG, showing different advantages and disadvantages of RAG integration for various runnable-level dependencies.

SUMMARY: Our approach, ToolGen, outperforms or matches the three Vanilla baselines (Vanilla-gpt ,
Vanilla-t5 , and Vanilla-llama) by generating 0, 2, and 3 more functionally correct functions, achieving
0%, 40.0%, and 25.0% improvements in Pass@1, respectively. Compared to RAG-based RepoCoder baselines,
both ToolGen and RepoCoder have their own advantages and disadvantages for different base models and
runnable-level dependencies. Additionally, our decoding-stage tool integration approach shows potential
when combined with prompt-level RAG techniques for addressing certain types of dependencies.
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Fig. 6. Box Plot of Response Latency.

5.4 RQ4: Efficiency
Figure 6 illustrates the efficiency evaluation conducted on a single NVIDIA H100 Tensor Core GPU (80GB GPU
Memory) without mini-batches (i.e., batch size is 1). Our approach exhibits approximately twice the average
generation time for the 176 tasks in the CoderEval dataset, showing 0.64, 0.87, and 2.36 seconds across the three
base models. Note that using the same base models, RepoCoder-gpt , RepoCoder-t5 , and RepoCoder-llama
experience latencies of 0.80, 1.09, and 4.06 seconds, respectively. This indicates that RepoCoder incurs a higher
latency overhead compared to ToolGen, as it significantly increases the number of input tokens, leading to
substantially higher computational costs.

The high efficiency of our tool integration is attributed to the offline trigger insertion and fine-tuning. The
autocompletion tool is triggered only when the fine-tuned models predict the trigger token <COMP>, significantly
reducing unnecessary tool invocations. Specifically, the fine-tuned CodeGPT, CodeT5, and CodeLlama predict an
average of 5.02, 6.24, and 7.05 <COMP> tokens per task, respectively, which is much fewer than the average function
length. Additionally, during the generation of a function, autocompletion is often triggered multiple times for
the same objects (e.g., “self”); we maintain a cache to recall completion suggestions for previously visited
objects, thereby avoiding repeated tool invocations for the same objects. While ToolGen shows improvements
in effectiveness with only an acceptable increase in latency, further efficiency optimizations are necessary for
more practical application. For example, implementing parallel background processes to inspect object creation
during decoding and preemptively invoking autocompletion tools to cache potential candidates. When a <COMP>

is predicted, the cached candidates can be retrieved instantly, reducing response time.

SUMMARY: Our tool-integrated generation approach, ToolGen, demonstrates high efficiency in repository-
level code generation, with latency ranging from 0.63 to 2.34 seconds for generating each function. This
efficiency is attributed to predicting the trigger token <COMP> and implementing a caching mechanism for
completion suggestions.
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ToolGen-llamaVanilla-llamaGround-TruthDescription

no-member error
'Counter' instance has no 'value' member

pass lint and  test casesdep: self._count:
a user-defined attibute

dep: cls._get_service:
a user-defined function
dep: ServiceName.PLUGINS_MANAGER
a user-defined attribute

fail lint and test case
dep: cls._get_service
dep: ServiceName.PLUGINS_MANAGER

fail lint and test case
dep: cls._get_service
dep: ServiceName.PLUGINS_MANAGER

incomplete functionality description
The description suggests changing
w:st=" to w-st=", but the ground-truth
code handles all strings matching the
pattern \bw:[a-z]{1,}=\".

fail some test cases
It only changes w:st=" to w-st=" and does
not handle all strings matching the
pattern \bw:[a-z]{1,}=\".

fail some test cases
It only changes w:st=" to w-st=" and
does not handle all strings matching the
pattern \bw:[a-z]{1,}=\".

Fig. 7. Case study of three specific examples. Additional explanatory notes are marked with gray boxes . In the notes, “dep:
xxx” denotes a dependency necessary in the generated code.

5.5 RQ5: Generalizability
Based on the results presented in Table 2 and Table 3, our tool-integrated generation approach consistently
enhances performance in dependency-based metrics while maintaining comparable similarity-based metrics
across various model architectures (decoder-only and encoder-decoder) and parameter scales (ranging from 124
million to 7 billion). According to Table 4 and Figure 6, our approach improves or maintains execution-based
metrics across the base models, with a consistent and acceptable additional latency overhead.

SUMMARY: Our tool-integrated generation approach consistently improves or maintains dependency-based
and execution-based metrics while achieving competitive similarity-based metrics across various model
architectures and parameter scales. This suggests that our approach is versatile and has the potential for
broader applicability with other base models in repository-level code generation.

6 DISCUSSION

6.1 Case Study
Figure 7 depicts three specific examples using Vanilla-llama and ToolGen-llama. Each row corresponds to an
example, presenting the description, ground truth, code generated by Vanilla-llama, and code generated by
ToolGen-llama.

Example 1: The code generated by ToolGen-llama successfully predicts the member “_value” in the class
“Counter”, while Vanilla-llama incorrectly predicts an undefined member “value”, resulting in a no-member
error. This difference can be attributed to ToolGen’s integration of the autocompletion tool, which helps the
code LLMs recognize necessary dependencies like user-defined attributes/members.
Example 2: Both Vanilla-llama and ToolGen-llama generate incorrect code that fails some test cases. After

reviewing the description and the ground-truth, we find that the description is incomplete in expressing the
desired functionality. As noted, the description only mentions changing “w:st=''” to “w-st=''”, but the actual
desired functionality in the ground-truth is to handle all strings matching the pattern “\bw:[a-z]{1,}=\''”.
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Both Vanilla-llama and ToolGen-llama follow the description and generate code that satisfies this incomplete
functionality. This finding highlights the challenges posed by low-quality descriptions in real-world generation
scenarios and reveals quality issues in existing benchmarks.
Example 3: There are two crucial dependencies, namely “cls._get_service()” and

“ServiceName.PLUGINS_MANAGER”, necessary to realize the required functionality. Vanilla-llama fails
to predict both dependencies and instead outputs non-existent dependencies like “cls._plugins_manager”
and “PluginManager()”, causing the generated code to fail lint checks and test cases. For ToolGen-
llama, although it successfully predicts the dependency “cls._get_service()”, it fails to predict
“ServiceName.PLUGINS_MANAGER” because the model chooses “cls” instead of “ServiceName” when
starting predicting the argument for “cls._get_service()”. This misleads the generation in an incorrect
direction, resulting in the failure of the final code. This example also highlights the challenges of applying code
LLMs in practical code generation, even when integrating autocompletion tools to avoid certain dependency
issues. Introducing an incorrect token at any critical step in the generation process can result in the production
of erroneous code.

6.2 Limitations
Static Autocompletion Tools for Dynamically Typed Programming Languages: Currently, our implementation
of ToolGen is specific to Python, a dynamically typed programming language. However, the autocompletion
tools used in ToolGen rely on static analysis, which can sometimes fail to trigger for certain repository-level
dependencies. For instance, when the type of a function parameter cannot be explicitly inferred through static
analysis, autocompletion tools may struggle to deduce attributes defined within the argument type. In the future,
we plan to explore the integration of comprehensive type inference tools, such as learning-based tools, into the
code generation process alongside autocompletion tools to enhance Python code generation.

Greedy Next Token Prediction in Generation Process: During the generation process, we employ a greedy strategy
for next token prediction, where the token with the highest probability is selected using the argmax function.
This greedy prediction strategy can occasionally lead the model to choose sub-optimal tokens for subsequent
steps, resulting in code that may not be of the high quality. To address this issue, we intend to investigate the
incorporation of techniques such as beam search and other advanced decoding methods into our tool-integrated
generation process to mitigate the challenges posed by greedy prediction.

Dependency-based Evaluation Metrics: In the computation of the two repository-level evaluation metrics, namely
Dependency Coverage and Static Validity Rate, we employ static analysis to identify target expressions and perform
lint examinations. Similar to the autocompletion tools, these static tools may introduce a degree of inaccuracy into
the calculated metrics. However, it is essential to note that this does not significantly impact the demonstrated
effectiveness of ToolGen, as the baseline metrics are also determined using the same static analysis.
Integration and Comparison with SOTA Closed-source LLMs: Our approach can be applied to any encoder-

decoder or decoder-only models. However, for the most state-of-the-art (SOTA) LLMs like GPT-3.5 and GPT-4,
integrating tool-integrated decoding process faces challenges due to their closed-source nature. Although GPT-3.5
and GPT-4 can be fine-tuned remotely via OpenAI’s fine-tuning platform7, the process requires significant
computational resources, and the models’ internal decoding process cannot be modified or controlled. In the
future, we may explore the possibility of integrating autocompletion tools into these closed-source LLMs through
a fully prompt-based approach. In our evaluation, we do not compare ToolGen with these SOTA closed-source
LLMs, as our goal is to assess the effectiveness of integrating autocompletion tools for repository-level code
generation. Therefore, we focus on comparing the performance of ToolGen, Vanilla, and RepoCoder under the
same base models.

7https://platform.openai.com/finetune
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6.3 Threats to Validity
Internal Threats: The first internal threat pertains to potential data quality issues common in learning-based
approaches. To mitigate this threat, we construct our augmented dataset and evaluation benchmark dataset using
the widely adopted CodeSearchNet dataset, which serves as a reliable source for pretraining and evaluating
various code models. Another internal threat pertains to the potential data leakage for CodeLlama, as the code
repositories in the benchmark dataset may have been encountered by CodeLlama during its pretraining phase.
However, our generalizability evaluation (RQ5) provides evidence of consistent performance across the three
ToolGen variants, suggesting that the improvements achieved by ToolGen-llama in repository-level code
generation are not attributed to data leakage.
External Threats: Our implementation and evaluation of ToolGen are specific to the Python programming

language. As a result, the findings may not be generalizable to other programming languages. Exploring the
tool-integrated generation process for different languages is a valuable direction for future research.

7 RELATED WORK

7.1 Code Generation
Code generation has long been a central focus in the field of software engineering. Recent developments
have introduced a range of large language models for code (code LLMs), including Codex [15], CodeT5 [54],
CodeT5+ [53], InCoder [21], AlphaCode [29], CodeGen [33], and CodeLlama [37], built upon the Transformer
model architecture [45]. These models, either pretrained or fine-tuned on extensive code corpora, have the
capability to automatically generate code based on provided natural language descriptions.

While these code LLMs have demonstrated significant effectiveness in generating standalone functions on
existing benchmarks like HumanEval [15] and MBPP [9], they face substantial challenges when tasked with
generating real-world functions within code repositories. The primary challenge stems from their lack of aware-
ness of repository-level dependencies, such as user-defined functions and attributes, during the code generation
process [56]. To address these challenges, researchers have proposed prompt engineering approaches to make
code LLMs aware of repository-level dependencies. Shrivastava et al. [39] introduced the repository-level prompt
generator, a framework for generating context-aware prompts without requiring access to the weights of the
LLM. Bairi et al. [10] presented CodePlan, a task-agnostic framework that treats repository-level coding as a
planning problem, using innovative techniques to generate multi-step code edits while considering context from
the entire codebase, previous changes, and specific instructions.

In this study, we tackle the challenges associatedwith repository-level code generation by seamlessly integrating
autocompletion tools into the generation process of code LLMs.

7.2 Incorporating External Tools into LLMs
Recent research [16, 18, 22, 26, 27, 32, 35, 38, 40, 42, 61] has explored the integration of external tools (e.g., search
engines, web browsers, calculators, and python interpreters) into the LLM generation process, aiming to address
their limitations in certain generation scenarios. For instance, Schick et al. propose ToolFormer [38], which
augments datasets to instruct LLMs on invoking existing arithmetic calculators, effectively reducing errors in
generated text related to arithmetic calculations. Building upon this idea, Zhang et al. introduce ToolCoder [61],
designed to teach LLMs how to utilize information-retrieval-based (IR-based) API search tools during code
generation. While ToolCoder is effective in generating functionally correct standalone functions, it falls short
in addressing repository-level dependencies, limiting its ability to resolve dependency errors. More relevant
examples are Repilot [58], STALL+ [30], and MGD [6], which utilize code completion tools to filter out impractical
suggestions made by LLMs, focusing on generating API/line-level code completions and valid bug-fix patches
rather than entire functions.
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In this paper, we integrate program-analysis-based autocompletion tools into the code LLM generation process
to facilitate repository-level code generation.

8 CONCLUSION
We present ToolGen, an approach that seamlessly integrates autocompletion tools into the code LLM generation
process to effectively address repository-level dependencies. ToolGen encompasses two crucial phases: Data
Augmentation and Model Fine-tuning, and Tool-integrated Code Generation. Our comprehensive evaluation
showcases ToolGen’s improvements in the two introduced dependency-level metrics and a widely used execution-
based metric across three distinct code LLMs, while also demonstrating its competitiveness in widely-recognized
similarity metrics. ToolGen also demonstrates high efficiency in repository-level code generation, due to the
offline fine-tuning with trigger insertion. Moreover, our generalizability evaluation reaffirms ToolGen’s consistent
performance when applied to diverse code LLMs, including various model architectures and scales.

9 DATA AVAILABILITY
All code and data can be found at our replication package [4].
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