
SoVAR: Building Generalizable Scenarios from Accident Reports
for Autonomous Driving Testing

An Guo
guoan218@smail.nju.edu.cn

State Key Laboratory for Novel
Software Technology
Nanjing University

Nanjing 210023, China

Yuan Zhou∗
yuanzhou@zstu.edu.cn

School of Computer Science and
Technology

Zhejiang Sci-Tech University
Hangzhou 310018, China

Haoxiang Tian
tianhaoxiang20@otcaix.iscas.ac.cn
College of Computing and Data

Science
Nanyang Technological University

Singapore

Chunrong Fang∗
fangchunrong@nju.edu.cn

State Key Laboratory for Novel
Software Technology
Nanjing University

Nanjing 210023, China

Yunjian Sun
sunyunjian.syj@smail.nju.edu.cn
State Key Laboratory for Novel

Software Technology
Nanjing University

Nanjing 210023, China

Weisong Sun
weisong.sun@ntu.edu.sg

College of Computing and Data
Science

Nanyang Technological University
Singapore

Xinyu Gao
xinyugao@smail.nju.edu.cn

State Key Laboratory for Novel
Software Technology
Nanjing University

Nanjing 210023, China

Anh Tuan Luu
anhtuan.luu@ntu.edu.sg

College of Computing and Data
Science

Nanyang Technological University
Singapore

Yang Liu
yangliu@ntu.edu.sg

College of Computing and Data
Science

Nanyang Technological University
Singapore

Zhenyu Chen∗
zychen@nju.edu.cn

State Key Laboratory for Novel
Software Technology
Nanjing University

Nanjing 210023, China

Abstract
Autonomous driving systems (ADSs) have undergone remarkable
development and are increasingly employed in safety-critical ap-
plications. However, recently reported data on fatal accidents in-
volving ADSs suggests that the desired level of safety has not yet
been fully achieved. Consequently, there is a growing need for
more comprehensive and targeted testing approaches to ensure
safe driving. Scenarios from real-world accident reports provide
valuable resources for ADS testing, including critical scenarios
and high-quality seeds. However, existing scenario reconstruction
methods from accident reports often exhibit limited accuracy in

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695037

information extraction. Moreover, due to the diversity and complex-
ity of road environments, matching current accident information
with the simulation map data for reconstruction poses significant
challenges.

In this paper, we design and implement SoVAR, a tool for auto-
matically generating road-generalizable scenarios from accident re-
ports. SoVAR utilizes well-designed prompts with linguistic patterns
to guide the large language model (LLM) in extracting accident in-
formation from textual data. Subsequently, it formulates and solves
accident-related constraints in conjunction with the extracted acci-
dent information to generate accident trajectories. Finally, SoVAR
reconstructs accident scenarios on various map structures and con-
verts them into test scenarios to evaluate its capability to detect
defects in industrial ADSs. We experiment with SoVAR, using the
accident reports from the National Highway Traffic Safety Admin-
istration’s (NHTSA) database to generate test scenarios for the
industrial-grade ADS Apollo. The experimental findings demon-
strate that SoVAR can effectively generate generalized accident
scenarios across different road structures. Furthermore, the results
confirm that SoVAR identified 5 distinct safety violation types that
contributed to the crash of Baidu Apollo.

ar
X

iv
:2

40
9.

08
08

1v
1 

 [
cs

.S
E

] 
 1

2 
Se

p 
20

24

https://orcid.org/0009-0005-8661-6133
https://orcid.org/0000-0002-1583-7570
https://orcid.org/0000-0001-9132-9319
https://orcid.org/0000-0002-9930-7111
https://orcid.org/0009-0005-2259-0413
https://orcid.org/0000-0001-9236-8264
https://orcid.org/0009-0004-7135-1833
https://orcid.org/0000-0001-6062-207X
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0002-9592-7022
https://doi.org/10.1145/3691620.3695037


ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA An Guo et al.

CCS Concepts
• Software and its engineering→ Software testing and debug-
ging.

Keywords
Software testing, Automatic test generation, Constraint solving,
Autonomous driving system

ACM Reference Format:
An Guo, Yuan Zhou, Haoxiang Tian, Chunrong Fang, Yunjian Sun, Weisong
Sun, Xinyu Gao, Anh Tuan Luu, Yang Liu, and Zhenyu Chen. 2024. SoVAR:
Building Generalizable Scenarios from Accident Reports for Autonomous
Driving Testing. In 39th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’24), October 27-November 1, 2024, Sacramento, CA,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3691620.
3695037

1 Introduction
The advent of autonomous driving technology has ushered in a new
era of transportation, promising increased safety, efficiency, and
convenience [27, 50]. However, the occurrence of crashes involving
autonomous driving vehicles, including those that have resulted in
fatalities [1, 4], serves as evidence that autonomous driving is not
currently as safe as it is marketed to be. In many instances, these
crashes can be attributed to defective software, highlighting the ur-
gent requirement for an enhanced approach to testing autonomous
driving software [33].

As one of the most critical quality assurance techniques, ADS
testing has attracted the attention of both academia and indus-
try [20, 30, 54]. The key testing techniques for ADSs can be classified
into two categories: road testing and simulation testing. Road test-
ing involves testing specific driving scenarios in closed autonomous
vehicle proving grounds [33] or monitoring autonomous vehicles
in real traffic [53], but this approach requires a long period and
extensive resources. Additionally, the acquisition of diverse critical
test data that encompasses a wide range of realistic usage scenarios
presents significant challenges for testers. Therefore, high-fidelity
simulation testing methods have become imperative to the develop-
ment and validation of autonomous driving technologies [21, 43]. It
conducts ADS testing in simulation platforms, such as LGSVL [38]
and CARLA [15]. One essential aspect of ADS simulation testing is
the identification and construction of critical scenarios that may
lead to accidents.

Software engineering researchers have proposed utilizing real-
life accident cases to generate critical test scenarios [9, 16–18, 51].
The main insight is that real car accidents present critical situations
that pose significant challenges for self-driving cars. Consequently,
recent research has mainly focused on scenario reconstruction from
different driving data sources. This includes utilizing textual de-
scriptions [17], accident sketches [18], sensor data [16], and video
recordings [9, 51] to generate essential scenarios. Compared to sen-
sor data and video recordings of critical cases, textual descriptions
of crashes are more accessible and abundant [18, 24]. Accident re-
port analysis approaches offer more comprehensive insights into
collisions, including intricate details like weather, lighting, and road
conditions, which are visually challenging to represent. However,
the accuracy of information extracted through current scenario

reconstruction methods based on accident reports is limited [17].
Furthermore, current methods can reproduce the accident scenarios
only on the same road structure described in the accident report. It
limits the application to simulation-based ADS testing because the
road structures in the simulation may differ from those described
in the accident reports. Reproducing accident scenarios on different
roads is challenging and overwhelming [8, 45].

To bridge this gap, we propose an automatic and universal
method, SoVAR, to reconstruct accident scenarios on different road
structures from accident reports. The primary objective of SoVAR
is to automatically reconstruct accident scenarios from accident re-
ports on different roads within the simulation environment, which
can then be used as initial seeds for ADS testing. SoVAR first lever-
ages carefully designed linguistic prompt patterns to guide the LLM
in accurately extracting environment, road, and object movement
information. Based on the extracted information and the roads to
reconstruct the scenarios, SoVAR formulates the constraints for
the accident scenario. By solving these constraints with constraint
solvers, we can generate the accident trajectories of the accident
participants and finally reconstruct the accident scenarios. There-
fore, the generated scenarios can be executed on the required map.
Furthermore, to use these scenarios for ADS testing, SoVAR trans-
forms them into testing scenarios by identifying the ego vehicle
(i.e., the vehicle controlled by the ADS under testing) and the NPC
(non-player character) vehicles. The NPC vehicles will follow the
computed trajectories, while the ego vehicle is controlled by the
ADS instead of following a predetermined trajectory.

To evaluate the effectiveness of SoVAR, we reconstruct scenarios
based on well-known NHTSA’s accident reports [37] and the San
Francisco map provided by the LGSVL simulator. The generated
scenarios are then used to test Baidu Apollo [2]. Our experimental
findings demonstrate that the accident information extraction ap-
proach of SoVAR outperforms all baseline methods. Furthermore,
subsequent results highlight that SoVAR successfully generated
road-generalizable scenarios across different road structures com-
pared to the existing textual accident report reconstruction method.
Additionally, our experiments reveal that converting reconstructed
scenarios into test cases effectively identified 5 distinct types of
safety violation behaviors in the industrial-grade software Apollo.

The main contributions of this paper are summarized as follows:
• Method. We propose an innovative method for automatically
reconstructing crash scenarios from accident reports and testing
ADS. Our method enhances LLM’s ability to accurately extract
textual information by designing linguistic patterns for prompts.
We then generate driving trajectories that align with desired road
structures by solving a set of driving constraints.
• Tool. We implement the proposed approach into the automated
testing tool, SoVAR. To support the open science community, we
have made the source code available1 and released the scenarios
that led to the ADS collisions.
• Study.We utilize SoVAR to assess the industry-grade ADS Baidu
Apollo and find fatal collisions. The results demonstrate that, com-
pared with state-of-the-art scenario reconstruction techniques,
our method can extract accident information more accurately
and generate generalized accident scenarios that can adapt to

1https://github.com/meng2180/SoVAR

https://doi.org/10.1145/3691620.3695037
https://doi.org/10.1145/3691620.3695037


SoVAR: Building Generalizable Scenarios from Accident Reports for Autonomous Driving Testing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

𝑹𝟏

𝑹𝟐

𝑹𝟏

𝑹𝟐 𝑷

𝑷

𝟐𝑳

𝑳

𝟒𝑳

𝟐𝑳

𝑳

𝟐𝑳
𝑷′

（a） （b）

Figure 1: Amotivating example of reconstructing an accident
scenario on different road structures.

different road structures. Furthermore, our approach can be used
for ADS testing and to identify various safety violations in ADS.

2 Background
2.1 Motivation
In the real world, the autonomous vehicle industry typically em-
ploys simulation-based testing, evaluation, and validation as the
first step, followed by testing in controlled environments (such as
closed roads and test sites), and finally progressing to testing in
open road configurations [26]. During the simulation testing phase,
where autonomous vehicles encounter unknown scenarios, effi-
ciently constructing challenging scenarios becomes a top priority.
To address this need, several academic institutions [12, 21, 44, 55]
and companies [22, 23] have developed testing platforms that gen-
erate possible combinations of scenarios in an initial configuration,
using only the necessary initial parameters and variables. Recon-
structing scenarios from real accident reports aims to generate
initial scenarios capable of detecting ADS defects. However, there
are currently two main challenges in obtaining key information
and performing scenario reconstruction:

Challenge 1. Accident reports encompass substantial informa-
tion regarding the road environment and vehicle trajectories amidst
traffic accidents [17]. Nevertheless, the extraction of accident in-
formation encounters significant challenges. Off-the-shelf natural
language processing (NLP) tools do not exhibit satisfactory per-
formance due to the inclusion of traffic jargon and non-standard
phrase structures in accident report [18].

Challenge 2. ADS simulation testing is usually conducted in a
simulator with different maps. After extracting information from
the accident report, reconstructing the accident scenario necessi-
tates matching the road structures on the map to be tested in the
simulator. However, this task poses challenges for ADS engineers.
On the one hand, the map covers all the key static properties of
complex roads [3, 32], including road type, road size (length and
width), etc. It is extremely difficult to find roads that fully match
the extracted information when reproducing the scenario within
the map to be tested [8, 45].On the other hand, it is necessary to
test multiple roads on the map because collisions often occur in
similar road environments, thereby challenging the ability to adapt
to a specific map. The current method [17] does not include a mech-
anism to adapt the generated accident trajectory to the map. As
shown in Figure 1, the accident that occurred in Figure 1(a) can also
occur on the road in Figure 1(b). However, directly reconstructing
the original trajectory on the right road cannot replay the accident.
The vehicle turns left along the fixed trajectory 𝑃 to the road 𝑅1

with a width of 𝐿. When the road width becomes 2𝐿, the vehicle
turns left along the same trajectory 𝑃 to the reverse road 𝑅2 with a
width of 2𝐿, which is inconsistent with the expected trajectory P’
and alters the semantics of the accident scenario (turn left to R1 and
go straight -> turn left to R2 and retrograde). Therefore, planning a
trajectory compatible with the simulation map during the scenario
reconstruction process is necessary.

Based on the aforementioned challenges, we leverage LLMs to
extract accident information and implement a suitable linguistic
pattern prompting strategy to enhance extraction effectiveness.
Additionally, we employ a constraint-solving strategy to generate
trajectories of traffic participants, ensuring reproducibility on roads
with varying lengths and widths, as well as different road types
such as intersections and T-junctions.

2.2 Large Language Models for Textual
Understanding

Large Language Models [28, 52] (LLMs) have gained prominence in
recent years, demonstrating comparable or superior performance
to humans in various NLP tasks [29], highlighting their ability to
comprehend, generate, and interpret text. LLMs are sophisticated
language models characterized by their massive parameter sizes
and exceptional learning capabilities. Currently, LLMs are primarily
employed through the utilization of prompts, which serve as concise
cues or instructions that direct the model’s output. This approach
is commonly referred to as prompt-based learning.

In prompt-based learning, a pre-trained language model is op-
timized for various tasks through priming on natural language
prompts [34]. These prompts consist of text segments that are com-
bined with an input and then used to generate an output for the
given task. This approach has proven effective for few-shot and
zero-shot learning in numerous general-domain tasks. Recent re-
search has shown that large language models exhibit promising
results in the few-shot setting, occasionally outperforming pre-
vious approaches that utilize fine-tuned models [11]. The Chat-
GPT [49] (Chat Generative Pre-trained Transformer) from OpenAI,
has billions of parameters and is trained on a vast dataset encom-
passing textual understanding. Directly using GPT to understand
complex text has shown mediocre performance; therefore, appro-
priate prompt patterns and rules need to be designed to achieve
optimal performance in downstream tasks.

In this paper, we employ GPT-4 [5] to extract information regard-
ing driving accidents. Furthermore, we design linguistic patterns
for information extraction prompts to facilitate GPT-4’s rapid adap-
tation to the task of extracting information from accident reports.

3 Approach
In this section, we present the design and implementation of SoVAR,
a tool devised for automatically reconstructing crash scenarios from
accident reports and testing ADS. SoVAR consists of three steps to
obtain simulation-based tests: information extraction, trajectory
planning, and simulation and test generation, as illustrated in Fig-
ure 2. According to the layer-based scenario definition [7], SoVAR
initially abstracts the accident scenario into three layers: the road
network and traffic guidance objects, the environmental conditions,
and the dynamic objects. It then leverages an LLM to systematically



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA An Guo et al.

Simulated Crash Test Cases

Constriants TrajectoriesSolver

Step 3: Simulation & Test Generation

Step 2: Trajectory PlanningStep 1: Information Extraction

ADS Quality Check

Driving Actions

…
Accident 
Report

LLM

Extracted Information
Linguistic 
Patterns

Prompting

Figure 2: The overview of SoVAR.

extract information about accident-influencing factors from the
accident report, organizing the information layer by layer. Follow-
ing this, SoVAR establishes constraints on the pre-accident driving
actions of traffic participants and employs a constraint solver to
generate trajectories that comply with the specified constraints
outlined in the accident report. Subsequently, the trajectories gen-
erated along with the extracted environment and road information
are inputted into the driving simulator to reconstruct the car ac-
cident scenario. Finally, in the evaluation phase, SoVAR converts
the generated simulation scenarios into test cases that include test
oracles. These test cases are then inputted into the ADS. SoVAR
checks whether the ADS under test successfully reaches its final
expected position without encountering any crashes.

3.1 Information Extraction
According to the official general standards [47] for recording ac-
cident reports issued by the U.S. Department of Transportation,
accident reports usually encompass valuable information regard-
ing the road environment and vehicle trajectories. To understand
complex sentence structures and traffic terminology in these texts,
SoVAR leverages the LLM to extract this information. During in-
formation extraction, SoVAR incrementally parses the narrative
of the car crash and accumulates the information about weather,
lighting, roads, and vehicles into a data structure that forms the
abstract of a car crash. While LLM demonstrates excellence in in-
formation extraction tasks, its performance can be significantly
influenced by the quality of its prompt. Specifically, we need to
design an appropriate prompt that precisely describes what needs
to be queried or requested to enhance the extraction accuracy and
effectiveness of the LLM. Section 3.1.1 outlines the information that
will be extracted, while Section 3.1.2 details how we organize this
information into a format that LLM can better comprehend.

3.1.1 Layer-based Accident Abstract Representation. SoVAR
only needs the descriptive text of the accident to extract informa-
tion, without relying on additional data. Consistent with current
work in scenario reconstruction [17, 51], SoVAR concentrates on
the primary crash-contributing factors, namely lighting, weather,
roads, and vehicle movements. It directly extracts information using
LLM without introducing new information. To abstractly represent
the accident information and organize it into a semantic structure
that can be understood by the LLM, we present the extracted in-
formation in a hierarchical representation [40], divided into three

layers: road, environment, and dynamic objects. Table 1 shows
detailed descriptions and examples of the extracted attributes. If
information is missing from an accident report, it indicates that the
missing details are not crucial to the accident. SoVAR demonstrates
strong versatility because it automatically assigns default values
when necessary.

Environmental Conditions. The environmental condition
layer encompasses weather and light conditions. Weather condi-
tions (Weather) include factors such as rain, fog, snow, and others.
Light conditions (Lighting) pertain to the lighting conditions on
the road, typically brighter during the day and darker at night.
Additionally, lighting may be enhanced by the street lights.

Road Network and Traffic Guidance. This layer describes the
road network and the traffic signs used for guidance on the road.
Road represents the geographical context of a crash, including the
type of road where the accident occurred (CollisionLocation) and
the number of lanes on the relevant roads (LaneNum). Additionally,
SoVAR extracts information about the speed limit (SpeedLimit)
of the road to reconstruct the speed constraints applicable to the
location of the accident.

Dynamic Objects. This layer contains information about the
striker and victim involved in the crash and the moving actions that
led to the crash. SoVAR extracts information regarding the number
of traffic participants (ParticipantsNumber) involved in simultane-
ous collisions and identifies the type of collision. The collision type
information (CrashType) specifies the angle at which the traffic
participants collided, including three types of collisions: rear-end
collision, frontal collision, and front-to-side collision. For each car
involved in the accident, SoVAR extracts the status of each vehicle,
including the initial running lane of the vehicle (RunningLanes), the
initial running direction of the vehicle (DrivingDirections), and the
vehicle’s behavior before the crash (DrivingActions). Specifically,
vehicle behaviors describe the regular and abnormal actions [35]
taken by the vehicle. Regular driving actions include U-turn, stop,
drive into roads, vehicle cross, turn left, turn right, follow lane, and
change lane. Abnormal driving actions include driving off the road
and retrograde. Pedestrians involved in the accident are considered
victims, and SoVAR constructs pedestrian cross and pedestrian walk
actions for them.

3.1.2 Linguistic Patterns of Information Extraction Prompt.
With the information to be extracted, we design linguistic patterns
to generate prompts for the LLM. To design the patterns, each of the
three annotators is tasked with writing a prompt sentence following
the regular prompt template [13, 19]. Subsequently, we assess the
impact of accident information extraction. Using these prompt sen-
tences, the three annotators conduct card sorting [41] and engage
in discussions to derive linguistic patterns. As illustrated in Table 2,
this process results in three linguistic patterns corresponding to
the three sub-types of information outlined in Table 1. We show a
simplified sample template for each linguistic pattern.

SoVAR extracts accident information layer by layer using the
prompt patterns designed in Table 2. For each linguistic pattern, it
first explains the meaning of each attribute to help LLM understand
the extracted information. Additionally, the pattern includes heuris-
tic rules to guide LLM in producing accurate results. For example,
if a car intends to perform a certain action but a collision occurs



SoVAR: Building Generalizable Scenarios from Accident Reports for Autonomous Driving Testing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: Extracted accident information description and examples.
Id Attribute Description Examples

Accident context- Environment Conditions information

1 Weather Weather conditions at the time of the accident Weather="Cloudy"
2 Lighting Lighting conditions at the time of the accident Lighting="Dark"

Accident context- RoadNetwork and Traffic Guidance information

3 LaneNum Total number of lanes on the road where the accident occurred LaneNum="4"
4 CollisionLocation Type of road on which the accident occurred CollisionLocation="T-junction"
5 SpeedLimit Speed limit for the road on which the car is travelling SpeedLimit="60"

Accident context- Dynamic Object information

6 DrivingActions Actions of traffic participants before the accident DrivingActions=["P1:[turn right,...]","P2:[follow lane"...]",...]
7 CrashType Type of collision between the attacker and the victim at the time of the accident CrashType="Rear-End"
8 DrivingDirections Initial direction of travel for each traffic participant DrivingDirections=["P1:westbound","P2:southbound"...]
9 RunningLanes The initial lane position of each traffic participant RunningLanes=["P1:1","P2:2"...]
10 ParticipantsNumber Total number of traffic participants ParticipantsNumber="2"

Table 2: The example of linguistic patterns for information extraction prompts.

Id Pattern type Sample of linguistic patterns/rules

1 Environment conditions information
You should help me extract environmental conditions. The answer includes <Weather> and <Light-
ing>. · · · For the <Weather>, it means the weather conditions when the accident happened· · · .
· · · If it’s rainy when the accident happened, "rainy" should be added into the <Weather>· · · .

2 RoadNetwork and Traffic Guidance

You should help me extract roadnetwork and traffic guidance information. The answer includes
<CollisionLocation>,<LaneNum>, and <SpeedLimit>. · · · For the <CollisionLocation>, it means
the type of road on which the accident occurred· · · . · · · If the accident happened near or at an
intersection or intersecting roadway, the answer of <CollisionLocation> is "intersection"· · · .

3 Dynamic Object

You should help me extract dynamic object information. The answer includes <ParticipantsNum-
ber>, <CrashType>, <DrivingDirections>, <RunningLanes> and <DrivingActions>. · · · For the
<DrivingActions>· · · , if the car proceeds to do an intended action but does not do actually, such
as intending to turn right, this intended action must not be added to the <DrivingActions>· · · .

before the action is executed, the intended driving action should
not be extracted. Finally, we utilize few-shot learning to ensure
the LLM’s output conforms to our expected standards. Therefore,
taking the linguistic patterns as references, the trajectory planning
module can directly use the output to build trajectory constraints,
which will be described in the next section.

3.2 Trajectory Planning
Accurately planning the trajectories of traffic accident participants
that satisfy the extracted information and match the target roads
is an essential process in accident scenario reconstruction [17, 18].
A trajectory is an ordered sequence of waypoints, i.e., positions
and velocities a traffic participant must follow. For example, the
𝑖𝑡ℎ waypoint of the 𝑏𝑡ℎ action of vehicle 𝑋 can be represented as
𝑋𝑏
𝑖
= (𝑥,𝑦, 𝑣), where 𝑥,𝑦, 𝑣 are the x-coordinate, y coordinate, and

velocity, respectively. In addition, we introduce 𝑝𝑜𝑠 = (𝑥,𝑦) to
represent the position of the waypoint in the floor plan.

SoVAR utilizes extracted driving actions and road information
(including the roads from the accident report and the tested roads to
construct and execute the scenarios) to simulate crashes and com-
pute trajectories for simulated traffic participants. This approach
first builds constraints on each action based on the road information
and then generates trajectories by resolving the constraints. There-
fore, it can adapt to different roads on various maps. Algorithm 1
outlines the generation of waypoints. To facilitate the display in
the algorithm, the extracted attributes are represented by letter

abbreviations. For example, driving action is abbreviated as DA.
The algorithm takes road information R extracted from accident re-
ports using LLM, extracted dynamic object informationD, the given
mapMAP in the simulator, and defined driving action constraintsC
as inputs. The algorithm initially parses the given map into a set
of candidate roads, noting the road type (e.g., crossroads) for each
road (Line 3). It then iterates through the set of candidate roads,
sequentially selecting lanes of varying lengths and widths (Lines
4-5). If the current road type matches the type where the accident
occurred and if the maximum number of lanes occupied by all traffic
participants during their movement is less than or equal to the num-
ber of lanes on the selected road, the waypoint generation process
begins (Lines 6-7). Subsequently, following the adjustment of the
driving direction and initial lane position of the traffic participant to
match the selected road (Lines 8-11), the constraint solver resolves
constraints based on driving actions to generate waypoints (Line
12). The following describes the design of driving constraints C in
detail.

To make participants perform corresponding actions and drives
into the crash site, we define a group of trajectory constraints for
each action from five aspects. Then, SoVAR leverages a constraint
solver to automatically generate trajectories for each participant.
Besides, traffic participants must reach the collision location simul-
taneously while executing their actions. To accomplish this, SoVAR
introduces a collision area 𝐶𝐴 , which is automatically calculated
by the system.



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA An Guo et al.

Algorithm 1 Waypoints generation process of trajectory planning
Input： The extracted dynamic object information D, the ex-

tracted road information R, the given map MAP, the set of
driving constraints C

Output： Generated waypoints 𝑔𝑒𝑛𝑊𝑃𝑜𝑖𝑛𝑡𝑠

1: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑅𝑜𝑎𝑑 ← ∅
2: 𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑜𝑎𝑑 ← ∅
3: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑅𝑜𝑎𝑑 = 𝑃𝑎𝑟𝑠𝑒𝑀𝑎𝑝 (MAP)
4: for 𝐶𝑎𝑛𝑑 in 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑅𝑜𝑎𝑑 do
5: 𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑜𝑎𝑑 = [𝐶𝑎𝑛𝑑.𝑙𝑒𝑛,𝐶𝑎𝑛𝑑.𝑤𝑖𝑑,𝐶𝑎𝑛𝑑.𝑙𝑛𝑢𝑚,𝐶𝑎𝑛𝑑.𝑑𝑖𝑟 ]
6: if 𝐶𝑎𝑛𝑑.𝑡𝑦𝑝𝑒 == R.𝐶𝐿 then
7: if 𝐶𝑎𝑙𝑀𝑎𝑥𝐿𝑎𝑛𝑒𝑠 (R.𝐿𝑁,D) ≤ 𝐶𝑎𝑛𝑑.𝑙𝑛𝑢𝑚 then
8: 𝑅𝑒𝑐𝑎𝑙 ← ∅
9: D.𝑅𝐿.D.𝐷𝐷 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝐼𝑛𝑓 𝑜 (D, 𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑜𝑎𝑑)
10: 𝑅𝑒𝑐𝑎𝑙 .𝑎𝑝𝑝𝑒𝑛𝑑 (D.𝑅𝐿)
11: 𝑅𝑒𝑐𝑎𝑙 .𝑎𝑝𝑝𝑒𝑛𝑑 (D.𝐷𝐷)
12: 𝐺𝑒𝑛𝑊𝑃 = 𝑆𝑜𝑙𝑣𝑒𝑇𝑟𝑎 𝑗 (C,D.𝐷𝐴, 𝑅𝑒𝑐𝑎𝑙, 𝑆𝑒𝑙𝑒𝑐𝑡𝑅𝑜𝑎𝑑)
13: end if
14: end if
15: end for
16: return 𝐺𝑒𝑛𝑊𝑃

𝑪𝑪𝑨𝑨

𝒍𝒍𝟑𝟑

𝒍𝒍𝟖𝟖

𝑹𝑹𝟏𝟏

𝑹𝑹𝟑𝟑

𝒍𝒍𝟐𝟐 𝒍𝒍𝟏𝟏

𝒍𝒍𝟕𝟕

𝒍𝒍𝟒𝟒

𝑹𝑹𝟐𝟐

𝒍𝒍𝟓𝟓 𝒍𝒍𝟔𝟔

𝑺𝑺𝟏𝟏𝟏𝟏

𝑺𝑺𝒆𝒆𝟏𝟏= 𝑺𝑺𝟏𝟏𝟐𝟐

𝑺𝑺𝒆𝒆𝟐𝟐= 𝑽𝑽𝒆𝒆𝟐𝟐

𝑹𝑹𝟒𝟒

𝑽𝑽𝟏𝟏𝟏𝟏

𝑽𝑽𝒆𝒆𝟏𝟏= 𝑽𝑽𝟏𝟏𝟐𝟐

𝒍𝒍𝟗𝟗 𝒍𝒍𝟏𝟏𝟏𝟏 𝒍𝒍𝟏𝟏𝟏𝟏

Figure 3: An example of accident trajectory planning (NHTSA
report #2006048103067)

Due to space limitations, we have chosen an example to show-
case these constraints. As shown in Figure 3, the collision takes
place at a regulated intersection. A blue vehicle is observed trav-
eling northbound in lane 𝑙3, making a left turn under a circular
green signal, while a green vehicle is traveling south in lane 𝑙5.
During the blue vehicle’s left turn, its front collided with the front
of the green vehicle. The striker vehicle is depicted as following
the lane and performing a left turn, while the victim vehicle is
shown following the lane and performing a crossing maneuver. The
blue vehicle may turn into lane 𝑙7 or lane 𝑙8. SoVAR calculates the
intersection of the drivable areas between the green vehicle and the
blue vehicle, determining the collision area 𝐶𝐴 . Next, we introduce
the constraint design of the driving actions involved in the exam-
ple. The constraints for all accident driving actions can be found
in https://github.com/meng2180/SoVAR/blob/main/constraints.pdf.

3.2.1 Constraints of Participant Basic Driving Actions. To generate
trajectories of participants that make them perform basic driving
actions, we define a group of trajectory specifications for each
behavior from three aspects:1) initial position and destination, 2)
position to perform the action, and 3) velocities of waypoints.

Group 1: Constraints on initial position and destination.
There are four constraints in Group 1. Equation 1 restricts that
the driving direction from 𝑋𝑏

1 to 𝑋𝑏
𝑒 is not opposite to the di-

rection of lane 𝑙𝑚 . The calculation of 𝑓 𝑑
(
𝑤𝑖 ,𝑤 𝑗 , 𝑙

)
is defined as(

𝑤 𝑗 .𝑥 −𝑤𝑖 .𝑥
)
(𝑙𝑒𝑥 .𝑥 −𝑙𝑒𝑛 .𝑥) > 0∧

(
𝑤 𝑗 .𝑦 −𝑤𝑖 .𝑦

)
(𝑙𝑒𝑥 .𝑦−𝑙𝑒𝑛 .𝑦) > 0.

Here, 𝑙𝑒𝑛 is the entrance point of lane 𝑙 and 𝑙𝑒𝑥 is the exit point of
the lane, which are both known after parsing the map. When 𝑓 𝑑

is true, it guarantees waypoint 𝑤 𝑗 is ahead of 𝑤𝑖 in the direction
of lane 𝑙 . Equation 2 restricts the road position where the Follow
Lane behavior begins and ends.𝑋𝑏

1 .𝑝𝑜𝑠 and𝑋
𝑏
𝑒 .𝑝𝑜𝑠 are on the same

lane 𝑙𝑚 of the road 𝑅𝑖 . Equations 3 and 4 limit the initial and the
end road positions of the Turn Left and Vehicle Across actions:
Equation 3 is applied when the driving action avoids a collision,
and𝑋𝑏

1 .𝑝𝑜𝑠 and𝑋
𝑏
𝑒 .𝑝𝑜𝑠 are on the lanes of different roads; Equation

4 is employed when the action leads to a collision, and the position
of destination𝑤𝑋

𝑒 .𝑝𝑜𝑠 is in 𝐶𝐴 .

𝑓 𝑑

(
𝑋𝑏
1 . 𝑝𝑜𝑠, 𝑋

𝑏
𝑒 .𝑝𝑜𝑠, 𝑙𝑚

)
= 1 (1)

𝑋𝑏
1 .𝑝𝑜𝑠 ∈ 𝑙𝑚, 𝑋𝑏

𝑒 .𝑝𝑜𝑠 ∈ 𝑙𝑚, 𝑙𝑚 ∈ 𝑅𝑖 (2)

𝑋𝑏
1 .𝑝𝑜𝑠 ∈ 𝑙𝑚 ∧ 𝑙𝑚 ∈ 𝑅𝑖 , 𝑋

𝑏
𝑒 .𝑝𝑜𝑠 ∈ 𝑙𝑛 ∧ 𝑙𝑛 ∈ 𝑅 𝑗 , 𝑖 ≠ 𝑗 (3)

𝑋𝑏
1 .𝑝𝑜𝑠 ∈ 𝑙𝑚 ∧ 𝑙𝑚 ∈ 𝑅𝑖 , 𝑋

𝑏
𝑒 .𝑝𝑜𝑠 ∈ 𝐶𝐴 (4)

Group 2: Constraints on positions to perform the action.
In this group, Equation 5 limits the position of the waypoint during
the execution of the Turn Left action, ensuring that the current
waypoint is on the right side of the line connecting two adjacent
waypoints. As shown in Figure 4, −−−−→sisi+1 represents the direction vec-
tor composed of the position of the 𝑖-th waypoint and the position
of the (𝑖 + 1)-th waypoint. The vector

−−−−→
sisi+2′ represents the right

normal vector formed by the positions of the 𝑖-th and (𝑖 + 2)-th
waypoints. Equations 6 and 7 respectively impose limits on the
positional relationship between the roads accessed through the exe-
cution of the Turn Left behavior and the Vehicle Across behavior.
𝑘1 and 𝑘2 represent the slopes of roads 𝑙𝑚 and 𝑙𝑛 .

∀𝑖 ∈ [1, 𝑒 − 1),−−−−→sisi+1 ·
−−−−→
sisi+2′ > 0 (5)

𝑘1 ∗ 𝑘2 = −1, 𝑙𝑚𝑒𝑛 ∈ 𝑙𝑚, 𝑙𝑛𝑒𝑥 , 𝑙
𝑛
𝑒𝑛 ∈ 𝑙𝑛

𝑘1 =
(
𝑙𝑚𝑒𝑥 .𝑦 − 𝑙𝑚𝑒𝑛 .𝑦

)
/
(
𝑙𝑚𝑒𝑥 .𝑥 − 𝑙𝑚𝑒𝑛 .𝑥

)
𝑘2 =

(
𝑙𝑛𝑒𝑥 .𝑦 − 𝑙𝑛𝑒𝑛 .𝑦

)
/
(
𝑙𝑛𝑒𝑥 .𝑥 − 𝑙𝑛𝑒𝑛 .𝑥

) (6)


arctan

��� 𝑘1−𝑘21+𝑘1𝑘2

��� < 𝜋
2 , 𝑙

𝑚
𝑒𝑛 ∈ 𝑙𝑚, 𝑙𝑛𝑒𝑥 , 𝑙

𝑛
𝑒𝑛 ∈ 𝑙𝑛

𝑘1 =
(
𝑙𝑚𝑒𝑥 .𝑦 − 𝑙𝑚𝑒𝑛 .𝑦

)
/
(
𝑙𝑚𝑒𝑥 .𝑥 − 𝑙𝑚𝑒𝑛 .𝑥

)
𝑘2 =

(
𝑙𝑛𝑒𝑥 .𝑦 − 𝑙𝑛𝑒𝑛 .𝑦

)
/
(
𝑙𝑛𝑒𝑥 .𝑥 − 𝑙𝑛𝑒𝑛 .𝑥

) (7)

Group 3: Constraints on the velocities of waypoints. Fi-
nally, group 3 restricts the velocities of all intermediate waypoints.
Specifically, Equation 8 restricts velocities of waypoints from 𝑋𝑏

1
to 𝑋𝑏

𝑒 , and Equation 9 restricts the limits of speeds during driving.
𝐷𝑋 (𝑖, 𝑗) and 𝐷𝑌 (𝑖, 𝑗) respectively compute the distance that the
vehicle traveled from the 𝑖𝑡ℎ waypoint to the 𝑗𝑡ℎ waypoint along
X axis and Y axis. 𝐷𝑋 (𝑖, 𝑗) = ∑𝑗−1

𝑐=𝑖

( 𝑣𝑐 .𝑥+𝑣𝑐+1 .𝑥
2 ∗ Δ𝑡𝑐

)
, 𝐷𝑌 (𝑖, 𝑗) =

https://github.com/meng2180/SoVAR/blob/main/constraints.pdf


SoVAR: Building Generalizable Scenarios from Accident Reports for Autonomous Driving Testing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Turn Left
Waypoint

Vector

Figure 4: A graphic explanation of Equation 5 in Group 2.

∑𝑗−1
𝑐=𝑖

(
𝑣𝑐 .𝑦+𝑣𝑐+1 .𝑦

2 ∗ Δ𝑡𝑐
)
.𝑣𝑐 .𝑥 is the 𝑐𝑡ℎ waypoint’s speed along X

axis and 𝑣𝑐 .𝑦 is its speed along Y axis. 𝑠𝑝𝑑𝑖 is the speed of 𝑣𝑖 . 𝑠𝑝𝑑𝑙𝑖𝑚𝑖𝑡

is the speed limit for the driving road.(
𝑋𝑏
1 .𝑥 − 𝑋

𝑏
𝑒 .𝑥

)
= 𝐷𝑋 (1, 𝑒),

(
𝑋𝑏
1 .𝑦 − 𝑋

𝑏
𝑒 .𝑦

)
= 𝐷𝑌 (1, 𝑒) (8)

∀𝑖 ∈ (1, e], 0 < 𝑠𝑝𝑑𝑋𝑖−1 = 𝑠𝑝𝑑𝑋𝑖 ≤ 𝑠𝑝𝑑𝑙𝑖𝑚𝑖𝑡 (9)

3.2.2 Constraints between Multiple Driving Actions of Participants.
To ensure that the striking and victim vehicles execute a sequence
of driving actions and reach the accident site simultaneously, we
define trajectory specifications from two aspects: 1) trajectory com-
binations of multiple basic driving actions, and 2) constraints on
vehicle crashes.

Group 4: Constraints on trajectory combinations of multi-
ple basic driving actions. The fourth group constrains the rela-
tionship between waypoints when multiple actions are connected.
Equations 10 and 11 represent the trajectory constraints for mul-
tiple actions exhibited by the striker and victim, respectively. The
ending position of a traffic participant’s current action should align
with the starting position of the subsequent driving action. The
striker performed 𝑛 actions, while the victim performed𝑚 actions
before the collision.

∀𝑝 ∈ (1, n], 𝑆𝑝1 .𝑝𝑜𝑠 = 𝑆
𝑝−1
e .𝑝𝑜𝑠 (10)

∀𝑞 ∈ (1,m],𝑉𝑞

1 .𝑝𝑜𝑠 = 𝑉
𝑞−1
e .𝑝𝑜𝑠 (11)

Group 5: Constraints on vehicle crash. The fifth group of
constraints ensures that the collision information is consistent with
the report description. Equation 12 limits the occurrence of the
accident collision to the location stated in the collision report, while
Equation 13 describes the striker and victim simultaneously arriving
at the collision location.

𝑆𝑛e .𝑝𝑜𝑠 = 𝑉𝑚
e .𝑝𝑜𝑠 ∧ 𝑆𝑛e .𝑝𝑜𝑠 ∈ 𝐶𝐴 ∧𝑉𝑚

e .𝑝𝑜𝑠 ∈ 𝐶𝐴 (12)
𝑛∑︁
𝑖=1

𝑆𝑡𝑖 =

𝑚∑︁
𝑖=1

𝑉𝑡𝑖 (13)

3.3 Simulation and Test Generation
Simulation generation. SoVAR is not limited to a specific simula-
tor; it requires a simulation environment that encompasses precise
soft-body physics and authentic 3D textures representing roads, ve-
hicles, weather, and lighting conditions. Additionally, the simulator
must have the capability to control the virtual car using external

software, as it serves as a fundamental requirement for conducting
autonomous driving simulation testing [15, 38]. The simulator re-
ceives the waypoints generated by the trajectory planning module
alongside the environment conditions information extracted by
LLM and conducts a simulation to reconstruct the crash detailed in
the accident report.

Test generation. The simulations generated by SoVAR contain
the essential information needed to reconstruct the car crashes de-
scribed in the accident reports. However, these simulated crashes do
not meet the specifications of the test cases because they lack proper
test oracles and do not permit any exogenous interference. Specifi-
cally, the generated simulations cannot verify if the behavior of the
ego car is acceptable, and the ego car cannot freely interact with
the simulated environment. To address this, SoVAR automatically
derives system-level test cases from the output of the trajectory
planning module, allowing the ego car to choose a trajectory differ-
ent from the one described in the accident report to avoid collisions.
For the simulation scenarios generated based on the reports, SoVAR
creates multiple test scenarios by designating each traffic partic-
ipant as the ego vehicle. The starting point of each ego vehicle
is set to the initial point of the generated waypoints, while the
NPC vehicles follow the waypoints provided by the SoVAR trajec-
tory planning module. Collision scenarios involving ego vehicles
are recorded during these runs. However, some collisions are not
caused by the ego vehicle, such as when an NPC vehicle crashes
into a legally parked ego vehicle. To minimize false positives, So-
VAR counts collision scenarios in which the ego vehicle’s speed is
not near zero.

4 Experimental Design
In this section, we introduce the experimental design, including the
experiment settings, evaluation metric and baseline in the exper-
iments. All experiments are performed on Ubuntu 21.10 desktop
with GeForce RTX 4070, one 16-core processor at 3.80GHz, and
32GB RAM.

SoVAR aims to use accident reports as information sources to
reconstruct accident scenarios and convert them into test cases for
evaluating ADS. To this end, we empirically explore the following
three research questions (RQ):
• RQ1: How effective is information extraction from accident re-
ports with SoVAR?
• RQ2: What is the effectiveness of SoVAR in producing generaliz-
able simulations with the intended impact?
• RQ3: Do tests derived from generalizable scenarios find crashes
in autonomous driving systems?

4.1 Experiment Settings
Dataset and LLM. To investigate the research questions, we ac-
quired data from the National Motor Vehicle Crash Causation Sur-
vey database, maintained by the National Highway Traffic Safety
Administration (NHTSA) [37]. The NHTSA adheres to the Model
Minimum Uniform Crash Criteria (MMUCC) guidelines [36], which
outline the primary factors contributing to crashes. To obtain the
necessary accident reports, we divide the NHTSA police reports
according to crash type and then randomly select a sample of re-
ports from each category. We obtained NHTSA reports, enabling



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA An Guo et al.

Table 3: Results of different methods for extracting information from accident reports.

Attributes
Environment Conditions RoadNetwork and Traffic Guidance Dynamic Objects

Weather Light LaneNum SpeedLimit CollisionLocation DrivingActions CrashType DrivingDirections RunningLanes ParticipantsNumber

SoVAR 77.33% 93.33% 93.33% 100% 96.00% 76.33% 90.67% 91.66% 77.00% 100%

SoVAR_N 69.33% 81.33% 76.00% 91.33% 95.33% 55.00% 90.00% 91.33% 73.00% 100%

AC3R 54.67% 76.00% 70.67% 82.67% 78.67% 43.67% 11.67% 39.30% 25.33% 94.67%

comprehensive coverage of diverse environmental conditions such
as daytime and nighttime scenarios, various road types, as well
as different crash types. We adopted GPT-4 [5] as the informa-
tion extraction model. We chose GPT-4 because it is the current
state-of-the-art LLM, widely known and easily accessible.

Simulation Platform.We connected the scene recovery out-
comes with the leading virtual testing platform, LGSVL, widely
used in academia and industry. LGSVL simulator is a high-fidelity
simulation tool specifically designed for autonomous driving [38].
Its advanced engine enables comprehensive end-to-end simulation
and seamless integration with Apollo, allowing numerous virtual
testing scenarios to be generated. In our study, we implemented So-
VAR in the simulation environment built with Baidu Apollo 6.0 [2]
(the ADS under test) and SORA-SVL simulator [25].

Constraints Solver. We employ Z3 [10], an efficient Satisfia-
bility Modulo Theories (SMT) solver, to compute the trajectories
of participants. Z3 is renowned for its efficiency and incorporates
state-of-the-art algorithms that allow it to tackle large-scale prob-
lems swiftly and accurately. Z3 has garnered widespread adoption
in both academia and industry for various applications, including
software analysis, cyber-physical systems, and beyond.

4.2 Evaluation Metric and Baseline Comparison
Metric. To evaluate the success rate of accident scenario reconstruc-
tion, we propose using the "Scenario Reconstruction Rate" metric
to measure the effectiveness of SoVAR in reconstructing scenarios
from accident reports. Here an accident that is successfully recon-
structed if the participants move along the generated trajectories
can replay the same collision. And we express it as follows:

𝑆𝑅𝑅 =
1
𝑁𝑟

𝑁𝑟∑︁
𝑖=1

1


∧

∀𝑡𝑟 ∈𝑇𝑅𝑖
𝑆𝐼𝑀 (𝑡𝑟,MAP) == 1

 (14)

where 𝑁𝑟 represents the total number of accident reports,
∧

means
logical AND, 𝑇𝑅𝑖 represents the set of accident-related trajectories
generated by the 𝑖-th report,MAP represents the map used to re-
construct the scenario, and 𝑆𝐼𝑀 is a function that evaluates whether
the trajectory, derived from correctly parsed collision actions, is
correct when executed in the simulator. Specifically, 𝑆𝐼𝑀 outputs 1
if the generated trajectory does not illegally cross any lines and the
collision angle matches the report description; otherwise, it out-
puts 0. Additionally, 1 is an indicator function mapping a boolean
condition to a value in {0, 1}: If the condition is true, it returns 1;
otherwise, it returns 0.
Baseline. To evaluate ADS, there are various research works fo-
cusing on scenario reconstruction using accident information. Some
methods leverage video recordings [9, 51] and accident sketches [18]
as information sources to directly identify and extract trajectories of
traffic participants. In contrast, our approach, similar to AC3R [17],

automatically plans and generates trajectories based on the textual
description provided in accident reports.

To assess the effectiveness of SoVAR in accident information
extraction and its capability to generate generalized scenarios, we
employ AC3R as a baseline for comparison. AC3R integrates NLP
techniques with a domain-specific ontology to extract pertinent
information from accident reports and subsequently generates tra-
jectories using hardcoded rules with fixed patterns. It should be
noted that the AC3R method requires accident reports to be seg-
mented before inputting into the information extraction module.
To demonstrate the best performance of AC3R, we segment all
reports for evaluation. In contrast, to showcase SoVAR’s ability to
handle complex text, we use raw, unsegmented accident reports as
input to SoVAR. Additionally, to further validate the effectiveness
of linguistic pattern prompting in information extraction, we use
SoVAR_N as another baseline. The SoVAR_N approach leverages
GPT-4 to directly extract information from accident reports without
employing any linguistic pattern prompting.

5 Result Analysis and Discussion
5.1 Answer to RQ1
To evaluate the effectiveness of information extraction from ac-
cident reports with SoVAR, we randomly select 150 reports en-
compassing diverse environmental conditions, road structures, and
vehicle behaviors. Then, two of the authors independently analyze
each accident report to establish the ground truth of extracted infor-
mation. A third author is involved in a group discussion to resolve
conflicts and reach agreements. Next, we execute the information
extraction modules of SoVAR, SoVAR_N, and AC3R, respectively,
and automatically calculate the average extraction accuracy of each
attribute across all selected reports.

Results. Table 3 illustrates the accuracy of various methods for
extracting information from accident reports. The extraction accu-
racy of SoVAR for the environment conditions layer, road network
layer, and dynamic object layer are 85.33%, 96.44%, and 87.13%, re-
spectively. Compared to the SoVAR_N and AC3R methods, employ-
ing GPT-4 with linguistic patterns prompting can significantly en-
hance accuracy across all attribute information extractions. Specif-
ically, the average accuracy of the SoVAR method surpassed that
of the SoVAR_N and AC3R methods by 7.3% and 31.9%, respec-
tively. We observe that SoVAR and AC3R exhibit higher accuracy
in extracting straightforward information such as SpeedLimit from
the accident report. However, they demonstrate relatively lower
effectiveness in extracting complex driving actions with contextual
dependencies.

Discussion. According to the experimental analysis presented
in Table 3, it is evident that utilizing LLMs, such as GPT-4, to extract
information from accident reports is a highly effectivemethod. Addi-
tionally, employing well-designed linguistic patterns for prompting



SoVAR: Building Generalizable Scenarios from Accident Reports for Autonomous Driving Testing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 4: The number of successfully reconstructed scenarios
and scenario reconstruction rate under different road types.

Type
Intersection T-junction Straight Road

I1 I2 I3 T1 T2 T3 S1 S2 S3

SoVAR
Num. 47 45 48 35 36 38 42 41 40

SRR 94% 90% 96% 70% 72% 76% 84% 82% 80%

*Note that the scenario reconstruction rate for AC3R is 0.

can significantly enhance the LLM’s ability to extract information.
While our method achieves good extraction results, there is still
room for improvement in the accuracy of attributes such as driv-
ing actions before a collision. Upon reviewing reports containing
extraction errors, we identified that many inaccuracies stem from
implicit actions described within accident report descriptions. For
instance, a retrograde action might be described simply as "crossing
the double yellow line." Additionally, there is no consistent pat-
tern for how each accident report from the NHTSA database is
structured. By applying a large language model with stronger gen-
eralization and inference capabilities, or by fine-tuning the model
after manually labeling the accident information, the information
extraction effect of SoVAR can be further optimized.

5.2 Answer to RQ2
To ascertain the generalizability of the SoVAR method, i.e., its ca-
pacity to replicate accidents across roads of varying lengths and
widths depicted on maps, we reconstruct scenarios based on ac-
cident location reports from the NHTSA database. These reports
encompass accidents occurring on straight roads, T-junctions, and
intersection locations. Specifically, we randomly select 50 accident
reports for each road type for experimental purposes, and SoVAR
is executed three times for each report, ensuring that each run
covers different roads on the San Francisco map. We tally the num-
ber of successful reconstruction scenarios for each type of road
accident. Additionally, for scenarios that are not fully successfully
reconstructed, we analyze the causes and classify them into three
categories: trajectory planning program crashes, crash type mis-
matches during simulation generation, and instances of driving
actions crossing the line during simulation generation.

Results. Table 4 shows the number of successfully reconstructed
scenarios and SRR metrics under different road types. The aver-
age scenario reconstruction rate (SRR) of accidents occurring at
intersections, T-junction roads, and straight roads are 93.3%, 72.7%,
and 82.0% respectively. Since the length and width of all roads
chosen for reproduction in the experiment are inconsistent with
those of AC3R, the experiments on AC3R found that none of the
scenarios can be successfully reconstructed for simulation testing.
To further analyze the recurrence results, Table 5 presents the fault
localization analysis of scenarios during their reconstruction. The
proportion of scenarios generated by SoVAR that cannot be com-
pletely reconstructed is 17.33%. Most of these scenarios fail due
to Crash Type simulation errors, accounting for 80.8% of all failed
reconstruction attempts. Since AC3R does not generate adaptive
waypoints according to lane width and length during operation and
lacks a mechanism to map waypoints to a map, we don’t collect
statistics on AC3R vehicles crossing the line, as shown in Table 5. It

can be seen from the table that SoVAR has a 60% lower average ac-
cident reconstruction failure rate compared to AC3R. These results
demonstrate that, in comparison to AC3R, SoVAR is more capable
of generating generalized scenarios.

Discussion. Experiments demonstrate that SoVAR can generate
generalized scenarios on lanes of varying lengths and widths. It
is noted that 2% of the scenarios reconstructed by SoVAR involve
crossing-the-line situations. This issue arises due to slight errors in
the lane width of the same road when the map creators manually
construct the experimental simulation map. Most of the errors
in the AC3R method stem from the trajectory planning module.
Besides, the method for generating waypoints in AC3R is hard-
coded. Given the complex combinatorial logic between adjacent
actions, it is inevitable that some waypoints cannot be generated
due to insufficient consideration of the code logic during execution.

5.3 Answer to RQ3
Here, we assess the effectiveness of test cases derived from sim-
ulations generated by SoVAR in detecting crashes involving ADS
and identifying safety concerns. We randomly selected 200 acci-
dent reports from the NHTSA database for scenario reconstruc-
tion, of which 39.5%, 26.5%, and 34% occurred at intersections, T-
junctions, and straight roads, respectively. We then convert the
reconstructed scenarios into test cases and evaluate the perfor-
mance of the Apollo ADS. We compare SoVAR with a random
scenario generation method. Specifically, the random scenario gen-
eration method utilizes the motion task of the ego vehicle generated
by SoVAR and randomly creates reasonable NPC trajectories. We
then separately quantify the number of collisions experienced by
autonomous vehicles using both SoVAR and the random method
during simulated test scenarios. Additionally, to further analyze the
cause of the collisions, we capture the trajectories of the ego vehicle
and the NPC vehicle when collisions occurred during test execution.
Our thorough examination of ego and NPC actions aims to identify
and classify various safety-violation scenarios that emerged.

Results. Table 6 presents the number of collisions caused by self-
driving cars in generated test scenarios using different methods.
The table reveals that the number of collisions identified by So-
VAR across various road types exceeds those found by the random
method. Overall, the total number of collisions detected by SoVAR
is more than six times higher than that detected by the random
method. In our comprehensive analysis, we identify and summarize
5 types of safety violations in the Apollo ADS. Due to space limita-
tions, we present four safety violation scenario types as shown in
Figure 5. The left sub-figure of each group of safety violation types
describes the location and driving route of the NPC and ego car in
the initial scene, and the right sub-figure is a schematic diagram of
the scene when a collision occurs. Illustrations for other types of
safety violations can be found in the open-source repositories we
provide. From the safety violation types illustrated in Figure 5, it is
evident that various regular NPC actions, such as vehicle across,
turn left, and drive into roads, can cause collisions involving the ve-
hicle equipped with Apollo ADS. In addition, as shown in Figure 6,
we summarize another two types of collisions, which are caused
by irregular NPC actions.



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA An Guo et al.

Table 5: Fault localization analysis of not successfully reconstructed scenarios.

Method
Trajectory Planning Simulation Crash Type Simulation Crossing Total

I T S Percentage I T S Percentage I T S Percentage I T S Percentage

SoVAR 0.00% 0.00% 1.33% 1.33% 1.78% 8.00% 4.22% 14.00% 0.44% 1.11% 0.44% 2.00% 2.22% 9.11% 6.00% 17.33%

AC3R 21.62% 24.32% 22.52% 68.47% 2.70% 2.70% 3.60% 9.01% — — — — 24.32% 27.03% 26.13% 77.48%

Violation Type 1 Violation Type 2

Violation Type 3 Violation Type 4

Ego

Initial

Ego Ego

Collision

Parking ZoneSidewalks Sidewalks Parking Zone

Ego

Ego

Ego

Initial Collision

Initial Collision

Ego

Sidewalks

Initial

Ego

Sidewalks

Collision

Figure 5: Visualization samples showing the safety violations of Apollo detected by SoVAR on different road types.

Table 6: The number of collisions caused by ADS in generated
test scenarios using different methods.

Collision Intersection T-junction Straight Road Total

SoVAR 15 4 6 25

Random 1 1 2 4

Discussion. Through an in-depth analysis of the results pre-
sented in Table 6, it becomes apparent that scene reconstruction
utilizing information extracted from accident reports proves to be
an effective method for testing the safety of ADS. This effectiveness
stems from the fact that test scenarios generated from scenario
descriptions provided in accident reports, which include driving
actions among other details, are indeed crucial for ensuring safety.
Furthermore, the safety violations we identify encompass erroneous
behaviors in Apollo’s operational capabilities. Specifically, viola-
tion type 1 demonstrates that when the NPC vehicle crosses an
intersection at high speed, the ego vehicle fails to decelerate in time.
Violation type 2 shows that when the NPC vehicle goes straight
through an intersection, the ego vehicle turns without yielding, as
required by traffic rules, resulting in a collision. Violation type 3
and violation type 4 indicate that the ego vehicle does not slow
down in time when the NPC enters the road from the parking zone
or sidewalks. The causes of the accidents in collision type 1 and
collision type 2 are not attributed to Apollo. Collision type 1 shows
that when an NPC turns left from the right lane at an intersection
without traffic lights, the ego vehicle results in a collision with the
NPC. Collision type 2 demonstrates that when an NPC crosses the
double yellow line and drives in the opposite direction, the ego
vehicle does not stop but continues to move forward, leading to
a collision. Although in these cases, the NPCs violate traffic rules,
we believe that ADS should have emergency avoidance capabilities
when there is sufficient time to react. In such scenarios, the ADS’s
ability to issue early warnings and take countermeasures is crucial
to ensuring safety.

Collision Type 1

Collision Type 2

Initial Collision EgoEgo

Ego Ego

Initial Collision

Figure 6: Visualization samples showing another two colli-
sion types detected by SoVAR.

5.4 Threats to Validity
Data Selection. The selection of accident report data poses a pri-
mary threat to validity. We randomly selected a small number of
police reports from the NHTSA database for experiments, because
evaluating the effect of GPT-4 on extracting accident information re-
quires time-consuming and laborious manual annotation. Nonethe-
less, the NHTSA database is a widely utilized dataset in academia,
and we tookmeasures to ensure that the selected reports encompass
a range of environmental conditions, crash types, road geometries,
and driving actions. We believe that our approach can be read-
ily applied to other accident report datasets containing detailed
descriptions of accident scenarios.
Environmental Simulation. One of the validity threats arises
from limitations in the environmental simulation within the simu-
lator. the simulator lacks the simulation of LiDAR point cloud data
during adverse weather conditions. To address these challenges, we
directly send ground-truth perception data to Apollo in the form of
messages to confirm that Apollo correctly perceives information,
and then test downstream modules of perception in Apollo, includ-
ing prediction, planning, and control 2. Actually, many ADS testing

2https://github.com/ApolloAuto/apollo?tab=readme-ov-file#architecture



SoVAR: Building Generalizable Scenarios from Accident Reports for Autonomous Driving Testing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

works use a similar simulation environment without considering
the perception module [14, 42, 46]. Although we don’t apply the
impact of environmental factors in LGSVL, our experimental results
demonstrate that our method remains effective in detecting flaws
in Apollo. Moving forward, we plan to validate our approach on
other simulators that support ADS perception capabilities.
Count for Randomness. Another potential threat stems from the
stochastic nature of constraint solving used in SoVAR, where Z3
is employed to generate scenarios that satisfy constraints. Due to
the inherent multiple feasible solutions in constraint solving, the
results of each run may exhibit slight variations. However, this char-
acteristic also serves as an advantage for SoVAR, as it can produce
diverse scenarios that meet the specified constraints. To mitigate
this threat, we conducted each experiment three times to validate
the method. Remarkably, the results of each SoVAR experiment
consistently outperformed other baseline methods, underscoring
the robustness and effectiveness of our approach.

6 Related Work
6.1 Driving Accident Scenario Reconstruction
Traffic accidents inherently encompass a vast amount of valuable
semantic information, thereby facilitating the comprehension of
the accident process by reconstructing the accident scenario [6, 31].
Recent research efforts have primarily concentrated on scenario
reconstruction across various driving data sources, including lever-
aging sensor data collected during actual crashes [16], textual de-
scriptions [17], accident sketches [18], and video recordings [9, 51]
to generate critical scenarios. Erbsmehl [16] recreates crashes by re-
playing the sensory data collected during actual crashes. However,
this approach has limited applicability as it relies on naturalistic
field operational data, which is not generally available. Gambi et
al. implement an automatic crash construction tool AC3R, which
automatically extracts information leveraging natural language
processing and reproduces crashes in simulated environments [17].
Subsequently, Gambi et al. present CRISCE, a semi-automated ap-
proach for generating simulations of critical scenarios from accident
sketches that commonly complement crash reports [18]. Zhang et
al. propose a panoptic segmentation model, M-CPS, designed to
extract accident information from images or video recordings [51].

The key differences between the related work mentioned above
and SoVAR are twofold: (1): Trajectories of traffic participants can
be directly extracted from accident sketches or videos. Accident
reconstruction from textual descriptions may result in multiple
trajectories that satisfy the given text descriptions. (2): SoVAR can
accurately extract accident information and generate generalized
scenarios adaptable to different map structures.

6.2 ADS Simulation Testing
Reconstructing core road scenarios from original accident informa-
tion holds significant value for ADS simulation testing [43]. The
reconstructed scenarios can serve as initial test scenarios for ADS
fuzz testing [39, 48]. Numerous studies have examined and unveiled
crashes exhibited by ADS through the reconstruction of accident
scenarios [9, 17, 39, 51]. Gambi et al. present a crash construc-
tion tool, which generates test cases by incorporating test oracles
to evaluate the performance of the DeepDriving self-driving car

software based on simulations [17]. Bashetty et al. adopt a frame-
work that aims to extract 3D vehicle trajectories from dashcam
videos. The framework then recreates these extracted scenarios to
facilitate the testing of collision avoidance systems [9]. Tian et al.
extract behaviors from collision-related trajectories and perform
behavior pattern mining to generate critical scenarios for testing
Baidu Apollo [48]. Zhang et al. propose a mutation algorithm based
on the original accident scenario set to facilitate testing of Apollo
ADS [51]. Scheuer et al. implement the avoidable collision scenarios
generation tool by extending focused collision descriptions using a
multi-objective optimization algorithm [39].

7 Conclusion
This paper introduces and assesses SoVAR, a tool designed for au-
tomatically reconstructing crash scenarios from accident reports
and testing ADS. SoVAR leverages LLM to extract detailed accident
information, significantly enhancing LLM’s text comprehension
and parsing capabilities through the design of specialized linguistic
patterns for extraction prompts. To enhance the method’s gener-
alization capability in reconstructing accident scenarios, SoVAR
generates accident-related trajectories by solving a predefined set of
trajectory specifications. Experimental results demonstrate that our
method can successfully replicate accident reports on different map
structures and the reconstructed simulation scenarios can identify
various types of safety violations based on industrial-grade ADS.
These findings underscore the crucial role of SoVAR in upholding
the quality and dependability of ADS.

References
[1] 2019. Feds Say Self-Driving Uber SUV Did Not Recognize Jaywalking Pedestrian

In Fatal Crash. https://www.npr.org/2019/11/07/777438412/feds-say-self-driving-
uber-suv-did-not-recognize-jaywalking-pedestrian-in-fatal-.

[2] 2020. Apollo 6.0. https://github.com/ApolloAuto/apollo. Accessed on May 12,
2024.

[3] 2021. ASAM OpenDRIVE. https://www.asam.net/index.php?eID=dumpFile&t=
f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd.

[4] 2023. San Francisco self-driving car involved in serious accident.
https://www.straitstimes.com/world/united-states/san-francisco-self-driving-
car-involved-in-serious-accident.

[5] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[6] Farman Ali, Amjad Ali, Muhammad Imran, Rizwan Ali Naqvi, Muham-
mad Hameed Siddiqi, and Kyung-Sup Kwak. 2021. Traffic accident detection
and condition analysis based on social networking data. Accident Analysis &
Prevention 151 (2021), 105973.

[7] Gerrit Bagschik, Till Menzel, and Markus Maurer. 2018. Ontology based scene
creation for the development of automated vehicles. In 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 1813–1820.

[8] Zhibin Bao, Sabir Hossain, Haoxiang Lang, and Xianke Lin. 2023. A review of
high-definition map creation methods for autonomous driving. Eng. Appl. Artif.
Intell. 122 (2023), 106125. https://doi.org/10.1016/J.ENGAPPAI.2023.106125

[9] Sai Krishna Bashetty, Heni Ben Amor, and Georgios Fainekos. 2020. Deep-
CrashTest: Turning Dashcam Videos into Virtual Crash Tests for Automated
Driving Systems. In 2020 IEEE International Conference on Robotics and Automa-
tion, ICRA 2020, Paris, France, May 31 - August 31, 2020. IEEE, 11353–11360.
https://doi.org/10.1109/ICRA40945.2020.9197053

[10] Nikolaj S. Bjørner, Leonardo de Moura, Lev Nachmanson, and Christoph M.
Wintersteiger. 2018. Programming Z3. In Engineering Trustworthy Software
Systems - 4th International School, SETSS 2018, Chongqing, China, April 7-12,
2018, Tutorial Lectures (Lecture Notes in Computer Science, Vol. 11430), Jonathan P.
Bowen, Zhiming Liu, and Zili Zhang (Eds.). Springer, 148–201. https://doi.org/
10.1007/978-3-030-17601-3_4

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

https://www.npr.org/2019/11/07/777438412/feds-say-self-driving-uber-suv-did-not-recognize-jaywalking-pedestrian-in-fatal-
https://www.npr.org/2019/11/07/777438412/feds-say-self-driving-uber-suv-did-not-recognize-jaywalking-pedestrian-in-fatal-
https://github.com/ApolloAuto/apollo
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd
https://www.straitstimes.com/world/united-states/san-francisco-self-driving-car-involved-in-serious-accident
https://www.straitstimes.com/world/united-states/san-francisco-self-driving-car-involved-in-serious-accident
https://doi.org/10.1016/J.ENGAPPAI.2023.106125
https://doi.org/10.1109/ICRA40945.2020.9197053
https://doi.org/10.1007/978-3-030-17601-3_4
https://doi.org/10.1007/978-3-030-17601-3_4


ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA An Guo et al.

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[12] Nacer Eddine Chelbi, Denis Gingras, and Claude Sauvageau. 2022. Worst-case
scenarios identification approach for the evaluation of advanced driver assistance
systems in intelligent/autonomous vehicles under multiple conditions. J. Intell.
Transp. Syst. 26, 3 (2022), 284–310. https://doi.org/10.1080/15472450.2020.1853538

[13] Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng, Yunzhi Yao, Chuanqi Tan,
Fei Huang, Luo Si, and Huajun Chen. 2022. KnowPrompt: Knowledge-aware
Prompt-tuning with Synergistic Optimization for Relation Extraction. In WWW
’22: The ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022,
Frédérique Laforest, Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides
Gionis, Ivan Herman, and Lionel Médini (Eds.). ACM, 2778–2788. https://doi.
org/10.1145/3485447.3511998

[14] Mingfei Cheng, Yuan Zhou, and Xiaofei Xie. 2023. BehAVExplor: Behavior
Diversity Guided Testing for Autonomous Driving Systems. In Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2023, Seattle, WA, USA, July 17-21, 2023, René Just and Gordon Fraser (Eds.).
ACM, 488–500. https://doi.org/10.1145/3597926.3598072

[15] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, AntonioM. López, and Vladlen
Koltun. 2017. CARLA: AnOpenUrbanDriving Simulator. In 1st Annual Conference
on Robot Learning, CoRL 2017, Mountain View, California, USA, November 13-15,
2017, Proceedings (Proceedings of Machine Learning Research, Vol. 78). PMLR, 1–16.

[16] Christian Erbsmehl. 2009. Simulation of real crashes as a method for estimating
the potential benefits of advanced safety technologies. In Technical Conference
on the Enhanced Safety of Vehicles.

[17] Alessio Gambi, Tri Huynh, and Gordon Fraser. 2019. Generating effective test
cases for self-driving cars from police reports. In Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra
Russo (Eds.). ACM, 257–267. https://doi.org/10.1145/3338906.3338942

[18] Alessio Gambi, Vuong Nguyen, Jasim Ahmed, and Gordon Fraser. 2022. Gener-
ating Critical Driving Scenarios from Accident Sketches. In IEEE International
Conference On Artificial Intelligence Testing, AITest 2022, Newark, CA, USA, August
15-18, 2022. IEEE, 95–102. https://doi.org/10.1109/AITest55621.2022.00022

[19] Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. 2022. PPT: Pre-trained
Prompt Tuning for Few-shot Learning. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, Smaranda Muresan, Preslav Nakov, and
Aline Villavicencio (Eds.). Association for Computational Linguistics, 8410–8423.
https://doi.org/10.18653/V1/2022.ACL-LONG.576

[20] An Guo, Yang Feng, and Zhenyu Chen. 2022. LiRTest: augmenting LiDAR point
clouds for automated testing of autonomous driving systems. In ISSTA ’22: 31st
ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual
Event, South Korea, July 18 - 22, 2022, Sukyoung Ryu and Yannis Smaragdakis
(Eds.). ACM, 480–492. https://doi.org/10.1145/3533767.3534397

[21] An Guo, Yang Feng, Yizhen Cheng, and Zhenyu Chen. 2024. Semantic-guided
fuzzing for virtual testing of autonomous driving systems. J. Syst. Softw. 212
(2024), 112017. https://doi.org/10.1016/J.JSS.2024.112017

[22] Mokrane Hadj-Bachir, Erik Abenius, Jean-Claude Kedzia, and Philippe de Souza.
2019. Full Virtual ADAS Testing. Application to the Typical Emergency Braking
EuroNCAP Scenario. (2019).

[23] Mokrane Hadj-Bachir, Philippe de Souza, Javed Shaik, and Gruyer Dominique.
2020. Evaluating autonomous functions performance through simulation using
interoperable sensor, vehicle, and environment models. In FISITA Web Congress
2020 & World Congress 2021.

[24] H Hizal Hanis and SMR Sharifah Allyana. 2009. The construction of road accident
analysis and database system in Malaysia. In 14th IRTAD Conference. Citeseer,
16–17.

[25] Yuqi Huai. 2023. SORA-SVL. https://ics.uci.edu/~yhuai/SORA-SVL/. Accessed
on May 30, 2024.

[26] Wuling Huang, KunfengWang, Yisheng Lv, and Fenghua Zhu. 2016. Autonomous
vehicles testing methods review. In 19th IEEE International Conference on Intelli-
gent Transportation Systems, ITSC 2016, Rio de Janeiro, Brazil, November 1-4, 2016.
IEEE, 163–168. https://doi.org/10.1109/ITSC.2016.7795548

[27] Joel Janai, Fatma Güney, Aseem Behl, and Andreas Geiger. 2020. Computer Vision
for Autonomous Vehicles: Problems, Datasets and State of the Art. Found. Trends
Comput. Graph. Vis. 12, 1-3 (2020), 1–308. https://doi.org/10.1561/0600000079

[28] Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke
Hüllermeier, et al. 2023. ChatGPT for good? On opportunities and challenges

of large language models for education. Learning and individual differences 103
(2023), 102274.

[29] Md. Tahmid Rahman Laskar, M. Saiful Bari, Mizanur Rahman, Md Amran Hossen
Bhuiyan, Shafiq Joty, and Jimmy X. Huang. 2023. A Systematic Study and
Comprehensive Evaluation of ChatGPT on Benchmark Datasets. In Findings
of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, July
9-14, 2023, Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (Eds.).
Association for Computational Linguistics, 431–469. https://doi.org/10.18653/
V1/2023.FINDINGS-ACL.29

[30] Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael B. Sullivan, Siva
Kumar Sastry Hari, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. 2020. AV-
FUZZER: Finding Safety Violations in Autonomous Driving Systems. In 31st IEEE
International Symposium on Software Reliability Engineering, ISSRE 2020, Coimbra,
Portugal, October 12-15, 2020, Marco Vieira, HenriqueMadeira, NunoAntunes, and
Zheng Zheng (Eds.). IEEE, 25–36. https://doi.org/10.1109/ISSRE5003.2020.00012

[31] Yancheng Ling, Zhenliang Ma, Xiaoxian Dong, and Xiaoxiong Weng. 2024. A
deep learning approach for robust traffic accident information extraction from
online chinese news. IET Intelligent Transport Systems (2024).

[32] Rong Liu, Jinling Wang, and Bingqi Zhang. 2020. High definition map for auto-
mated driving: Overview and analysis. The Journal of Navigation 73, 2 (2020),
324–341.

[33] Guannan Lou, Yao Deng, Xi Zheng, Mengshi Zhang, and Tianyi Zhang. 2022.
Testing of autonomous driving systems: where are we and where should we go?.
In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, Sin-
gapore, Singapore, November 14-18, 2022, Abhik Roychoudhury, Cristian Cadar,
and Miryung Kim (Eds.). ACM, 31–43. https://doi.org/10.1145/3540250.3549111

[34] Andrea Madotto, Zhaojiang Lin, Genta Indra Winata, and Pascale Fung. 2021.
Few-shot bot: Prompt-based learning for dialogue systems. arXiv preprint
arXiv:2110.08118 (2021).

[35] Wassim G Najm, John D Smith, Mikio Yanagisawa, et al. 2007. Pre-crash sce-
nario typology for crash avoidance research. Technical Report. United States.
Department of Transportation. National Highway Traffic Safety . . . .

[36] National Highway Traffic Safety Administration (NHTSA). 2003. MMUCC model
minimum uniform crash criteria second edition. https://crashstats.nhtsa.dot.gov/
Api/Public/ViewPublication/809577. Accessed on May 30, 2024.

[37] National Highway Traffic Safety Administration (NHTSA). 2024. National
motor vehicle crash causation survey. https://crashviewer.nhtsa.dot.gov/
LegacyNMVCCS/Search. Accessed on May 12, 2024.

[38] Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu, Steve Lemke,
Martins Mozeiko, Eric Boise, Geehoon Uhm, Mark Gerow, Shalin Mehta, Eugene
Agafonov, Tae Hyung Kim, Eric Sterner, Keunhae Ushiroda, Michael Reyes,
Dmitry Zelenkovsky, and Seonman Kim. 2020. LGSVL Simulator: A High Fidelity
Simulator for Autonomous Driving. In 23rd IEEE International Conference on
Intelligent Transportation Systems, ITSC 2020, Rhodes, Greece, September 20-23,
2020. IEEE, 1–6. https://doi.org/10.1109/ITSC45102.2020.9294422

[39] Franz Scheuer, Alessio Gambi, and Paolo Arcaini. 2023. STRETCH: Generating
Challenging Scenarios for Testing Collision Avoidance Systems. In IEEE Intelligent
Vehicles Symposium, IV 2023, Anchorage, AK, USA, June 4-7, 2023. IEEE, 1–6.
https://doi.org/10.1109/IV55152.2023.10186634

[40] Maike Scholtes, Lukas Westhofen, Lara Ruth Turner, Katrin Lotto, Michael
Schuldes, Hendrik Weber, Nicolas Wagener, Christian Neurohr, Martin Her-
bert Bollmann, Franziska Körtke, et al. 2021. 6-layer model for a structured
description and categorization of urban traffic and environment. IEEE Access 9
(2021), 59131–59147.

[41] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.
[42] Yang Sun, Christopher M. Poskitt, Jun Sun, Yuqi Chen, and Zijiang Yang. 2022.

LawBreaker: An Approach for Specifying Traffic Laws and Fuzzing Autonomous
Vehicles. In 37th IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2022, Rochester, MI, USA, October 10-14, 2022. ACM, 62:1–62:12.
https://doi.org/10.1145/3551349.3556897

[43] Shuncheng Tang, Zhenya Zhang, Yi Zhang, Jixiang Zhou, Yan Guo, Shuang Liu,
Shengjian Guo, Yan-Fu Li, Lei Ma, Yinxing Xue, and Yang Liu. 2023. A Survey on
Automated Driving System Testing: Landscapes and Trends. ACM Trans. Softw.
Eng. Methodol. 32, 5 (2023), 124:1–124:62. https://doi.org/10.1145/3579642

[44] Shuncheng Tang, Zhenya Zhang, Jixiang Zhou, Yuan Zhou, Yan-Fu Li, and Yinx-
ing Xue. 2023. EvoScenario: Integrating Road Structures into Critical Scenario
Generation for Autonomous Driving System Testing. In 2023 IEEE 34th Interna-
tional Symposium on Software Reliability Engineering (ISSRE). IEEE, 309–320.

[45] Yun Tang, Yuan Zhou, Kairui Yang, Ziyuan Zhong, Baishakhi Ray, Yang Liu,
Ping Zhang, and Junbo Chen. 2022. Automatic Map Generation for Autonomous
Driving System Testing. CoRR abs/2206.09357 (2022). https://doi.org/10.48550/
ARXIV.2206.09357

[46] Yun Tang, Yuan Zhou, Tianwei Zhang, Fenghua Wu, Yang Liu, and Gang Wang.
2021. Systematic Testing of Autonomous Driving Systems Using Map Topology-
Based Scenario Classification. In 36th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2021, Melbourne, Australia, November 15-19,
2021. IEEE, 1342–1346. https://doi.org/10.1109/ASE51524.2021.9678735

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1080/15472450.2020.1853538
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3597926.3598072
https://doi.org/10.1145/3338906.3338942
https://doi.org/10.1109/AITest55621.2022.00022
https://doi.org/10.18653/V1/2022.ACL-LONG.576
https://doi.org/10.1145/3533767.3534397
https://doi.org/10.1016/J.JSS.2024.112017
https://ics.uci.edu/~yhuai/SORA-SVL/
https://doi.org/10.1109/ITSC.2016.7795548
https://doi.org/10.1561/0600000079
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.29
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.29
https://doi.org/10.1109/ISSRE5003.2020.00012
https://doi.org/10.1145/3540250.3549111
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/809577
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/809577
https://crashviewer.nhtsa.dot.gov/LegacyNMVCCS/Search
https://crashviewer.nhtsa.dot.gov/LegacyNMVCCS/Search
https://doi.org/10.1109/ITSC45102.2020.9294422
https://doi.org/10.1109/IV55152.2023.10186634
https://doi.org/10.1145/3551349.3556897
https://doi.org/10.1145/3579642
https://doi.org/10.48550/ARXIV.2206.09357
https://doi.org/10.48550/ARXIV.2206.09357
https://doi.org/10.1109/ASE51524.2021.9678735


SoVAR: Building Generalizable Scenarios from Accident Reports for Autonomous Driving Testing ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

[47] the U.S. Department of Transportation. 2022. ANSI-D20 Traffic Records Systems
Data Dictionary: Release 6.0. https://highways.dot.gov/safety/data-analysis-
tools/rsdp/rsdp-tools/ansi-d20-traffic-records-systems-data-dictionary-
release. Accessed on August 17, 2024.

[48] Haoxiang Tian, Guoquan Wu, Jiren Yan, Yan Jiang, Jun Wei, Wei Chen, Shuo Li,
and Dan Ye. 2022. Generating Critical Test Scenarios for Autonomous Driving
Systems via Influential Behavior Patterns. In 37th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2022, Rochester, MI, USA, October
10-14, 2022. ACM, 46:1–46:12. https://doi.org/10.1145/3551349.3560430

[49] Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long Han, and
Yang Tang. 2023. A Brief Overview of ChatGPT: The History, Status Quo and
Potential Future Development. IEEE CAA J. Autom. Sinica 10, 5 (2023), 1122–1136.
https://doi.org/10.1109/JAS.2023.123618

[50] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. 2020. A
Survey of Autonomous Driving: Common Practices and Emerging Technologies.
IEEE Access 8 (2020), 58443–58469. https://doi.org/10.1109/ACCESS.2020.2983149

[51] Xudong Zhang and Yan Cai. 2023. Building Critical Testing Scenarios for Au-
tonomous Driving from Real Accidents. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2023, Seattle,
WA, USA, July 17-21, 2023, René Just and Gordon Fraser (Eds.). ACM, 462–474.

https://doi.org/10.1145/3597926.3598070
[52] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,

Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A Survey of Large
Language Models. CoRR abs/2303.18223 (2023). https://doi.org/10.48550/ARXIV.
2303.18223

[53] Xingyu Zhao, Valentin Robu, David Flynn, Kizito Salako, and Lorenzo Strigini.
2019. Assessing the Safety and Reliability of Autonomous Vehicles fromRoad Test-
ing. In 30th IEEE International Symposium on Software Reliability Engineering, IS-
SRE 2019, Berlin, Germany, October 28-31, 2019, KatinkaWolter, Ina Schieferdecker,
Barbara Gallina, Michel Cukier, Roberto Natella, Naghmeh Ramezani Ivaki, and
Nuno Laranjeiro (Eds.). IEEE, 13–23. https://doi.org/10.1109/ISSRE.2019.00012

[54] Ziyuan Zhong, Gail E. Kaiser, and Baishakhi Ray. 2023. Neural Network Guided
Evolutionary Fuzzing for Finding Traffic Violations of Autonomous Vehicles.
IEEE Trans. Software Eng. 49, 4 (2023), 1860–1875. https://doi.org/10.1109/TSE.
2022.3195640

[55] Yuan Zhou, Yang Sun, Yun Tang, Yuqi Chen, Jun Sun, Christopher M Poskitt,
Yang Liu, and Zijiang Yang. 2023. Specification-based autonomous driving system
testing. IEEE Transactions on Software Engineering (2023).

https://highways.dot.gov/safety/data-analysis-tools/rsdp/rsdp-tools/ansi-d20-traffic-records-systems-data-dictionary-release
https://highways.dot.gov/safety/data-analysis-tools/rsdp/rsdp-tools/ansi-d20-traffic-records-systems-data-dictionary-release
https://highways.dot.gov/safety/data-analysis-tools/rsdp/rsdp-tools/ansi-d20-traffic-records-systems-data-dictionary-release
https://doi.org/10.1145/3551349.3560430
https://doi.org/10.1109/JAS.2023.123618
https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.1145/3597926.3598070
https://doi.org/10.48550/ARXIV.2303.18223
https://doi.org/10.48550/ARXIV.2303.18223
https://doi.org/10.1109/ISSRE.2019.00012
https://doi.org/10.1109/TSE.2022.3195640
https://doi.org/10.1109/TSE.2022.3195640

	Abstract
	1 Introduction
	2 Background
	2.1 Motivation
	2.2 Large Language Models for Textual Understanding

	3 Approach
	3.1 Information Extraction
	3.2 Trajectory Planning
	3.3 Simulation and Test Generation

	4 Experimental Design
	4.1 Experiment Settings
	4.2 Evaluation Metric and Baseline Comparison

	5 Result Analysis and Discussion
	5.1 Answer to RQ1
	5.2 Answer to RQ2
	5.3 Answer to RQ3
	5.4 Threats to Validity

	6 Related Work
	6.1 Driving Accident Scenario Reconstruction
	6.2 ADS Simulation Testing

	7 Conclusion
	References

